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Quantum machine learning & data advantage

Computationally limited problems - Simple inputs, known computational procedure

X

Key to factor
Hamiltonian to simulate

Compute ~n

Compute ~ exp(n)

Data limited problems - Limited by availability of data, Data assisted problems - Known

no computation possible to overcome lack of data Computationa] proce.dure, complexity
Compute ~ 2 can change with available data
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A motivating example for data assisted problems

Given circuit Uqnn &someinput  T; — |T;) =

Task - compute y; = f(x;) = <33i|U(BNNOUQNN|CEz‘>

Arbitrary length quantum circuit Hermitian operator

Direct simulation at least as hard as BQP,
must be a powerful function of ;!

At most quadratic function on entries
of X; with p? coefficients!

No data - hard quantum circuit
With data - AImost trivial learning task!

2
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The power of data in quantum machine learning*

A

Problem
Size

+ Training data

n+1 \ Tot1 = {(@i, v:)} /
n \ Tn = {(zi,yi)} /
n-1\ To—1 = {(zi, y:)} /

Classical ML
algorithm with data
(BPP/samp)

+ Advice

n+1\ i1 = 0100...0100 /
n \ a, =1010...110 /
n-1\a,,,_1 - 111...001/

P/poly
BPP C P/poly

Quantum
Computation
(BQP)

——

Classical
Algorithm
(BPP)

* Hsin-Yuan (Robert) Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut
Neven, Jarrod R. McClean “Power of data in quantum machine learning” Nature Communications, Vol.12,
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What kinds of problems are learnable from a little data?

Provably efficient machine learning for quantum many-body problems

Hsin-Yuan Huang,! Richard Kueng,? Giacomo Torlai,® Victor V. Albert,* and John Preskill®:3

(a) Classical !
shadow
formalism
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| Quantum System

Measurements

Preserve Properties

@ Hamiltonian
'1'I Correlations.

Entanglement
Entropy

(b) Predicting ground states

Few rounds of randomized measurements

Classical ML 1010 0111
1002011
1MES oo
01 i 101
1110 1000

@ Classical representation
of the system

[ Local Observables
.o etc.

Parameters describing
a physical Hamiltonian

(d) Training data for classical ML

Classical representation
of the ground state

Quantum many-body

Synthesize

ground state

Perform

in the Lab AT Measurements

}{ Parameters describing
a physical Hamiltonian

@ Classical representation
of the ground state

(c) Predicting phases of matter

0111

1961000

@ Classical representation

of the ground state

Google Al
Quantum

Classical ML

Predicting ...

e ...
ee Trivial

&7, Topological

* Quantum
phases of matter

=5 %/
N\ «es and other examples
Ground state task

ed® Symmetry-broken

or
:: Trivial €@ Sym.-broken 2\8 Topological
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e+« and other examples

Phase of matter task

arXiv:2106.12627 (2021)

Is the fate of quantum computers to
provide training data for classical

models?



So what'’s left for a quantum computer?

Information-theoretic bounds on quantum advantage in machine learning

Hsin-Yuan Huang,'»? Richard Kueng,® and John Preskill!'?4°

Prediction model stored in
classical memory

Classical processing
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Physical
experiments

(CPTP map)

Measurement

Physical
experiments
(CPTP map)

Classical input
| Classical processing

Classical
Machine Learning
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Prediction model stored in
quantum memory

I Quantum processing

s

Physical
experiments
(Sl CORY Entangled

I Quantum processing
Coherent quantum
T state output

.\/\. Physical
experiments

Entangled B2/ 20ET)
Coherent quantum
| Quantum processing state input

Quantum
Machine Learning

Quantum Algorithmic Measurement

Dorit Aharonov!?, Jordan Cotler??’, Xiao-Liang Qi*¢
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Time N

Quantum Circuit a
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Quantum memory and quantum-enhanced experiments

(a)

Planets Black holes

Physical world

Experiment

Sensor

RIS EEad Learning physical state Learning physical process

p p Quantum processing

PP
00,0
a-als ta

Quantum .o Quantum + Measurement ‘ , '
information @ mpmory . . ' . - %
’ eeeeee - AR Classical
= Classical -| processing

Classical memory
information * ‘
Conventional

This work - Exponential advantage with exactly 2 copies on 2 different tasks and efficient classical
compute (and additional proofs)

Quantum advantage in learning from experiments

Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean
q Google Al arXiv:2112.00778 (2021)
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What's the simplest task we can have an advantage on?

Task -
Setup - as

Take any measurements you want on the N copies

Collect classical data signature of state

N copies of p X (I + CMP)
ac(—1,1) Given new Pauli operator O, predict | Tr[pO|

P s ageneral n-qubit pauli operator e.g. (Alternatively) Given 2 candidate Pauli operators (01, ()2
ZRXRI®Z®...=21X224... Determine |T1”[Q1p] > |TI‘[Q2p] ‘7

Form of state is known

Conventional Quantum-enhanced |} Classical
o P unknown experiments experiments pas 1
’ LR LR
“") »

Note - =

State is un-entangled but not factorizable T ERAS[EE

Can be realized in depth 1 Clifford circuit =~ 5% .

L4 property O
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The best possible conventional experiments

(a) (b) (c)
Memory state of -
classical algorithm Information is lost Experiment 1
p ! 4 L } Experiment 2
; © ’ i ' Y

QO OOO

Tree representation

Result summary Sketch of proof

Reduction to discrimination task
Best conventional strategy requires N ~ 9™

y |T [ OH o 25 Null hypothesis Alternate hypothesis
to predict r to additive error <.

P P p=1/2" p o< (I +aP)
with probability > .8 () random = {—I—.9, _.9} O—=P

-Optimal discriminating POVM can be bounded using hypothesis structure
-Is independent of previous measurements

Google Al e Lol
q Quantum Gives exp vanishing returns



The simplest quantum-enhanced experiment

by*
; n classical bits for N rounds creates Bell sketch of state o
2n classical bits for N round Bell sketch of bft
n qubits 10
O=01R®R03... 0,
1 k,t k,t
t bRt bk t t t
bl \s,i)>:7§1'®zl X5 (00) + [11)) St = |50y (5]
nqubits O N
’ 1
= a(0) = + S I [(Uk ® ak)Sét)} Estimate of \Tr [pO] \2
t=1 k=1
Depth 1 . .
cli fforgl gates Bell measurements Samples ~ 6—4 Computation time ~ nN
ki,
px (I 4+ aP) §
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Summarizing the scale of the separation

Take any measurements you want on the N copies

Collect classical data signature of state
N copies of p X (I + OéP) o

Given new Pauli operator O, predict | Tr[pO]|to error €

Quantum processing
Quantum W Y  + Measuremen t

1
memo,y Copies ~ — Compute ~ n x Copies

Classical i eeeeeee i i!aczss:?nlg
memory
.‘a* Q'I Copies > (2" +1)/.85

011
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Bell measurements as a feature in learning

n qubits 10

ng

0

ubits ,0
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by’

17 by

—
Q
~

— N repetitions |

2n classical bits for N rounds creates Bell sketch of state {bf’t}

Could we use this “feature” of a quantum state to learn this task?

Can state specific noise or features boost the performance? Or the

performance of an adversary?

Gated recurrent
neural network

A

. p:px. ‘.
P

Supervised

(b)

PIPaid

Component 2

PCA

T
-1.0

T T T
-05 0.0 05
Component 1

Unsupervised

T
10




Imagining and emulating a quantum data pipeline

Unprotected Protected
Quantum computation
Quantum
Analog simulation TR Logical data
encodin i :
an?ftum 9 @B processing Classical
Slsls memor

Natural quantum system memory Y

Advanced quantum sensor

Always(?) unprotected
Proofs have some experimental flexibility but not unlimited - ultimate test is empirical

Noise in state prep and computation here let us test separation on simple tasks in more realistic conditions
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Using our chip to understand performance on real data

7 1.t
b
{
nqubits 0 (a) |
xoxoxoxoxo 2 oxoxoxox
o HE OE O QS
28000 070 S0 S
o OE HE HE 08
. LV o
1 ,t
VRS S b %
7 RGP PP X
oit i e i i o
N QubIts p T =+ Qubits W Adjustable coupler m System qubit Memory qubit
“Transduction” “Data Processing”
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Experimental demonstration of advantage

Given 2 candidate Pauli operators

0

N copies of p X (I + aP)

Gated recurrent
neural network

—
Q
~

I N r(::-petitions _I

p D ‘
TN e
P Sp |
TN Nee

Trained on noiseless datan <8
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(b)

Determine
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Training Loss (Q)
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Tr[Q1p]] > [Tr|Q2p]|?

(€) 103

o

-§— Acc=70% (Q)
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210”3 ’
§ 3 --- Accz70%(C,LB) O
E 4] >
£ 10" 3 >
= 7 \/
g ® o
S 3 710
S 10°4 " ,/0(
5 /R
810°% * >
RS
Z 10 3 ,’
0 //
10 3
1. 1 T T T T T T 1T
2 4 6 8101214 16 18 20

n (system size)

Test on n up to 20 (= 40 physical qubits)




We've learned about states... how about processes?

Given access to a process ¢ N times, determine if

a ) . )
(: ) — (a) random time-reversal symmetric evolution
2 - C (& .
8§ . axsax | | (b)random unitary
B L 1 1.t
o A ) by
85 = . A
- —or— n qubits g
2 : Ex iy
O N .
E E = =
Sl L
§ © 1 1,t
S5 - b
Unsupervised ML
Q 5 , F
Mmoo n qubits g
ELE £ ny
EE, €10 E16p 25558
1D representation any + Qubits W Adjustable coupler
for all dynamics M0 System qubit Memory qubit
Y Bell prep Bell measurement v

| Number of qubits | Number of gates | Circuit depth

Google Al 1D dynamics 40 842 40
Quantum 2D dynamics 40 1388 54




500 repetitions

Unsupervised discovery

Trials Avg and Variance : :

(a) 9 (a) 1D Dynamics (b) 2D Dynamics

; 1 1 0.25- 0.25-

: pLt (B Varl]) o ~.

L { £ 0.00 £ 0.00-

5 [a) a

? i By Conventional B Conventional

2 04 -02 00 02 04 -04 -02 00 02
g 0.25 - 0.25-
g,_ Au‘ g 0.00 ~ L 2 S so @ g 0.00 :?:i‘g&”
o < - £
é § 0259 Quantum-enhanced 02571  Quantum-enhanced
S5 -04 -02 00 02 04 -04 -02 00 02

Unsupervised ML Dim. 1 P Dim. 1
General @ T-symmetric
< o oo 4
&1 Ee &
€', 80 G167  Feature vector for Kernel PCA
1D representation each process E’
forllidynamics 1 Squared exp kernel
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Unsupervised classification of processes

Physical experiments

Noiseless simulation

(1D scrambling data)

%0 wen Quantum- 1) " -Qua-ntur;\-er:han-ced- o-/’/’ /-/: System sizes (n)
= 5.:_a- enhanced @ experiments / / —— 4 —e— 4
0.9 %"%. experiments 0.9 /' ”// / —— 6 —a— 6
/ ;/ 4 y— A 4 / 2 /’/ a—_ae 8 » 8
) A ;"-_. ,/ //
2 0.8 - / /:?.7‘ @ 0.8 - ,/ / / /1,« 10 +— 10
¢ |27 / A1 7 2
8 0.7 0.7 /° / / / 14 14
e Conventional . / s 47 16 16
0.6 2 T eXPerems 0.6 - / /X // —=— 18 : 8
'/“XV*%:;;"‘:Z\‘ é )_‘;';,v/ \"\ /'“'/ 20 -
0.5:5 ; 054 ° Conventional
experiments
LA | 1 T T llllll|2 T T llllll|3 T T !llllll4 LA | 1 Ll T lllllll T T lllllll T UL
10 10 10 10 10 10
Number of experiments Number of experlments
(40 physical qubits)
| Number of qubits | Number of gates | Circuit depth
Google Al 1D dynamics 40 842 40
Quantum 2D dynamics 40 1388 54




SWAPs and virtual distillation to the quantum PCA

Recall virtual distillation ~ p — p?

c ted Uses destructive SWAP
orrupte — + E N
quantum data p=1Ipo . Pipi TRk plot
)
n qubits 10 1o
Uncorrupted data Orthogonal errors h
BN
1SWAP — Virtual distillation L
. : bg’
SWAP as a generator —  exp (—i0tSWAP) — Quantum PCA :
nqubits ‘
E
This work: Proof in a conventional scenario that exponential number of copies g
NS

are required to learn about principal component vs constant in quantum
enhanced setting.

Google Al (What about dequantization?)
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Recall dequantization

Quantum linear solution of equations
Quantum-enhanced Quantum PCA

Quantum {9 Quantum recommendation systems
information @
— Quantum access models
Explicit Implicit

2 = i

Classical

MifoirTien Sample-and-query (SQ) access model (Classical)
Conventional

Sample - The oracle outputs i with probability |z;|*/ Z En
J
Query(i) - The oracle outputs XL; to arbitrary precision

QueryN - The oracle outputs ||z||2
Dequantization (informal) - If SQ access to data allows classical algorithms

Google Al to match the advertised scaling of quantum algorithms up to poly overhead,
n Quantum the algorithm is said to be dequantized.



Take care when invoking SQ access - sometimes too powerful

Explicit

1

Prepare {Zi}i=1..2n — —— szm
1zll2 5

@ @@ @is:lsz*
@ @ @ S

Real vector search problem

(Quantum) Requires ~2" calls to Prepare
(Classical) Requires 1 call to Query(0)

(Other quantum - builds SQ reversibly)

Google Al
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Implicit ——  Experiment
.' "‘
U‘0> - § Cz‘fl/> Molecues a FRER
M \J \FS/
i OO )
ﬁ ssssss g‘-" ooty

o

¥ 4OR

—
Physical world

Query(0) enables strong simulation
— solves #P-Complete problems efficiently

Reading state to accuracy required for Query(i) has
exponential cost

(ArXiv:2112.00811)



Summary & Outlook

This work
Punchline - IF we could find a suitable data source, our - Proofs of advantage in state learning, process
cloud quantum devices today allow us to learn things learning, and quantum PCA
that are otherwise inaccessible. - Experimental demonstration of state and process

learning using up to 40 physical qubits & 1300 gates

Quantum processing
Quantum + Measurement

.».» ]

/

Classical
Classical processing

memory
5 333 I\
101
Y Outlook

- Inspire work on quantum data sources & sensors
(beyond quadratic)
(Recall computational vs data advantage) - Deeper connection to physics? Interferometry?
- Other tasks with 2-copy + Clifford advantage?
- Beyond Bell features?
- Can these proof techniques tell us something about
existing learning tasks or quantum techniques?
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