CLASSICAL AND QUANTUM
ALGORITHMS FOR ISOGENY
PROBLEMS

KIRSTEN E I SENTRAEGEHR

P E N N STATE
A N D
S I MON S I NS TITUTE

I PAM WORKSHOP
JANUARY 26, 2022



Goal: develop public-key cryptographic algorithms that are secure

against quantum computers.

Bad choices:

RSA

(Traditional) Elliptic Curve Cryptography (ECC)

Good choices: 7?7 - Lattice-based systems (LWE, Ring-LWE)

- Mc!

Hliece

- [sogeny-based systems

This talk: Isogeny based cryptography as a candidate for post-quantum

crypto

- Give different equivalent problems that these systems are based on.

- Discuss progress with

quantum algorithms on these problems.

9



Traditional Elliptic Curve Cryptography (ECC).
- Proposed in 1985, widely used since 2004.

- Based on hardness of discrete log problem on elliptic curves.

- Broken by Shor’s quantum algorithm for discrete log ('94).

Object: elliptic curve defined over finite field.

Points on E are solutions (x, y) of equation Finite field with q

elements

Ease = av+b a; b Sk,

Points of E, together with “c”, form an abelian group.



Traditional elliptic curve cryptography (ECC):

- Fix one curve and use the group law.

- Assume discrete log 1s hard on this group.

- Get small key sizes.

Shor’s quantum algorithm breaks these.

New proposal(s): Isogeny-based systems

Use an exponentially large set of elliptic curves and
the isogenies (maps) between them.

Use terminology supersingular elliptic curves to make statements correct.
For this talk: isogenies = maps between elliptic curves.
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* Pool of potential post-quantum candidates 1s very small. Need to
investigate all candidates.

 Elliptic curves: used in crypto for more than 20 years. So we have
a lot of experience with them, infrastructure 1n place.

* Some underlying computational assumptions (e.g. the
endomorphism ring problem) have been studied classically already:.

* Systems have not been sufficiently scrutinized by researchers in
quantum algorithms.

This workshop: great opportunity to get more exposure!

* Compared to lattice-based crypto, there are fewer
functionalities. Have encryption, key exchange, signatures, but

no fully homomorphic encryption or ID based crypto.
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HARDNESS ASSUMPTIONS IN
PUBLIC-KEY CRYPTOGRAPHY

System  underlying hard? problem

RSA Factoring

Elliptic curve cryptography Elliptic curve discrete log

This talk 25
\ (Ring) LWE SVP in (ideal) lattices
Supersingular isogeny-based Computing 1sogenies
cryptography (SIDH,...) between curves
Commutative 1sogeny-based | Inversion of class group
cryptography (CSIDH) action
Soliloquy Short generator PIP




Hash function

CGL: Charles-Goren-Lauter (2006)

Public-key cryptosystems

CRS: Couveignes, Rostovstev and Stolbunov

L (ordinary elliptic curves) (2006)
tative Optimization (DKS'18)

Supersingular Isogeny Dithie-Hellman (SIDH)
key exchange, Jao and de Feo (2011)

CSIDH: Commutative SIDH (2018)

Castryck, Lange, Martindale, Panny, Renes

Generalizations (CDQ_O, BKV19, CS2Y1)

OSIDH (“O” for Oriented)
Colo-Kohel (2019), Onuki (2021)

g

Group action



Much less studied than lattice-based systems. Need more research to

develop confidence in security, both classically and against quantum

computers!

- Need to study objects and hardness assumptions more.

- Can

phrase hardness assumptions in different ways (graphs,

grou

b actions,...)

- For some objects, have no canonical “small” representatives

Some Progress:

- Can show that objects (isogenies, endomorphisms, maximal

orders...) have polynomial representation size. Have to choose

right

description/representation. (E./Hallgren/Lauter/Morrison/Petit '18)

- Can give reductions between different hardness assumptions in
different systems. (E./Hallgren/Lauter/Morrison/Petit '18, Wesolowski 21)



Analyze objects through the Z-isogeny graph (next shde)
- SIDH key exchange uses full Z-1sogeny graph

- For schemes with group actions: fewer vertices, but still
exponential size graph

- Key property used: tull graph 1s expander graph

Curves are of form E: y?’=x>+ax+bwith a,b € E2
so have small representation size.

But: - Maps between them (isogenies) are generally
defined over large extension fields.

- Can result in exponential size objects.

The 1sogenies used in cryptosystems have exponential size.

- Need to decompose Into composition of ones with smaller
size.



Choose a small prime 7 #p (p = char(F) 1s hixed)
Graph G, 1s exponentially large, p/12 vertices.

G, 1s an expander.

Given a vertex, can efficiently compute neighbors.

“finding 1sogenies” a.k.a. “path finding”

Def: G, = (V.Ey)
V := { supersingular elliptic curves in char p (up to isomorphism)}

E,:={(E,E") :3 ¢p: E— E' of degree ¢} ¢ = size of kernel of ¢
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Given: elliptic curve E. Points on E form abelian group.

[sogeny ¢ : E; — E, 1s a map that respects the group structure.
Isogenies are determined by their kernels.

Fasy: compute all degree 2 1sogenies to other curves. (There are three.)

02 El degree of ¢ = size of kernel

E %) E E/
2
{3
E3
Hard: given a second curve E’, compute a degree 2" 1sogeny ¢ : E — E..

Corresponds to n steps from E as above.
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Hardness assumption: there 1s no efficient algorithm for:

¢-Isogeny Pathfinding Problem: Given prime p, super-

— °

singular curves E,E’, ind a path from E to E’ in the 7 -1sogeny

graph.

 prime p 1s of cryptographic size, £ is small prime usually 2 or 3.
* Input parameters (the curves) are of size log p.

* Fastest classical algorithm for constructing 1sogenies between

supersingular curves E,E’ runs in time O(p'?) (Delfs-Galbraith)

* Fastest quantum algorithm for constructing isogenies: O(p'*)

(Biasse-Jao-Sankar), uses Grover’s algorithm to first find short
path from E to a curve detined over F,.

Both algorithms are exponential in log p.
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Can show: Pathfinding is equivalent to computing endomorphism
rings, and to computing maximal orders in quaternion algebras.

endomorphism of E = 1sogeny ¢ : E — E from E to 1tselt.
End(E) = set of all endomorphism of E. Has a ring structure.

E 1s supersingular & End(E) 1s a lattice of rank 4.

Endomorphism Ring Problem: Given prime p,
supersingular elliptic curve E (with coetts in F), find four

endomorphisms that generate End(E) as a lattice.

Theorem (EHLMP '18, Wesolowski’ 21): Under the

generalized Riemann Hypothesis, the Endomorphism Ring
Problem and the #-Isogeny Pathfinding Problem are

equivalent under reductions that run in expected poly time.
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P athﬁnding In MaxOrder (Compute the

quaternion alg ebra Bp 5 maximal order in a quaternion
; algebra associated to
endomorphism ring of E)
algebraic
SIDH key exchange

< £-1sogeny Pathfinding

CGL hash function B R

Pathfinding in (quotients of) Endomorphism Ring Problem

Bruhat-Tits trees: linear algebra
in Matz(Zf)

arithmetic

o . . - )
means ‘reduction is not efficient
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In CSIDH, OSIDH, ...: more structure, 1sogenies given via group actions

X= exponential size subset of supersingular elliptic curves.
E.g. all supersingular curves E: y* =x’ + ax+ b with a,b € F,.

Have group action G XX - X, (g,x) » g*x (G abelian group)
Action should be:
1. Efficient to compute

2. Hard to invert: Given x and g * x, hard to compute g.
+—% Security of scheme

For these schemes: have subexponential time quantum algorithm:

Reduce inverting the group action to solving abelian hidden shift problem in G.
(Childs-Jao-Soukharev '14, Wesolowski '21)

Then use Kuperberg’s subexponential time algorithm for abelian hidden shift.
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[sogeny-based
systems that come
with group action

IA

16

Abelian hidden shift
problem

foo i : G = S, fo(x) = fi(x5)
Goal: find hidden shift s



DDF* 21: Formalize “uber” 1sogeny framework, allows common way for

cryptanalysis of all isogeny-based crypto

Can show: Class group actions apply to many cases that were

thought to be “noncommutative”.

So 1s there one single problem that we should try to solve and

that would break all 1sogeny-based crypto?

Yes - the Endomorphism ring problem!
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Can reduce breaking 1sogeny crypto based on group actions to solving
Endomorphism Problem. (Wesolowski 21)

Class group action  Abelian shift problem
[sogeny-based systems

equipped with group action <

(OSIDH CSIDH CD20, BKV19, CS21) \

SIDH key exchange t
< Z-1sogeny Pathfinding
CGL hash function

Endomorphism Ring Problem
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An efficient algorithm for computing endomorphism rings of
supersingular curves would break all 1sogeny-based systems.

Fastest classical algorithm: (log p)O(l) p L2 (with heuristics, EHLMP ’20)

Bottleneck of this algorithm: Given supersingular E, need to
find cycle 1n 1sogeny graph passing through E.

Open Question: Can a quantum algorithm do better?
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Supersingular Isogeny based crypto 1s one of the few candidates

for post-quantum crypto.

For some 1sogeny schemes: sub exponential quantum algorithm via
a reduction to the abelian hidden shift problem.

Efficient (quantum) algorithm for computing endomorphism
rings of supersingular curves would break all proposed systems.

Best classical algorithm for computing endomorphism rings 1s

exponential.
Quantum algorithms don’t have an advantage so far.

Open: Is there a subexponential quantum algorithm for

computing supersingular endomorphism rings?
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