

Variational quantum architectures for linear algebra applications

Carlos Bravo-Prieto

IPAM Quantum Numerical Linear Algebra 27th January, 2022

Outline

- Quantum singular value decomposer: to produce singular value decomposition of bipartite pure states
- Variational quantum linear solver: for solving linear systems of equations
- Quantum generative models via adversarial learning: to learn underlying distribution functions.

Noisy intermediate-scale quantum (NISQ) era

NISQ era:

- Low number of qubits (50 qubits to a few hundreds)
- Low coherence times (~1000 operations)
- No error correction

Not yet capable of large-scale quantum computations

Google

IBM

\bigcirc

Variational quantum architectures

Candidates for near term advantage

- No high requisites in the number of qubits
- Shallow quantum circuits and hardware efficient
- Slightly noise resilience

Encode the problem into some cost function

Use a classical/quantum hybrid computation to minimize this cost function

minimize_{\boldsymbol{\phi}} \langle \mathbf{0} | U(\boldsymbol{\phi})^{\dagger} H_c U(\boldsymbol{\phi}) | \mathbf{0} \rangle

Quantum singular value decomposer

with D. García-Martín and J. I. Latorre, Phys. Rev. A 101, 062310

Quantum Singular Value Decomposer

$$\begin{split} |\psi\rangle_{AB} &= \sum_{i=1}^{\chi} \lambda_i \, |u_i\rangle_A |v_i\rangle_B \\ |\psi\rangle_{AB} \xrightarrow{QSVD} U_A(\vec{\Theta}) \otimes V_B(\vec{\Omega}) \, |\psi\rangle_{AB} \\ &= \sum_{i=1}^{\chi} \lambda_i \, e^{i\alpha_i} |e_i\rangle_A |e_i\rangle_B \end{split}$$

Variational training to correlations

Once trained:

- Read out entropy spectrum

Once trained:

- Read out entropy spectrum
- Recover eigenvectors with inverted unitaries

$$\begin{split} |\psi\rangle_{AB} &= \sum_{i=1}^{\chi} \lambda_i \, |u_i\rangle_A |v_i\rangle_B \\ |\psi\rangle_{AB} \xrightarrow{QSVD} U_A(\vec{\Theta}) \otimes V_B(\vec{\Omega}) \, |\psi\rangle_{AB} \\ &= \sum_{i=1}^{\chi} \lambda_i \, e^{i\alpha_i} |e_i\rangle_A |e_i\rangle_B \end{split}$$

Once trained:

- Read out entropy spectrum
- Recover eigenvectors with inverted unitaries
- Autoencoder and SWAP

Autoencoder

 $\left|\psi\right\rangle_{AB} = \sum_{i=1}^{\chi} \lambda_i \left|u_i\right\rangle_A \left|v_i\right\rangle_B$ $|\psi\rangle_{AB} \xrightarrow{QSVD} U_A(\vec{\Theta}) \otimes V_B(\vec{\Omega}) |\psi\rangle_{AB}$ $=\sum_{i=1}^{\chi} \lambda_i \, e^{i\alpha_i} |e_i\rangle_A |e_i\rangle_B$

Long-distance SWAP

Variational quantum linear solver

with R. LaRose, M. Cerezo, Y. Subasi, L. Cincio and P. J. Coles, arXiv:1909.05820

\bigcirc

Variational Quantum Linear Solver

$A \boldsymbol{x} = \boldsymbol{b}$, where *A* is an *NxN* matrix

- Machine learning
- Partial differential equations
- Polynomial curve fitting
- Analyzing electrical circuits

- ...

Classical algorithms: polynomial scaling in *N*

Variational Quantum Linear Solver

 $A \boldsymbol{x} = \boldsymbol{b}$, where *A* is an *NxN* matrix

Quantum algorithm: Harrow-Hassidim-Lloyd (HHL)

- Prepare |x>, such that $|x> \sim x$
- Log N scaling
- Further improvements: reduced complexity in κ and ϵ
- Requires deep circuits

Variational quantum linear solver: geared towards NISQ

Variational Quantum Linear Solver

- Define cost function

C = 0 — You solved the linear system!

- Operational meaning of C (e.g. solution guarantees)
- Find a circuit that computes C
 - Efficient quantumly
 - Hard classically

\bigcirc

Variational Quantum Linear Solver

VQLS: input

- Specify linear problem: $A|x
angle\propto |b
angle$

 $A = \sum_{l=1}^{L} c_l A_l \text{ and } U \text{ such that } U |\mathbf{0}\rangle = |b\rangle$ Input

- Efficient circuit U: U|0
 angle=|b
 angle
- A is given by a linear combination of unitaries

$$A = \sum_{l} c_{l} A_{l} , \quad ||A|| \leq 1 , \kappa < \infty$$

 R_y

 R_y

 R_y

 R_y

- Ansatz for $|x\rangle$: $|x(\alpha)\rangle = V(\alpha)|\mathbf{0}\rangle$

 R_y

 R_y

 R_y

 R_y

 R_y

 R_y

 R_y

VQLS: output

- Optimal parameters $\, lpha = lpha_{
 m opt} \,$
- Prepare $|x(\boldsymbol{\alpha}_{opt})\rangle = V(\boldsymbol{\alpha}_{opt})|\mathbf{0}\rangle$

C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, arXiv:1909.05820 17

VQLS: Cost functions

- Global cost function

$$C_G = \langle x | H_G | x \rangle$$
$$H_G = A^{\dagger} (\mathbb{1} - |b\rangle \langle b|) A$$

- Local cost function

$$C_L = \langle x | H_L | x \rangle$$
$$H_L = A^{\dagger} U \left(\mathbb{1} - \frac{1}{n} \sum_{j=1}^n |0_j\rangle \langle 0_j| \otimes \mathbb{1}_{\overline{j}} \right) U^{\dagger} A$$

- $C_L \leqslant C_G \leqslant nC_L$

$$C_L = 0 \iff C_G = 0 \iff A|x\rangle \sim |b\rangle$$

Barren plateaus: global vs local

Operational meaning

Example: simulations

 \bullet Ising-type

$$A = \frac{1}{\zeta} \left(\sum_{j=1}^{n} \sigma_j^X + J \sum_{j=1}^{n-1} \sigma_j^Z \sigma_{j+1}^Z + \eta \mathbf{1} \right)$$
$$|b\rangle = H^{\otimes n} |0\rangle$$

• ζ , η such that A has condition number κ

Example: scaling

- time-to-solution: number of iterations needed to guarantee precision ϵ
- sub-linear in κ
- \bullet logarithmic in $1/\epsilon$

Example: scaling

- \bullet time-to-solution: number of iterations needed to **guarantee** precision ϵ
- linear in n (logarithmic in N)

Example: simulations

• random matrix

$$A = \frac{1}{\zeta} \left(\sum_{j} \sum_{k \neq j} p a_{j,k} \sigma_j^{\alpha} \sigma_k^{\beta} + \eta \mathbf{1} \right)$$

 $|b\rangle = H^{\otimes n}|0\rangle$

• $\zeta,\,\eta$ such that A has condition number κ

• random:

•
$$p \in \{0,1\}$$
 • $a_{j,k} \in (-1,1)$ • $\alpha, \beta \in \{X, Y, Z\}$

Example: scaling

- time-to-solution: number of iterations needed to guarantee precision ϵ
- \bullet slightly sub-linear in κ
- logarithmic in $1/\epsilon$

Example: scaling

- \bullet time-to-solution: number of iterations needed to $\mathbf{guarantee}$ precision ϵ
- \bullet polylogarithmic in N

Example: Rigetti's quantum computer

 \bullet Ising-type

$$A = \frac{1}{\zeta} \left(\sum_{j=1}^{n} \sigma_j^X + J \sum_{j=1}^{n-1} \sigma_j^Z \sigma_{j+1}^Z + \eta \mathbf{1} \right)$$

$$|b
angle = H^{\otimes n}|0
angle$$

• $\zeta,\,\eta$ such that A has condition number κ

Example: Rigetti's quantum computer

• largest implementation on real hardware: n = 10 qubits, 1024×1024

• noise resilience: correct parameters α_{opt} despite cost C > 0

Style-based quantum generative adversarial networks for Monte Carlo events

with J. Baglio, M. Cè, A. Francis, D. M. Grabowska and S. Carrazza, arXiv:1909.05820

Context: Hadronic collisions at the LHC

LHC produces O(10⁹) proton collisions per second: huge complex environment

Machine learning approach to event generation

Since 2018, many papers have approached event generation with machine learning

K. Danziger¹, T. Janßen², S. Schumann², F. Siegert¹

Main idea: train with a small dataset, use machine learning networks to learn the underlying distribution and generate for free a much larger dataset

What is a generative adversarial network (GAN)?

forgery.

Two networks competing: generator produces fake data, discriminator distinguishes between real (training) input data and fake (produced by the generator) data.

Adversarial game where the generator learns to map some input noise to the underlying (reference) distribution

Art forger analogy

Generator (art forger): Try creating fake paintings that look authentic. Discriminator (art historian): Check paintings and try to catch the

Training: "Catch me if you can" game between the art forger and the art historian.

Success: Painted forgeries are so good that the art historian has at most a 50% guess ratio. The forger creates new work.

Training procedure

Training: Adapt alternatively the generator $G(\phi_g, z)$ and the discriminator $D(\phi_d, x)$

Mathematical tool: binary cross-entropy for the loss functions

 Generator loss function: *L*_G(φ_g, φ_d) = −E_{z∼pprior}(z)[log D(φ_d, G(φ_g, z))]

 Discriminator loss function: *L*_D(φ_g, φ_d) = E_{x∼preal}(x)[log D(φ_d, x)] + E_{z∼pprior}(z)[log(1 − D(φ_d, G(φ_g, z)))]

Game theory: min-max two-player game to reach Nash equilibrium

$$\min_{\phi_g} \mathcal{L}_G(\phi_g, \phi_d) \quad \max_{\phi_d} \mathcal{L}_D(\phi_g, \phi_d)$$

Hybrid approach for a qGAN

Classical setup:

Hybrid quantum-classical setup:

Style-based quantum generator

Quantum generator: a series of quantum layers with rotation gates and entanglement operators

$$R_y = \exp\left(-i\frac{\theta}{2}\sigma_y\right), R_z = \exp\left(-i\frac{\theta}{2}\sigma_z\right)$$

 $U_{\rm ent}$ set of controlled rotations for entanglement

1 component = 1 qubit

Novelty of our network: the noise is inserted in every gate and not only in the initial quantum state

$$\vec{x}_{\text{fake}} = -\left[\langle \sigma_z^1 \rangle, \langle \sigma_z^2 \rangle, \dots, \langle \sigma_n^1 \rangle\right]$$

$$R_{y,z}^{i}(\phi_{g}^{(i)},\xi^{(j)}) = R_{y,z}(\phi_{g}^{i}\xi^{j} + \phi_{g}^{i+1})$$

Circuit implemented in Python with Qibo [S. Efthymiou et al., <u>arXiv:2009.01845</u>] for quantum simulation

Validation: 1D Gamma distribution

Assessing the validity of the approach: train and test on known distribution

With one qubit, **one layer**, using 100 bins: 1D Gamma function $p_{\gamma}(x, \alpha, \beta) = x^{\alpha-1} \frac{c}{\beta^{\alpha} \Gamma(\alpha)}$

- Pre-processing of the data to fit samples in [-1,1]
- Train on 10⁴ samples until convergence is reached, perform hyperparameter optimization
- Use generator to generate 10⁴ and 10⁵ samples to demonstrate reproducibility and data augmentation

Testing the styled qGAN with real data: test-case with leading-order production $pp \rightarrow t\bar{t}$

Training and reference samples generated with MadGraph5_aMC@NLO [Alwall et al., JHEP 07 (2014) 079]

LHC at 13 TeV set-up, training set of 10⁴ samples, Mandelstam variables (s, t) and rapidity y

After training, we assess the performance with simulations: 3 qubits, 2 layers, 100 bins

After training, we assess the performance with simulations: 3 qubits, 2 layers, 100 bins

Correlations are well captured!

After training, we assess the performance with simulations: 3 qubits, 2 layers, 100 bins

Results on IBM Q Hardware

Access to IBM quantum hardware via IBM Q cloud service Technology of superconducting qubit

Run on ibmq_santiago 5-qubit machine

Still good results with relatively low KL divergence!

Results on IBM Q Hardware

Access to IBM quantum hardware via IBM Q cloud service Technology of superconducting qubit

Run on ibmq_santiago 5-qubit machine

Still good results with relatively low KL divergence!

Results on IBM Q Hardware

Access to IBM quantum hardware via IBM Q cloud service Technology of superconducting qubit

Run on ibmq_santiago 5-qubit machine

Still good results with relatively low KL divergence!

Testing different architectures

Superconducting transmon qubits: *ibmq_santiago* with 2-neighbouring site connectivity

Access via IBM Q cloud service

Trapped ion technology: ionQ with all-to-all connectivity

Access via Amazon Web Services

Ŕ

Testing different architectures: results

• Access constraints to ionQ: test limited to 1k samples only

Very similar results:

implementation largely hardware-independent

Thanks for your attention

Any questions?