Grothendieck’s works on Banach spaces and

their surprising recent repercussions
(parts 1 and 2)

Gilles Pisier

IPAM, April 2018

Gilles Pisier Grothendieck’s works on Banach spaces



’s works on Banach spaces



Gilles Pisie thendieck’s works on Banach spaces



PLAN

e Classical GT

e Non-commutative and Operator space GT

e GT and Quantum mechanics : EPR and Bell's inequality

e GT in graph theory and computer science

Gilles Pisier Grothendieck’s works on Banach spaces



Classical GT

In 1953, Grothendieck published an extraordinary paper entitled
“Résumé de la théorie métrique des produits tensoriels
topologiques,’

now often jokingly referred to as “Grothendieck’s résumé”(!).
Just like his thesis, this was devoted to tensor products of
topological vector spaces, but in sharp contrast with the thesis
devoted to the locally convex case, the “Résumé” was
exclusively concerned with Banach spaces (“théorie métrique”).
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Initially ignored....

But after 1968 : huge impact on the development of “Geometry
of Banach spaces"

starting with

Pietsch 1967 and Lindenstrauss-Petczynski 1968

Kwapien 1972

Maurey 1974 and so on...
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The “Résumé" is about the natural ®-norms

37 -

TABLEAU DES @-NOKMES NATURELLES.

A intégrals
= et i
\C' prolongemest / \ 2=/ i

Préintdgral gauche , Préimtégral drost
I E =G — /A3 Fr B A e

W 10n5e~ L' = A préinté-
/A pré‘intégra—
et rslévzment ‘erale droite ;

\H prolongenent

¥* bilbertien
E—>C—v
g =WV ‘i
le ‘4u1vauu
T ¢ P

= L\ préreldve- |
:mnc droi
E= A= F

V' norme usuel-

B— P

| Esplications. - 1. Déolgmations et factorisations typioves. Nous
avons inséré les diversea @-normes usuelles par leur signe usu-




The central result of this long paper
“Théoréme fondamental de la théorie métrique des produits
tensoriels topologiques”
is now called

Grothendieck’s Theorem (or Grothendieck’s inequality)
We will refer to it as

GT

Informally, one could describe GT as a surprising and
non-trivial relation between Hilbert space, or say

Lo
and the two fundamental Banach spaces
LOOa L1

(here L, can be replaced by the space C(2) of continuous
functions on a compact set S).
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Why are L., Ly fundamental ?
because they are UNIVERSAL!
Any Banach space is isometric to a SUBSPACE of L,
(/> In separable case)
Any Banach space is isometric to a QUOTIENT of L;
(¢4 in separable case)
(over suitable measure spaces)

Moreover :
L is injective
L, is projective
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L is injective

X\
AN \D
u \A
— Loo(11)
Extension Pty :
Vu 3o with ||| = ||ull
L4 is projective
X

o N2
Liw) = X/E

Lifting Pty :

Yu compact Ve > 0 30 with ||t]] < (1 +¢)||u||
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The relationship between
L1 ) L27 Loo

is expressed by an inequality involving

3 fundamental tensor norms :
Let X, Y be Banach spaces, let X ® Y denote their algebraic
tensor product. Then for any

T:Z:xj@)yjeX(@Y (1)
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n
T=) X8y (1)

(1.“projective norm”)

ITln = inf {3 Iyl }

(2.“injective norm”)

Tl = sup{]zx*(my*(m! X B,y e BY*}

(3.“Hilbert norm”)

HTHH:inf{X*sEupX* (Z|x x;)| )1 sup (ZU’ W) >1/2}

where again the inf runs over all possible representations (1).
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Open Unit Ball of X ®, Y=convex hull of rank one tensors x @ y
with || x|l <1 |ly|l < 1

Note the obvious inequalities
[T < ITlH < [ITlA

In fact || || (resp. || ||v) is the largest (resp. smallest)
reasonable ®-norm
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N The ~v>-norm
Let T: X* — Y be the linear mapping associated to T,

T(x) =Y x(%)y
Then || T|lv = || Tllgx.v) and

[Tl = inf{|[ T4 ]Il T2} ()

where the infimum runs over all Hilbert spaces # and all
possible factorizations of T through H :

Toxr By My

with T = T1 Tg.
More generally (with Z in place of X*)

Y (V: Z=Y)=inf{|T1|[|T2|| | V= T1 T2}

called the norm of factorization through Hilbert space of T
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Important observations :

Il llv is injective, meaning

X C Xy and Y C Yi(isometrically) implies
X Ry Y C X1 Ry Y1

|| ||A is projective, meaning X; — X and Y; — Y implies

X1®/\Y1—»X®/\Y

(where X; — X means metric surjection onto X)
but || || is NOT projective and || ||, is NOT injective
Note : || ||y is injective but not projective
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Natural question :
Consider T € X ® Y with || T|y =1
then let us enlarge X C Xj and Y C Y; (isometrically)
obviously || Tl xe,v < |Tllxe.y
Question : What is the infimum over all possible enlargements
Xy, Ys

1T p = inf{l T ey )2

Answer using Xi =Y, =/ :

ITH A = 1T ece@ntoo
and (First form of GT) :

(ITlm <) [Tl < Kall TllH
....was probably Grothendieck’s favorite formulation
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One of the great methodological innovations of “the Résumé”
was the systematic use of duality of tensor norms : Given a
norm o on X ® Y one defines o* on X* ® Y* by setting

(T =sup{|{T, TN | TeEX®Y,a(T) <1}. VT € X* @ Y*

In the case
a(T) =T ln,

Grothendieck studied the dual norm o* and used the notation

a*(T) = [Tl
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GT can be stated as follows : there is a constant K such that for
any Tin Lo ® Ly (orany T in C(Q2) @ C(2)) we have

GTy:  (TIA <KITlH @)

Equivalently by duality the theorem says that for any ¢ in
Ly ® Ly we have

(GT1)" = el < Kllellv. (3)
The best constant in either (3) or (3) is denoted by
Kg “the Grothendieck constant"(actually K& and K§)

Exact values still unknown
although it is known that 1 < K§ < K&
1.676 < K5 < 1.782

Krivine 1979, Reeds (unpublished) more on this to come...
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GT,
Let By = {x c H||Ix|| <1}

vn Vx,y €By (i,j=1,---,n)

3pi, ) € Loo([0,1])
such that

v’a/ <Xl'7yj> = <¢I‘71/}j>L2
sup [|@illoo sup [|¢j]lec < K
i j
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We may assume w.l.0.g. that
Xi =Yi
but nevertheless we cannot (in general) take

b1 = il

... more on this later
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GT, implies GTq inthe form VT € (7. @ 7. || T|xn < K[| T||lH
T el ®7 isamatrix T = [T;}]
Then |T|n<1 iff 3x,y;€ By Tij= (X,

Let
C = {leigf] | lei | < 1lef| < 1]

then {T € (2. @7 | || T||x < 1} = convex-hull(C)=C°°
But now if | T||y < 1 forany b € C°

(T80 =13 Tt =1 06l = | [ 3wt
< sup ||l oo sUP [[¥)lloe < K
i /

Conclusion :
[Tlla = sup (T,b)] < K
beC°

and the top line is proved!
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But now how do we show :

Given Xx;,y; € By
there are ¢;,1; € L([0,1])
such that
v’vl <Xi7}/j> = <¢/71/}j>L2
sup [|illoo sup [Yjllc < K
i j

777
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Let H= (5. Let {g; | j € N} be an i.i.d. sequence of standard
Gaussian random variables on (22, A, P).
Forany x = ) x;e; in /> we denote G(x) = > X;g;.

(G(X), GY)) Lo(.p) = (X, Y)H-

Assume K = R. The following formula is crucial both to
Grothendieck’s original proof and to Krivine’s :

(x.y) = sin (5 (sign(G(x)). sign(G(¥)))) - )

Krivine’s proof of GT with K = 7(2Log(1 + v2))~'
Here K = 7/2a where a > 0 is chosen so that

sinh(a) =1 i.e. a=Llog(1+ Vv2).
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Krivine’s proof of GT with K = 7(2Log(1 + v2))~"

We view T = [T;,]. Assume || T||y < 1 i.e.

Tij = (X, ¥;), Xiyj € B
We will prove that || T||» < K.
Since | ||y is a Banach algebra norm we have

|sin(aT)||n <sinh(a||T||H) < sinh(a) = 1. (here sin(aT) = [sin(aT;;)])
= sin(aTiy) = O,y Xl < 1yl <1

sin(aTj;) = sin <72T/§mj dIP’)
where &; = sign(G(x;)) and 7; = sign(G(y;)). We obtain

By (4) we have

T
aTij= 5 [ &m op

and hence ||aT || < 7/2, so that we conclude || T|j, < 7/2a.
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Best Constants
The constant K is “the Grothendieck constant.” Grothendieck
proved that

w/2 < Kg < sinh(7/2)

Actually (here g is a standard N(0, 1) Gaussian variable)

19172 < Kg

R: gl =Elgl = (2/m)"%  C: |lgls = (x/4)"/?

and hence K§ > 4/m. Note K§ < K§.
Krivine (1979) proved that

1.66 < K& < 7/(2 Log(1 + v2)) =1.78...
and conjectured KX = 7/(2 Log(1 + v2)).
C : Haagerup and Davie 1.338 < K5 < 1.405
The best value /peg Of the constant in Corollary 0.4 seems also
unknown in both the real and complex case. Note that in the
real case we have obviously 4es; > /2 because the
2-dimensional Ly and L., are isometric.
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Disproving Krivine’s 1979 conjecture

Braverman, Naor, Makarychev and Makarychev proved in 2011
that :

The Grothendieck constant is strictly smaller than krivine’s
bound

i.e.

KE < 7/(2 Log(1 + V2))
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Grothendieck’s Questions :

The Approximation Property (AP)
Def : X has AP if forany Y
X®Y — X&Y s injective

Answering Grothendieck’s main question

ENFLO (1972) gave the first example of Banach FAILING AP
SZANKOWSKI (1980) proved that B(H) fails AP

also proved that for any p # 2 ¢, has a subspace failing AP....
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Nuclearity
A Locally convex space X is NUCLEAR if

VY XQY =X&Y
Grothendieck asked whether it suffices to take Y = X, i.e.
XX = X&HX

but | gave a counterexample (1981) even among Banach spaces
also  X®X* — X&X* is onto, this X also fails AP.
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Other questions

[2] Solved by Gordon-Lewis Acta Math. 1974. (related to the
notion of Banach lattice and the so-called “local unconditional
structure")

[3] Best constant ? Still open!

[5] Solved negatively in 1978 (P. Annales de Fourier) and
Kisliakov independently : The Quotients Ly/R for R C L4
reflexive satisfy GT.
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[4] non-commutative GT
Is there a version of the fundamental Th. (GT) for bounded
bilinear forms on non-commutative C*-algebras ?
On this | have a small story to tell
and a letter from Grothendieck...
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4. Propriétés slgébrico-topologiques des C' -algdbres.Soit
A une C*-algébro. Le théordme 3 du Ne2 suggdre la conjecture su

ivante: Soit u une forme sesquilinéaire continue sur AXA,peut
on trouver une forme positive (P sur A telle que u L ) (o
on pose, comme au n®5, wu (x,y) = tf(y*x)]? 5'41 on était toujours
ainsi, on pourrait trouver une constante universelle A (peut on
prendre méme M = h?) telle que 1'on puisse choisir cette  de
norme £ Aln|. Il suffirait de prouver alors 1'énoncé scus cet-
te forme pour le cas od A est du type L(H), H étant un espace
de Hilbert de dimension finie. Cette conjecture peut 8'énoncer de

diverses sutres fagone équivelentes dignes d'intér8t. Signalons

qu'elle impliquerait que toute forme bilinéaire continue sur le
produit de deux C*-nlgébru eat hilbertienne. Quand l'une des

deux C*-als%breu est prise égale A S on obtient facilement 1la
conséquence suivante: toute suite sommable dans le dual A' d'une
C*-algbbra a une suite de normes qui est de carré sommable. Cela
permettrait par exemple de prouver la proposition 6 du N&4 sans

aunnoner la groune G abélien.
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Dual Form and factorization :
Since [[¢llengy o = ll¢lljen @ nem, 1
(GT) Veelf el |eln < Klelv

is the formulation put forward by Lindenstrauss and Petczynski
(“Grothendieck’s inequality") :

Theorem

Let [a;] be an N x N scalar matrix (N > 1) such that
’Z aijaiﬁi‘ < sup |aj| sup |Bj]- Va, 8 € K"
i i

Then for Hilbert space H and any N-tuples (x;), (y;) in H we
have

1> a0, y)| < K sup xilsup [yl (5)
Moreover the best K (valid for all H and all N) is equal to Kg.
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We can replace ¢ x (7 by C(2) x C(IM) (2, N compact sets)

Theorem (Classical GT/inequality)

For any ¢: C(Q2) x C(IN) — K and for any finite sequences
(X, y;) in C(Q2) x C(N) we have

D= e )| < Kllel H(Z IX/\Q)”ZHOO H o7

(We denote ||f||.o = sup|f(.)| for f € C(2)) Here again
Q

1/2 . (6)

o0

Kbest — KG o

For later reference observe that here ¢ is a bounded bilinear
form on A x B with A, B commutative C*-algebras
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By a Hahn—-Banach type argument, the preceding theorem is
equivalent to the following one :

Theorem (Classical GT/factorization)

Let Q, T be compact sets. (here K =R orC)
Vo: C(Q) x C(N) — K bounded bilinear form 3 \, p1
probabilities resp. on Q and T, such thatV(x,y) € C(Q) x C(N)

ete)l < Kol ( [ \x|2dx)1/2 (/ \y\%)w )

where constant Kpest = K& or K§

c(Q) —2— c(ny

g

L(\) —— Lo(n)
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Note that any L..-space is isometric to C(2) for some €2, and
any Lq-space embeds isometrically into its bidual, and hence
embeds into a space of the form C(Q)*.

Corollary

Any bounded linear map v: C(Q2) — C(N)* or any bounded
linear map v: L., — Ly (over arbitrary measure spaces)
factors through a Hilbert space. More precisely, we have

2(v) < v

where ( is a numerical constant with ¢ < Kg.
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GT and tensor products of C*-algebras
Nuclearity for C*-algebras
Analogous C*-algebra tensor products

AQmin B and AQmax B
Guichardet, Turumaru 1958, (later on Lance)
Def : A C*-algebra A is called NUCLEAR (abusively...) if
vB A Qmin B= A®max B

Example : all commutative C*-algebras,
K(H) = {compact operators on H},
C*(G) for G amenable discrete group

For C*-algebras :
nuclear ~ amenable
Connes 1978, Haagerup 1983
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KIRCHBERG (1993) gave the first example of a C*-algebra A
such that
A Qmin A% =A Xmax A%

but
A is NOT nuclear

He then conjectured that this equality holds for the two
fundamental examples

and
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Why are B(H) and C*(FF.) fundamental C*-algebras ?
because they are UNIVERSAL
Any separable C*-algebra EMBEDS in B(/»)
Any separable C*-algebra is a QUOTIENT of C*(F)

Moreover, B(H) is injective (i.e. extension property)

and C*(F.) has a certain form of lifting property
called (by Kirchberg) Local Lifting Property (LLP)
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With JUNGE (1994) we proved that if A = B(H)
(well known to be non nuclear, by S. Wassermann 1974)

A Omin AOp 7& A Rmax AOp

which gave a counterexample to the first Kirchberg conjecture
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The other Kirchberg conjecture has now become the most
important OPEN problem on operator algebras :
(here F is the free group)

If A= C*(Fso), A®@min APLA @max A%P?
< CONNES embedding problem
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Let (U;) be the free unitary generators of C*(IFF.)
Ozawa (2013) proved

Theorem
The Connes-Kirchberg conjecture is equivalent to

n n
vnz1a;eC |Y Ul =|> aUey

ij=1 ij=1

max min

Grothendieck’s inequality implies

n n
C
E a,-,-U,-®U,- < KG Za,-,-U,-@U,-
i,j=1 max hj=1 min
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Indeed,

n n
Za’/U’®Lj/ :SUP{|<T],ZajjU,’Vjé—>|,§,77€BH}

ij=1 max ij=1

n
<sup{| > aj(urn, vi&)l,&,n € B}
ij=1

n
< sup{| Z aii(Xi, yj)|, Xi, ¥j € Bn}
i j=1

n
< K§ sup{]| Z aij(xi, ¥j) . i, ¥j € Bc}
i =1

n
< Kg Z a,-jU,- ® Uj
ij=1

min
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Theorem (Tsirelson 1980)
Ifa; € R forall1 <i,j<n.Then

132,811 © Ullmax = 113, 2U; @ Ujllmin = l|2l g -
Moreover, these norms are all equal to

sup || Y ajuv| (8)

where the sup runs over all n > 1 and all self-adjoint unitary
n x n matrices u;, v; such that u;v; = vju; for all i, .

Gilles Pisier Grothendieck’s works on Banach spaces



Non-commutative and Operator space GT

Theorem (C*-algebra version of GT, P-1978,Haagerup-1985)

Let A, B be C*-algebras. Then for any bounded bilinear form
¢: Ax B — C there are states f;, f, on A, g1, g> on B such that
V(x,y) e Ax B

[o(x, Y)] < llll(F(x*x) + f2(xx)) /(g1 (vy™) + ga(y*y)) /2.

Many applications to amenability, similarity problems,
multilinear cohomology of operator algebras (cf. Sinclair-Smith
books)
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Operator spaces

Non-commutative Banach spaces (sometimes called “quantum
Banach spaces"...)

Definition
An operator space E is a closed subspace of a C*-algebra, i.e.

E cAc B(H)

Any Banach space can appear, but
In category of operator spaces, the morphisms are different

u:E—F |ulle= sup I{aj] — [u(aplll Bva(E)—Ma(F))

B(E,F) isreplaced by CB(E,F) (Note: ||u| < |ullep)
bounded maps are replaced by completely bounded maps
isomorphisms are replaced by complete isomorphisms

If Ais commutative : recover usual Banach space theory
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L is replaced by

Non-commutative L., : any von Neumann algebra
Operator space theory :

developed roughly in the 1990’s by

EFFROS-RUAN BLECHER-PAULSEN and others
admits Constructions Parallel to Banach space case
SUBSPACE, QUOTIENT, DUAL, INTERPOLATION,
3 ANALOGUE OF HILBERT SPACE ("OH")...
Analogues of projective and injective Tensor products

Ei Cc B(H1) Ex C B(H»)
Injective  Ey @min E2 C B(Hy ®2 Hy)

Again Non-commutative L., and Non-commutative L
are UNIVERSAL objects
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Theorem (Operator space version of GT)

Let A, B be C*-algebras. Then for any CB bilinear form

p: Ax B— Cwith||¢||cp < 1 there are states f;, f, on A, g1, go
on B such thatV(x,y) € Ax B

e <2 (RO )2 + (B X)ge(yy*) ' 2)

Conversely if this holds then || ¢||cp < 4.

’

With some restriction : SHLYAKHTENKO-P (Invent. Math. 2002)
Full generality : HAAGERUP-MUSAT (Invent. Math. 2008) and
2 is optimal !

Also valid for “exact" operator spaces A, B (no Banach space
analogue!)
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GT, Quantum mechanics, EPR and Bell’s inequality

In 1935, Einstein, Podolsky and Rosen [EPR] published a
famous article vigorously criticizing the foundations of quantum
mechanics

They pushed forward the alternative idea that there are, in
reality, “hidden variables" and that the statistical aspects of
quantum mechanics can be replaced by this concept.

In 1964, J.S. BELL observed that the hidden variables theory
could be put to the test. He proposed an inequality (now called
“Bell’s inequality") that is a CONSEQUENCE of the hidden
variables assumption.

After initially proposed by Clauser, Holt,
Shimony and Holt (CHSH, 1969), the consensus is :

The Bell-CHSH inequality is VIOLATED, and in fact the
measures tend to agree with the predictions of QM.

Ref : Alain ASPECT, Bell’s theorem : the naive view of an
experimentalist (2002)
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In 1980 TSIRELSON observed that GT could be interpreted as
giving AN UPPER BOUND for the violation of a (general) Bell
inequality,
and that the VIOLATION of Bell’'s inequailty is related to the
assertion that

KG > 111

He also found a variant of the CHSH inequality (now called
“Tsirelson’s bound")
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The experiment

10 There is no (Local-Realistic) Alternative to Quantum Theo

184
Y @ k4) A

vB VA
—-——— z —_—

' 4

y
1v®) fy4)
B A

Figure 10.1: A polarisation measurement on pairs of photons. The dashed lines indicate the a- and

y-axes. The solid lines are the rotated axes.

Figure 10.2: The orientations of the analysers.
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- &

Coincidence
recorder

Fig. 6.8. Aspect’s experiment: Pairs of photons are emitted in §PS cascades.
Optical switches Q; and 0, randomly redirect these photons toward four po-
larization analyzers, symbolized by thick arrows. Each analyzer tests the linear
polarization along one of the directions indicated in Fig. 6.7(b). The detector
outputs are checked for coincidences in order to find correlations between them.
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Outline of Bell’s argument :

Hidden Variable Theory :

If A has spin detector in position i
and B has spin detector in position /
Covariance of their observation is

& = / A(N)B(V)p(N)dA

where p is a probability density over the “hidden variables"
Now if a € /] ® /], viewed as a matrix [a;], for ANY p we have

|Zaijfij| < HV(@)max = sup |Zaij¢i¢j’ = |lallv

pi=F1hj=+1
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But Quantum Mechanics predicts

&ij = tr(pAiB;)
where A;, B; are self-adjoint unitary operators on H
(dim(H) < oo) with spectrum in {£1} such that A;B; = B;A; and
p is a non-commutative probability density,
i.e. p > 0 trace class operator with tr(p) = 1. This yields

1> il < OM(8)max = sup 1> aj(AiBix, x)| = ||allmin
Xeby

with ||a||min relative to embedding (here g; = free generators)
@07 C C*(Fp) @min C*(Fn)
eR®e— g®Jg
Easy to show ||@l|min < ||@l/#7, SO GT implies :
lallv < [lallmin < Ka llallv

= Hv(a)max S OM(a)max § KG Hv(a)max
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But the covariance ¢;; can be physically measured, and hence
also | > g;¢;| for a fixed suitable choice of a, so we obtain an
experimental answer

EXP(a)max

and (for well chosen a) it DEVIATES from the HV value
In fact the experimental data strongly confirms the QM
predictions :

HV(@)max < EXP(@)max ~ QM(@)max
GT then appears as giving a bound for the deviation :

HV(@)max < QM(@)max but  QM(@)max < Kg HV(@)max
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JUNGE (with Perez-Garcia, Wolf, Palazuelos, Villanueva,
Comm.Math.Phys.2008) considered the same problem for
three separated observers A, B, C

The analogous question becomes : If

a=) _ apxeee € 1RL]o] C C*(F1)@minC*(Fn)@minC*(Fn)
Is there a constant K such that

HaHmin < KHaH\/?
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JUNGE (with Perez-Garcia, Wolf, Palazuelos, Villanueva,
Comm.Math.Phys.2008) considered the same problem for
three separated observers A, B, C

The analogous question becomes : If

a=) _ apxeee € 1RL]o] C C*(F1)@minC*(Fn)@minC*(Fn)
Is there a constant K such that
HaHmin < KHaH\/?

Answer is
NO

One can geton (] ® {1 ® ¢4
K >cn'/8

and in some variant a sharp result
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GT in graph theory and computer science

Alon-Naor-Makarychev? [ANMM] introduced the Grothendieck
constant of a graph G = (V, E) : the smallest constant K such
that, for every a: E — R, we have

sup Z a(s, t)(f(s),f(t)) <K  sup Z a(s, t)f(s)f(t)

f: V=S JpeE F: Vo {11} (g e
9)

where S is the unit sphere of H = /> (may always assume
dim(H) < |V]). We will denote by

K(9)

the smallest such K.
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Consider for instance the complete bipartite graph C, on
vertices V=L, UdJdywith I ={1,...,n}, Jh={n+1,...,2n}
with

(hbyye E<ic€ly jedn

In that case (9) reduces to GT and we have

K(CBn) = K&(n)
sup K(CBp) = Kg.

n>1

If G = (V',E’)is asubgraph of G (i.e. V' C V and E’ C E) then
obviously
K(G') < K(9).

Therefore, for any bipartite graph G we have

K(G) < Kg.
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However, this constant does not remain bounded for general
(non-bipartite) graphs. In fact, it is known (cf. Megretski 2000
and independently Nemirovski-Roos-Terlaky 1999) that there is
an absolute constant C such that for any G with no selfloops
(i.e. (s,t) ¢ Ewhens=1t)

K(G) < C(log(IV]) +1). (10)

Moreover by Kashin-Szarek and [AMMN] this logarithmic
growth is asymptotically optimal.
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vn Vxi,xi€ By (i,j=1,---,n)

3, v; € L([0,1])
such that

Vij (%) = (600,
sup ||d>/||0051;p [Yjlloe < K
but nevertheless we cannot (in general) take
¢ = il
If ¢; = v, then K > clog(n)!
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WHAT IS THE POINT ?
In computer science the CUT NORM problem is of interest : We

are given a real matrix (aj;),cg We want to compute efficiently
j€s

Q = max ajl .
ICR 23

JCS jieeLIl
Of course the connection to GT is that this quantity Q is such
that
4Q>Q >Q
where

Q= sup D apxy;
X/,}/je{_1,1}

So roughly computing Q is reduced to computing Q'.
In fact if we assume }; a; = >; a; = 0 for any / and any j then

4Q=Q
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Then precisely Grothendieck’s Inequality tells us that

y
/l> /> /!
Q'>Q _—KGQ

where

Q' = sup Za,-,-(x,-,yﬁ.

X,y;€S

The point is that computing Q' in polynomial time is not known
(in fact it would imply P = NP) while the problem of computing
Q' falls into the category of “semi-definite programming”
problems and these are known to be solvable in polynomial
time.
cf. Grétschel-Lovasz-Schriver 1981 : “The ellipsoid method"
Goemans-Williamson 1995 : These authors introduced the idea
of “relaxing” a problem such as Q' into the corresponding
problem Q".
Known : Jp < 1 such that even computing @ up to a factor p in
polynomial time would imply P = NP. So the Grothendieck
constant seems to play a role here!
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Alon and Naor (Approximating the cut norm via Grothendieck’s
inequality, 2004) rewrite several known proofs of GT (including

Krivine’s) as (polynomial time) algorithms for solving Q” and
producing a cut /, J such that

Za’f ZpQ:prInCag Za,'j :

iel Jcs | i€l
jed jed
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According to work by P. Raghavendra and D. Steurer, for any

0 < K < Kg, assuming a strengthening of P # NP called the
“unique games conjecture", it is NP-hard to compute any
quantity g such that K~'q < Q'. While, for K > Kg, we can
take g = @’ and then compute a solution in polynomial time by
semi-definite programming. So in this framework K5 seems
connected to the P = NP problem!

Reference : S. Khot and A. Naor , Grothendieck-type
inequalities in combinatorial optimization, 2012.
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THANK YOU'!
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