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Outline
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• Quantum singular value decomposer: to produce singular value decomposition of
bipartite pure states

• Variational quantum linear solver: for solving linear systems of equations

• Quantum generative models via adversarial learning: to learn underlying distribution
functions.



Noisy intermediate-scale quantum (NISQ) era
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NISQ era:

- Low number of qubits (50 qubits to a few hundreds)

- Low coherence times (~1000 operations)

- No error correction

Not yet capable of large-scale quantum computations

Google IBM IonQ



Variational quantum architectures
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Candidates for near term advantage

- No high requisites in the number of qubits

- Shallow quantum circuits and hardware efficient

- Slightly noise resilience

Encode the problem into some cost function

Use a classical/quantum hybrid computation

to minimize this cost function



Quantum singular value decomposer
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with D. García-Martín and J. I. Latorre, Phys. Rev. A 101, 062310
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Variational training to correlations

Quantum Singular Value Decomposer

Only one 

measurement setting
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Once trained:

- Read out entropy spectrum
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Once trained:

- Read out entropy spectrum

- Recover eigenvectors with inverted unitaries
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Autoencoder Long-distance SWAP

Once trained:

- Read out entropy spectrum

- Recover eigenvectors with inverted unitaries

- Autoencoder and SWAP



Variational quantum linear solver
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with R. LaRose, M. Cerezo, Y. Subasi, L. Cincio and P. J. Coles, arXiv:1909.05820



Variational Quantum Linear Solver

11C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, arXiv:1909.05820

𝐴𝒙 = 𝒃 , where A is an NxN matrix

- Machine learning

- Partial differential equations

- Polynomial curve fitting

- Analyzing electrical circuits

- …

Classical algorithms: polynomial scaling in N



Variational Quantum Linear Solver

12C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, arXiv:1909.05820

𝐴𝒙 = 𝒃 , where A is an NxN matrix

- Prepare |x>, such that |x> ~ x

- Log N scaling

- Further improvements: reduced complexity in κ and ε

- Requires deep circuits

Quantum algorithm: Harrow-Hassidim-Lloyd (HHL)

Variational quantum linear solver: geared towards NISQ



Variational Quantum Linear Solver

13C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, arXiv:1909.05820

- Define cost function

C = 0 You solved the linear system!

- Operational meaning of C (e.g. solution guarantees)

- Find a circuit that computes C

- Efficient quantumly

- Hard classically



Variational Quantum Linear Solver

14C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, arXiv:1909.05820



VQLS: input

15C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, arXiv:1909.05820

- Specify linear problem:

- Efficient circuit U:

- A is given by a linear combination of unitaries



VQLS: optimization

16C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, arXiv:1909.05820

- Goal: prepare such that

- Ansatz for :



VQLS: output

17C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, arXiv:1909.05820

- Optimal parameters

- Prepare



VQLS: Cost functions
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- Global cost function

- Local cost function

-



Barren plateaus: global vs local
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Operational meaning
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Example: simulations
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Example: scaling
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Example: scaling
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Example: simulations
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Example: scaling
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Example: scaling
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Example: Rigetti’s quantum computer
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Example: Rigetti’s quantum computer
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Style-based quantum generative adversarial 
networks for Monte Carlo events
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with J. Baglio, M. Cè, A. Francis, D. M. Grabowska and S. Carrazza, arXiv:1909.05820



Context: Hadronic collisions at the LHC
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LHC produces O(109) proton collisions per second: huge complex environment

Simulation of the events are

very intensive and requires lots

of computing power



Machine learning approach to event generation
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Since 2018, many papers have approached event generation with machine learning

Main idea: train with a small dataset, use machine 
learning networks to learn the underlying distribution and 

generate for free a much larger dataset



What is a generative adversarial network (GAN)?
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Two networks competing: generator produces fake data, discriminator distinguishes between real (training) input 

data and fake (produced by the generator) data.

Adversarial game where the generator learns to map some input noise to the underlying (reference) distribution

Art forger analogy

Generator (art forger): Try creating fake paintings that look authentic.

Discriminator (art historian): Check paintings and try to catch the

forgery.

Training: “Catch me if you can” game between the art forger and the art

historian.

Success: Painted forgeries are so good that the art historian has at most

a 50% guess ratio. The forger creates new work.



Training procedure
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Training: Adapt alternatively the generator              and the discriminator

Mathematical tool: binary cross-entropy for the loss functions

• Generator loss function:

• Discriminator loss function:

Game theory: min-max two-player game to reach Nash equilibrium 



Hybrid approach for a qGAN
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Classical setup: Hybrid quantum-classical setup:

Only the generator becomes quantum



Style-based quantum generator
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Quantum generator: a series of quantum layers with rotation gates and entanglement operators

1 component = 1 qubit

set of controlled rotations for entanglement

Novelty of our network:

the noise is inserted in every gate and 

not only in the initial quantum state

Circuit implemented in Python with Qibo [S. Efthymiou et al., arXiv:2009.01845] for quantum simulation

Style-based approach

https://arxiv.org/abs/2009.01845


Validation: 1D Gamma distribution
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Assessing the validity of the approach: train and test on known distribution

With one qubit, one layer, using 100 bins: 1D Gamma function 

• Pre-processing of the data to fit samples in [-1,1]

• Train on 104 samples until convergence is reached, 
perform hyperparameter optimization

• Use generator to generate 104 and 105 samples to 
demonstrate reproducibility and data augmentation



Simulation with actual LHC data
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Testing the styled qGAN with real data: test-case with leading-order production 

Training and reference samples generated with MadGraph5_aMC@NLO [Alwall et al., JHEP 07 (2014) 079]

LHC at 13 TeV set-up, training set of 104 samples, Mandelstam variables         and rapidity 

https://arxiv.org/abs/1405.0301


Simulation with actual LHC data
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After training, we assess the performance with simulations: 3 qubits, 2 layers, 100 bins



Simulation with actual LHC data
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After training, we assess the performance with simulations: 3 qubits, 2 layers, 100 bins

Correlations are well captured!



Simulation with actual LHC data
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Remarkable low KL divergences with data augmentation!
Are these results maintained on real hardware ?

After training, we assess the performance with simulations: 3 qubits, 2 layers, 100 bins



Results on IBM Q Hardware
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Access to IBM quantum hardware via IBM Q cloud service
Technology of superconducting qubit

• Run on ibmq_santiago 5-qubit machine Still good results with 

relatively low KL divergence!
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Results on IBM Q Hardware
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Access to IBM quantum hardware via IBM Q cloud service
Technology of superconducting qubit

• Run on ibmq_santiago 5-qubit machine Still good results with 

relatively low KL divergence!



Testing different architectures
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Superconducting transmon qubits: 
ibmq_santiago with 2-neighbouring site 
connectivity

Trapped ion technology: ionQ
with all-to-all connectivity

Access via IBM Q cloud service Access via Amazon Web Services



Testing different architectures: results
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• Access constraints to ionQ: test limited to 1k samples only

ionQ samples:

IBM Q samples:

Very similar results:

implementation largely hardware-independent



Thanks for your attention
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Any questions?


