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Quantum machine learning & data advantage

Data limited problems - Limited by availability of data, 
no computation possible to overcome lack of data

Transduced quantum state
Analog simulation state
Output of computation
…

(limited copies)

Copies ~ exp(n)

Copies ~ n

Compute ~ ?

Compute ~ ?

Computationally limited problems - Simple inputs, known computational procedure 

Key to factor
Hamiltonian to simulate
… Compute ~ exp(n)

Compute ~ n

Data assisted problems - Known 
computational procedure, complexity 
can change with available data 
(~advice)



A motivating example for data assisted problems

Some data

Arbitrary length quantum circuit Hermitian operator

Direct simulation at least as hard as BQP, 
must be a powerful function of          !

At most quadratic function on entries 
of         with p2 coefficients!

(More generally, need  ~                   data pts)

No data - hard quantum circuit
With data - Almost trivial learning task!

Task - compute

Given  circuit & some input



The power of data in quantum machine learning*

* Hsin-Yuan (Robert) Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut 
Neven, Jarrod R. McClean “Power of data in quantum machine learning” Nature Communications, Vol.12, 
No. 2631 (2021)



What kinds of problems are learnable from a little data?

arXiv:2106.12627 (2021)

Is the fate of quantum computers to 
provide training data for classical 

models?



So what’s left for a quantum computer?



Quantum memory and quantum-enhanced experiments

Quantum advantage in learning from experiments
Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean
arXiv:2112.00778 (2021)

This work - Exponential advantage with exactly 2 copies on 2 different tasks and efficient classical 
compute (and additional proofs)



What’s the simplest task we can have an advantage on?
Task - 

Collect classical data signature of state

Take any measurements you want on the N copies

Given new Pauli operator O, predict 

N copies of

Is a general n-qubit pauli operator e.g.

Form of state is known 

unknown 

Setup - 

Note - 
State is un-entangled but not factorizable
Can be realized in depth 1 Clifford circuit

(Alternatively) Given 2 candidate  Pauli operators 

Determine



The best possible conventional experiments

Result summary

Best conventional strategy requires N ~ 

to predict                        to additive error < .25 

with probability > .8 

Sketch of proof

Reduction to discrimination task

Null hypothesis Alternate hypothesis

random

-Optimal discriminating POVM can be bounded using hypothesis structure
-Is independent of previous measurements
-Gives exp vanishing returns



The simplest quantum-enhanced experiment

Computation time ~ nNSamples ~ 

2n classical bits for N rounds creates Bell sketch of state 

Estimate of 

Depth 1 
clifford gates

n qubits

n qubits

Bell measurements

…

…

=



Summarizing the scale of the separation

Copies ~ Compute ~ n x Copies  

Copies  

Collect classical data signature of state

Take any measurements you want on the N copies

Given new Pauli operator O, predict                        to error
N copies of



Bell measurements as a feature in learning

n qubits

n qubits …

…

2n classical bits for N rounds creates Bell sketch of state 

Could we use this “feature” of a quantum state to learn this task?

Can state specific noise or features boost the performance? Or the 
performance of an adversary?

Supervised Unsupervised



ProtectedUnprotected

Imagining and emulating a quantum data pipeline

Quantum computation

Analog simulation

Natural quantum system

Advanced quantum sensor

Transduction
Quantum 

buffer
Quantum 
memory

Logical 
encoding Classical 

memory

Quantum 
data 

processing

Always(?) unprotected

Proofs have some experimental flexibility but not unlimited - ultimate test is empirical

Noise in state prep and computation here let us test separation on simple tasks in more realistic conditions



Using our chip to understand performance on real data

n qubits

n qubits …

…

“Transduction” “Data Processing”



Experimental demonstration of advantage

Trained on noiseless data n < 8

N copies of
Given 2 candidate  Pauli operators 

Determine

Test on n up to 20 (= 40 physical qubits)



We’ve learned about states… how about processes?
Given access to a process       N times, determine if
(a) random time-reversal symmetric evolution
(b) random unitary

n qubits

n qubits …

…

Bell prep Bell measurement



Unsupervised discovery

…

Trials

…

Avg and Variance

Feature vector for 
each process

Squared exp kernel

Kernel PCA



Unsupervised classification of processes
(1D scrambling data)

(40 physical qubits)



SWAPs and virtual distillation to the quantum PCA

(What about dequantization?) 

Corrupted 
quantum data

Uncorrupted data Orthogonal errors

n qubits

n qubits …

…

Recall virtual distillation
Uses destructive SWAP

1 SWAP → Virtual distillation

SWAP as a generator →                                            → Quantum PCA

This work: Proof in a conventional scenario that exponential number of copies 
are required to learn about principal component vs constant in quantum 
enhanced setting.



Recall dequantization
Quantum linear solution of equations
Quantum PCA
Quantum recommendation systems 

Sample-and-query (SQ) access model (Classical)

Sample - The oracle outputs i with probability

Query(i) - The oracle outputs            to arbitrary precision

QueryN - The oracle outputs 

Quantum access models

Explicit Implicit

Dequantization (informal) - If SQ access to data allows classical algorithms 
to match the advertised scaling of quantum algorithms up to poly overhead, 
the algorithm is said to be dequantized.



Take care when invoking SQ access - sometimes too powerful

ImplicitExplicit

Prepare

(Quantum) Requires ~2n calls to Prepare

(Classical) Requires 1 call to Query(0)

(Other quantum - builds SQ reversibly)

Query(0) enables strong simulation
 → solves #P-Complete problems efficiently 

Reading state to accuracy required for Query(i) has 
exponential cost

(ArXiv:2112.00811)



Summary & Outlook

Punchline - IF we could find a suitable data source, our 
cloud quantum devices today allow us to learn things 
that are otherwise inaccessible.

(Recall computational vs data advantage)

This work
- Proofs of advantage in state learning, process 

learning, and quantum PCA
- Experimental demonstration of state and process 

learning using up to 40 physical qubits & 1300 gates

Outlook
- Inspire work on quantum data sources & sensors 

(beyond quadratic)
- Deeper connection to physics? Interferometry?
- Other tasks with 2-copy + Clifford advantage?
- Beyond Bell features?
- Can these proof techniques tell us something about 

existing learning tasks or quantum techniques?
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