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Why do we care?

 Many problems can be posed as systems of linear equations.

 Many problems can be solved by adiabatic algorithms.
❖ Ground states
❖ Discrete optimisation

Partial differential equations EM scattering cross-section Machine learning



Quantum linear systems problem

 Need to solve

𝐴 Ԧ𝑥 = 𝑏

 Initially prepare state

𝑏 =

𝑗=1

𝑁

𝑏𝑗|𝑗⟩

 Apply operation 𝐴−1

𝑥 = 𝐴−1|𝑏⟩

 Obtain global properties from sampling 𝑥 (not explicit listing).

 Exponential speedup in 𝑁.

A.W. Harrow, A. Hassidim, S. Lloyd, Physical Review Letters 103, 150502 (2008).



Complexity scaling

 Two parameters:

1. 𝜅 – condition number (ratio of maximum & minimum singular values)

2. 𝜖 – allowable error in solution

Year Reference Primary innovation Complexity

2008 Harrow, Hassidim, Lloyd Phase estimation 𝑂(𝜅2/𝜖)

2012 Ambainis (1010.4458) Variable-time amplitude amplification 𝑂(𝜅 log 𝜅 /𝜖 3)

2017 Childs, Kothari, Somma Fourier/Chebyshev fitting using LCU 𝑂(𝜅 polylog(𝜅/𝜖))

2018 Subasi, Somma, Orsucci Adiabatic randomisation method 𝑂 (𝜅 log 𝜅 /𝜖)

2019 An, Lin (1909.05500) Time-optimal adiabatic method 𝑂(𝜅 polylog(𝜅/𝜖))

2019 Lin, Tong (Quantum 4, 361) Adiabatic plus eigenstate filtering 𝑂(𝜅 log(𝜅/𝜖))

2021 This work (2111.08152) Discrete adiabatic theorem 𝑂(𝜅 log(1/𝜖))

(PRL 122
060504)

(SIAM 
46 1920)



Continuous adiabatic algorithm

 For continuous adiabatic algorithm, simulate time-dependent Hamiltonian

𝑖
𝑑

𝑑𝑡
𝜓(𝑡) = 𝐻(𝑡)|𝜓(𝑡)〉

 For short time, the time-evolution operator is given by Dyson series

𝑈 𝑡, 0 ≈ 

𝑘=0

𝐾

−1 𝑘න
0

𝑡

𝑑𝑡1න
𝑡1

𝑡

𝑑𝑡2⋯න
𝑡𝑘−1

𝑡

𝑑𝑡𝑘𝐻 𝑡𝑘 ⋯𝐻 𝑡2 𝐻(𝑡1)

 Gives log 𝜅/𝜖 overhead for adiabatic solution of QLSP.

M. Kieferová, A. Scherer, and D. W. Berry, PRA 99, 042314 (2019); 1805.00582.
G. H. Low and N. Wiebe, arXiv:1805.00675 (2018).



A. M. Childs, N. Wiebe, Quantum Information and Computation 12, 901 (2012).

D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, R. D. Somma, STOC (2014).

Linear combinations of unitaries

𝐴 =

ℓ

𝑤ℓ𝑈ℓ

ℓ

𝑤ℓ|ℓ〉

𝐴|𝜓〉

0 〈0|

𝑈ℓ|𝜓〉

𝑃 𝑃†

Cost is typically

𝜆 =

ℓ

𝑤ℓ



Block encoding

𝐴 = 𝜆⟨0|𝑈|0⟩

𝐴|𝜓〉

0 〈0|

𝑈ℓ|𝜓〉

𝑃 𝑃†

G. H. Low, I. L. Chuang, Quantum 3, 163 (2019).

𝑈



Qubitisation

 Construct quantum walk using reflection:

 Eigenvalues are related to those of original matrix.

𝐻ℓ

𝑃 𝑃† 𝑅

𝑊 =

G. H. Low, I. L. Chuang, Quantum 3, 163 (2019).

≡ 𝑒𝑖 arcsin 𝐴/𝜆𝑈



Adiabatic approach to QLSP

 Easiest for 𝐴 positive-definite and Hermitian.

 Initial and final Hamiltonians with 𝑄𝑏 = 𝐼𝑁 − |𝑏⟩⟨𝑏|

𝐻0 =
0 𝑄𝑏
𝑄𝑏 0

𝐻1 =
0 𝐴𝑄𝑏

𝑄𝑏𝐴 0

 Final eigenstate is
𝐴−1𝑏
0

 For 𝐻 𝑠 = 1 − 𝑓 𝑠 𝐻0 + 𝑓 𝑠 𝐻1 gap is

Δ0 𝑠 = 1 − 𝑓 𝑠 + 𝑓 𝑠 /𝜅

 Schedule is chosen as

ሶ𝑓 𝑠 = 𝑑𝑝Δ0
𝑝
𝑠 , 𝑑𝑝 = න

0

1

Δ0
−𝑝

𝑢 𝑑𝑢

 Solution is

𝑓 𝑠 =
𝜅

𝜅 − 1
1 − 1 + 𝑠 𝜅𝑝−1 − 1

1
1−𝑝

D. An, L. Lin, arXiv:1909.05500 (2019).



Non-symmetric case

 An & Lin expand matrix for general Hermitian case

𝐻0 =
0 (𝜎𝑧 ⊗ 𝐼)𝑄+𝑏

𝑄+𝑏(𝜎𝑧 ⊗ 𝐼) 0
𝐻1 =

0 (𝜎𝑧 ⊗𝐴)𝑄+𝑏
𝑄+𝑏(𝜎𝑧 ⊗𝐴) 0

 Standard (HHL) method for non-Hermitian 𝐴 is to replace 𝐴 with

𝐀 =
0 𝐴
𝐴† 0

 To simplify, we use

𝐴 𝑓 =
1 − 𝑓 𝐼 𝑓𝐴

𝑓𝐴† 1 − 𝑓 𝐼
𝐻 𝑠 =

0 𝐴(𝑓)𝑄𝑏
𝑄𝑏𝐴(𝑓) 0

 Gap is changed to

Δ0 𝑠 = 1 − 𝑓 𝑠
2
+ 𝑓 𝑠 /𝜅 2 ≥ 1 − 𝑓 𝑠 + 𝑓 𝑠 /𝜅 / 2



Adiabatic walk

 Theorem for discrete sequence of operators (with integers 𝑛, 𝑇)

𝑊𝑇 𝑛/𝑇 , 0 ≤ 𝑛 ≤ 𝑇 − 1

 Overall operation is sequence

𝑈𝑇 𝑠 = 𝑊𝑇 𝑠 − 1/𝑇 𝑊𝑇 𝑠 − 2/𝑇 …𝑊𝑇 1/𝑇 𝑊𝑇(0) = ෑ

𝑛=0

𝑠𝑇−1

𝑊𝑇(𝑛/𝑇)

 We call the ideal adiabatic evolution 𝑈𝑇
𝐴 𝑠 .

 Aim to show error in adiabatic evolution decreases with 𝑇 as

𝑈𝑇 𝑠 − 𝑈𝑇
𝐴(𝑠) ≤

𝜃

𝑇

A. Dranov, J. Kellendonk, R. Seiler, Journal of Mathematical Physics 39, 1340 (1998).



Norm of differences

 For 𝑇 steps one would want difference of operators to satisfy
𝑊𝑇 𝑠 + 1/𝑇 −𝑊𝑇 𝑠 = 𝑂(𝑇−1)

 Need to define constant

𝑊𝑇 𝑠 + 1/𝑇 −𝑊𝑇 𝑠 ≤
𝑐1(𝑠)

𝑇
 Need to define second difference:

𝐷𝑊𝑇 𝑠 = 𝑊𝑇 𝑠 + 1/𝑇 −𝑊𝑇 𝑠 , 𝐷(2)𝑊𝑇 𝑠 = 𝐷𝑊𝑇 𝑠 + 1/𝑇 − 𝐷𝑊𝑇 𝑠

 Require bounds on multistep differences:

𝐷(2)𝑊𝑇 𝑠 ≤
𝑐2(𝑠)

𝑇2

 Need to consider maximum over neighbouring steps:
Ƹ𝑐𝑘 𝑠 = max(𝑐𝑘 𝑠 − 1/𝑇 , 𝑐𝑘 𝑠 , 𝑐𝑘(𝑠 + 1/𝑇))



Multistep gap

 Eigenvalues are on circle in complex plane.

 Gaps are needed on both sides, Δ0(𝑠).

𝜎𝑃(𝑠)

𝜎𝑄(𝑠)

Δ0(𝑠)

Δ0(𝑠)



Multistep gap

 Eigenvalues are on circle in complex plane.

 Gaps are needed on both sides, Δ0(𝑠).

 Regions must not cross over between steps.

𝜎𝑃(𝑠)

𝜎𝑄(𝑠)



Multistep gap

 Eigenvalues are on circle in complex plane.

 Gaps are needed on both sides, Δ0(𝑠).

 Regions must not cross over between steps.

𝜎𝑃(𝑠)

𝜎𝑄(𝑠)



Multistep gap

 Eigenvalues are on circle in complex plane.

 Gaps are needed on both sides, Δ0(𝑠).

 Regions must not cross over between steps.

 Consider unified regions between three 
successive steps.

𝜎𝑄(𝑠)

𝜎𝑃(𝑠)



Multistep gap

 Eigenvalues are on circle in complex plane.

 Gaps are needed on both sides, Δ0(𝑠).

 Regions must not cross over between steps.

 Consider unified regions between three 
successive steps.

𝜎𝑃(𝑠 + 1/𝑇)

𝜎𝑄(𝑠 + 1/𝑇)



Multistep gap

 Eigenvalues are on circle in complex plane.

 Gaps are needed on both sides, Δ0(𝑠).

 Regions must not cross over between steps.

 Consider unified regions between three 
successive steps.

𝜎𝑃(𝑠 + 2/𝑇)

𝜎𝑄(𝑠 + 2/𝑇)



Multistep gap

 Eigenvalues are on circle in complex plane.

 Gaps are needed on both sides, Δ0(𝑠).

 Regions must not cross over between steps.

 Consider unified regions between three 
successive steps.

 We call gap between unified regions Δ(𝑠).

 To simplify expressions need minimum over 
neighbouring steps too:

ෙΔ 𝑠 = min(Δ 𝑠 − 1/𝑇 ,Δ 𝑠 , Δ(𝑠 + 1/𝑇))

𝜎𝑃(𝑠) ∪ 𝜎𝑃(𝑠 + 1/𝑇) ∪ 𝜎𝑃(𝑠 + 1/𝑇)

𝜎𝑄(𝑠) ∪ 𝜎𝑄(𝑠 + 1/𝑇) ∪ 𝜎𝑄(𝑠 + 2/𝑇)

Δ(𝑠)

Δ(𝑠)



Discrete adiabatic theorem

The error in the adiabatic evolution is bounded as

𝑈𝑇 𝑠 − 𝑈𝑇
𝐴(𝑠) ≤

12 Ƹ𝑐1 0

𝑇ෙΔ 0 2
+
12 Ƹ𝑐1 𝑠

𝑇ෙΔ 𝑠 2
+
6 Ƹ𝑐1 𝑠

𝑇ෙΔ 𝑠

+305 

𝑛=1

𝑠𝑇−1
Ƹ𝑐1 𝑛/𝑇 2

𝑇2ෙΔ 𝑛/𝑇 3
+ 44 

𝑛=0

𝑠𝑇−1
Ƹ𝑐1 𝑛/𝑇 2

𝑇2ෙΔ 𝑛/𝑇 2
+ 32 

𝑛=1

𝑠𝑇−1
Ƹ𝑐2 𝑛/𝑇

𝑇2ෙΔ 𝑛/𝑇 2

 Ƹ𝑐1 – analogous to first derivative in continuous adiabatic theorem

 Ƹ𝑐2 – analogous to second derivative in continuous adiabatic theorem



Discrete adiabatic theorem

The error in the adiabatic evolution is bounded as

𝑈𝑇 𝑠 − 𝑈𝑇
𝐴(𝑠) ≤

12 Ƹ𝑐1 0

𝑇ෙΔ 0 2
+
12 Ƹ𝑐1 𝑠

𝑇ෙΔ 𝑠 2
+
6 Ƹ𝑐1 𝑠

𝑇ෙΔ 𝑠

+305 

𝑛=1

𝑠𝑇−1
Ƹ𝑐1 𝑛/𝑇 2

𝑇2ෙΔ 𝑛/𝑇 3
+ 44 

𝑛=0

𝑠𝑇−1
Ƹ𝑐1 𝑛/𝑇 2

𝑇2ෙΔ 𝑛/𝑇 2
+ 32 

𝑛=1

𝑠𝑇−1
Ƹ𝑐2 𝑛/𝑇

𝑇2ෙΔ 𝑛/𝑇 2

 Ƹ𝑐1 – analogous to first derivative in continuous adiabatic theorem

 Ƹ𝑐2 – analogous to second derivative in continuous adiabatic theorem

𝐻 1 0

𝑇Δ(0)2
+

𝐻 1 𝑠

𝑇Δ(s)2
+
1

𝑇
න
0

𝑠 𝐻 1 𝑠′
2

Δ 𝑠′ 3
+

𝐻 2 𝑠′

Δ 𝑠′ 2
𝑑𝑠′



Method to prove theorem

 “Wave operator” describes difference from ideal adiabatic evolution:

Ω𝑇 𝑠 = 𝑈𝑇
𝐴† 𝑠 𝑈𝑇(𝑠)

 Error can be considered entirely in terms of wave operator:

𝑈𝑇 𝑠 − 𝑈𝑇
𝐴(𝑠) = Ω𝑇 𝑠 − 𝐼

 The “ripple operator” describes the change in the wave operator:

Θ𝑇 𝑠 = Ω𝑇 𝑠 + 1/𝑇 Ω𝑇
† 𝑠

 The “kernel function” describes how close this is to the identity:
𝐾𝑇 𝑠 = 𝑇(𝐼 − Θ𝑇 𝑠 )

 Write wave operator in terms of these as “Volterra equation”

Ω𝑇 𝑛/𝑇 = 𝐼 −
1

𝑇


𝑚=0

𝑛−1

𝐾𝑇 𝑚/𝑇 Ω𝑇 𝑚/𝑇

A. Dranov, J. Kellendonk, R. Seiler, Journal of Mathematical Physics 39, 1340 (1998).



Diagonal vs off-diagonal terms

 Resolve identity as 𝐼 = 𝑃0 + 𝑄0 with initial projections 𝑃0 = 𝑃𝑇 0 , 𝑄0 = 𝑄𝑇 0 .

 Introduce to Volterra equation so

Ω𝑇 𝑠 − 𝐼 =
1

𝑇


𝑚=0

𝑛−1

𝑃0 + 𝑄0 𝐾𝑇 𝑚/𝑇 𝑃0 + 𝑄0 Ω𝑇 𝑚/𝑇

≤
1

𝑇


𝑚=0

𝑛−1

𝑃0𝐾𝑇 𝑚/𝑇 𝑃0Ω𝑇 𝑚/𝑇 +
1

𝑇


𝑚=0

𝑛−1

𝑄0𝐾𝑇 𝑚/𝑇 𝑄0Ω𝑇 𝑚/𝑇

+
1

𝑇


𝑚=0

𝑛−1

𝑃0𝐾𝑇 𝑚/𝑇 𝑄0Ω𝑇 𝑚/𝑇 +
1

𝑇


𝑚=0

𝑛−1

𝑄0𝐾𝑇 𝑚/𝑇 𝑃0Ω𝑇 𝑚/𝑇



Diagonal vs off-diagonal terms

 Resolve identity as 𝐼 = 𝑃0 + 𝑄0 with initial projections 𝑃0 = 𝑃𝑇 0 , 𝑄0 = 𝑄𝑇 0 .

 Introduce to Volterra equation so

Ω𝑇 𝑠 − 𝐼 =
1

𝑇


𝑚=0

𝑛−1

𝑃0 + 𝑄0 𝐾𝑇 𝑚/𝑇 𝑃0 + 𝑄0 Ω𝑇 𝑚/𝑇

≤
1

𝑇


𝑚=0

𝑛−1

𝑃0𝐾𝑇 𝑚/𝑇 𝑃0Ω𝑇 𝑚/𝑇 +
1

𝑇


𝑚=0

𝑛−1

𝑄0𝐾𝑇 𝑚/𝑇 𝑄0Ω𝑇 𝑚/𝑇

+
1

𝑇


𝑚=0

𝑛−1

𝑃0𝐾𝑇 𝑚/𝑇 𝑄0Ω𝑇 𝑚/𝑇 +
1

𝑇


𝑚=0

𝑛−1

𝑄0𝐾𝑇 𝑚/𝑇 𝑃0Ω𝑇 𝑚/𝑇

“diagonal”

“off-diagonal”



Summation by parts formula

 Off-diagonal term can be rewritten as, with 𝑉𝑇 𝑠 = 𝑊𝑇
𝐴 𝑠 𝑊𝑇

†(𝑠),



𝑛=1

𝑠𝑇

𝑄0𝑈𝑇
𝐴† 𝑛

𝑇
𝐼 − 𝑉𝑇

† 𝑛 − 1

𝑇
𝑈𝑇
𝐴 𝑛

𝑇
𝑃0Ω𝑇

𝑛 − 1

𝑇

 Summation by parts formula gives



𝑛=1

𝑙

𝑄0𝑈𝑇
𝐴† 𝑛

𝑇
𝑋

𝑛

𝑇
𝑈𝑇
𝐴 𝑛

𝑇
𝑃0𝑌

𝑛

𝑇
= 𝐵 −

1

𝑇
𝑆

 𝐵 is “boundary term”

 𝑆 is “sum term” – it still involves a sum, but is easier to bound.

 Requires operator that can only be described by contour integral:

෨𝑋 𝑠 = −
1

2𝜋𝑖
ර
Γ𝑇 𝑠

𝑅𝑇 𝑠, 𝑧 𝑋 𝑠 𝑅𝑇 𝑠, 𝑧 𝑑𝑧 , 𝑅𝑇 𝑠, 𝑧 = 𝑊𝑇 𝑠 − 𝑧𝐼 −1



Contour integrals for bounds

 Projector can be given by contour integral:

𝑃𝑇 𝑠 =
1

2𝜋𝑖
ර
Γ𝑇(𝑠)

𝑅𝑇 𝑠, 𝑧 𝑑𝑧

𝑅𝑇 𝑠, 𝑧 = 𝑊𝑇 𝑠 − 𝑧𝐼 −1

 Bound on difference of projectors needs 
contour threaded between eigenvalues for 
multiple steps.

𝐷𝑃𝑇(𝑠) ≤
2𝑐1 𝑠

𝑇Δ1 𝑠



Theorem for 𝑝 = 1.5

 For 𝐴 positive-definite & Hermitian, bound all terms from theorem as follows:
Ƹ𝑐1 0

𝑇ෙΔ 0 2
=
4 𝜅

𝑇
+ 𝑂

𝜅

𝑇2
Ƹ𝑐1 1

𝑇ෙΔ 1 2
=
4𝜅

𝑇
+ 𝑂

𝜅

𝑇2
Ƹ𝑐1 1

𝑇ෙΔ(1)
=
4

𝑇
+ 𝑂

1

𝑇2



𝑛=1

𝑇−1
Ƹ𝑐1 𝑛/𝑇 2

𝑇2ෙΔ 𝑛/𝑇 3
=
16𝜅

𝑇
+ 𝑂

𝜅3/2

𝑇2


𝑛=0

𝑇−1
Ƹ𝑐1 𝑛/𝑇 2

𝑇3ෙΔ 𝑛/𝑇 3
≤
16

𝑇
+ 𝑂

𝜅

𝑇2


𝑛=1

𝑇−1
Ƹ𝑐2(𝑛/𝑇)

𝑇2ෙΔ 𝑛/𝑇 3
≤
22𝜅

𝑇
+ 𝑂

𝜅3/2

𝑇2

 Overall inequality becomes

𝑈𝑇 𝑠 − 𝑈𝑇
𝐴(𝑠) ≤ 5632

𝜅

𝑇
+ 𝑂

𝜅

𝑇

 For general 𝐴, gap has factor of 1/ 2 – replace  ෙΔ with  ෙΔ/ 2.

 Updated inequality is

𝑈𝑇 𝑠 − 𝑈𝑇
𝐴(𝑠) ≤ 15307

𝜅

𝑇
+ 𝑂

𝜅

𝑇



Multiple eigenvalues problem

 The discrete adiabatic theorem is for target eigenspace being in one region.

 For quantum walk zero eigenvalue of Hamiltonian maps to ±1 for walk 
operator; eigenstates ( 𝑘 is eigenstate on system)

± =
1

2
(|0⟩ 𝑘 ± 𝑖|0𝑘⊥⟩)

𝜋 − arcsin ℎ/𝜆 arcsin ℎ/𝜆



Multiple eigenvalues problem

 The discrete adiabatic theorem is for target eigenspace being in one region.

 For quantum walk zero eigenvalue of Hamiltonian maps to ±1 for walk 
operator; eigenstates ( 𝑘 is eigenstate on system)

± =
1

2
(|0⟩ 𝑘 ± 𝑖|0𝑘⊥⟩)

𝜎𝑃

𝜎𝑄

𝜎𝑃

𝜎𝑄

0 𝑘 =
1

2
|+⟩ + |−⟩

 We show phase between |+⟩ and |−⟩ is 
preserved.

 We show orthogonal degenerate eigenstates do 
not cross.

|+⟩|−⟩

𝐴 𝑓 −1𝒃
0

𝑣𝑠
0
𝒃



Numerical testing for constant factor

𝑇 = 50000
𝜅 = 40

 Theorems for QLSP use many simplifications with loose inequalities.

 Numerically test with the complete discrete adiabatic theorem.

 ‖Ω 1 − 𝐼‖ ≈ 1/2, and 𝜅/𝑇 = 40/50000 = 1/1250, so ‖Ω 1 − 𝐼‖ ≥ 625𝜅/𝑇.

 About 9 times better than theorem.



Filtering solution

 To obtain solution with precision 𝜖 need to filter the eigenstate.

 Lin & Tong use quantum signal processing – drawback is computing rotation 
angles.

 We instead apply linear combination of unitaries σ𝑗𝑤𝑗𝑊𝑇
𝑗
.

 LCU maps superposition of eigenstates as



𝑘

𝜓𝑘|𝑘⟩ ↦

𝑘

𝑤(𝜙𝑘)𝜓𝑘|𝑘⟩ ,

𝑤(𝜙) =
1

σ𝑗𝑤𝑗


𝑗

𝑤𝑗𝑒
𝑖𝑗𝜙

 Error goes like 𝑤(𝜙) for incorrect 
phases – minimised for Dolph-
Chebyshev window.



LCU with two qubits

 Normally LCU would require a large number of qubits for control.

 A single ancilla qubit is given as major advantage of quantum signal processing.

 We can do LCU using just two ancilla qubits.

 First consider control state in unary:



LCU with two qubits

 Normally LCU would require a large number of qubits for control.

 A single ancilla qubit is given as major advantage of quantum signal processing.

 We can do LCU using just two ancilla qubits.

 Switch sequence of controlled operations for inverse preparation:



LCU with two qubits

 Normally LCU would require a large number of qubits for control.

 A single ancilla qubit is given as major advantage of quantum signal processing.

 We can do LCU using just two ancilla qubits.

 Shift order of operations so we use two qubits at a time:



Putting it all together

 We can use these results for solving the QLSP with complexity
𝑂(𝜅 log(1/𝜖))

in terms of calls to a block encoding to 𝐴, as well as preparation of |𝑏⟩.

 The procedure is:

1. Construct a quantum walk step from the block encoding of A.

2. Use the discrete adiabatic theorem to solve for |𝐴−1𝑏⟩ with fixed precision 
1/2.  Complexity is 𝑂(𝜅).

3. Filter solution using LCU; complexity is 𝜅 log(2/𝜖) steps of walk.

4. In case of failure, repeat discrete adiabatic procedure and filtering.  Average 
of two attempts needed.



Lower bound

 Kothari and Harrow have proven lower bound for sparse matrices 
(unpublished)

Ω 𝑑𝜅 log 1/𝜖

 Our complexity for general block-encoded matrices is
Ω 𝜅 log 1/𝜖

 For sparse matrices, this would need to be multiplied by complexity of block-
encoding sparse matrices, typically 𝑑.

 Low has demonstrated 𝑑 scaling for Hamiltonian simulation up to logarithmic 
factors (STOC 2019).

 Similar approach here would make scaling no longer optimal in 𝜅 and 𝜖. 



Conclusions

 Fastest possible quantum algorithm for the quantum linear systems problem in 
terms of 𝜅 and 𝜖 (we don’t consider sparsity 𝑑).

 Lower bound of Kothari and Harrow is Ω 𝑑𝜅 log 1/𝜖 .

 Our discrete adiabatic algorithm with qubitisation gives speedup for all adiabatic 
algorithms too.

 Method for LCU with two ancilla qubits can be used generally.

Future work:

 There could be scope for improving constant factors.

 How to achieve optimal scaling in 𝑑 at the same time is open problem.
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