

Quantum advantage in learning from experiments and notes on dequantization

Jarrod McClean @JarrodMcClean **Y** Staff Research Scientist

Quantum machine learning & data advantage

Data limited problems - Limited by availability of data, no computation possible to overcome lack of data

ho (limited copies)

Transduced quantum state Analog simulation state Output of computation

Data assisted problems - Known computational procedure, complexity can change with available data (~advice)

...

A motivating example for data assisted problems

Given circuit
$$U_{\text{QNN}}$$
 & some input $\vec{x_i} \rightarrow |x_i\rangle = \sum_{k=1}^p x_i^k |k\rangle$

Task - compute $y_i = f(x_i) = \langle x_i | U_{\text{QNN}}^{\dagger} O U_{\text{QNN}} | x_i \rangle$

Some data

data pts)

Arbitrary length quantum circuit

Hermitian operator

Direct simulation at least as hard as BQP, must be a powerful function of \mathcal{X}_i !

 $f(x_i) = \left(\sum_{k=1}^p x_i^{k*} \langle k | \right) U_{\text{QNN}}^{\dagger} O U_{\text{QNN}} \left(\sum_{l=1}^p x_i^l | l \rangle \right)$ $= \sum_{k=1}^p \sum_{l=1}^p B_{kl} x_i^{k*} x_i^l,$

At most quadratic function on entries of \mathcal{X}_i with p^2 coefficients!

(More generally, need ~ $\left(\frac{p^2}{\epsilon^2}\right)$

No data - hard quantum circuit **With data** - Almost trivial learning task!

The power of data in quantum machine learning*

* Hsin-Yuan (Robert) Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, **Jarrod R. McClean** "Power of data in quantum machine learning" Nature Communications, Vol.12, No. 2631 (2021)

What kinds of problems are learnable from a little data?

Provably efficient machine learning for quantum many-body problems

Hsin-Yuan Huang,¹ Richard Kueng,² Giacomo Torlai,³ Victor V. Albert,⁴ and John Preskill^{1,3}

arXiv:2106.12627 (2021)

Is the fate of quantum computers to provide training data for classical models?

So what's left for a quantum computer?

Information-theoretic bounds on quantum advantage in machine learning

Hsin-Yuan Huang,^{1,2} Richard Kueng,³ and John Preskill^{1,2,4,5}

Classical Machine Learning

Quantum Machine Learning

Quantum Algorithmic Measurement

Dorit Aharonov $^{1,a},$ Jordan Cotler $^{2,3,b},$ Xiao-Liang $\mathbf{Qi}^{3,c}$

Quantum memory and quantum-enhanced experiments

This work - Exponential advantage with exactly 2 copies on 2 different tasks and efficient classical compute (and additional proofs)

Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean arXiv:2112.00778 (2021)

What's the simplest task we can have an advantage on?

Setup -

N copies of $\ \rho \propto (I+\alpha P)$ $\alpha \in (-1,1)$

 $P\,$ Is a general n-qubit pauli operator e.g.

 $Z \otimes X \otimes I \otimes Z \otimes \ldots = Z_1 X_2 Z_4 \ldots$

Form of state is known

 α, P unknown

Note -

Gooale Al

State is un-entangled but **not** factorizable Can be realized in depth 1 Clifford circuit Task -

Take any measurements you want on the N copies

Collect classical data signature of state

Given new Pauli operator O, predict $|{
m Tr}[
ho O]|$

(Alternatively) Given 2 candidate Pauli operators Q_1, Q_2 Determine $|\text{Tr}[Q_1\rho]| > |\text{Tr}[Q_2\rho]|?$

The best possible conventional experiments

Result summary

Best conventional strategy requires N ~ 2^n to predict $|{\rm Tr}[\rho O]|$ to additive error < .25 with probability > .8

Reduction to discrimination task

Sketch of proof

Null hypothesis

 $\begin{array}{l} \rho = I/2^n \\ O \text{ random} \end{array}$

Alternate hypothesis $\rho \propto (I + \alpha P)$ $\alpha \in \{+.9, -.9\} \quad O = P$

-Optimal discriminating POVM can be bounded using hypothesis structure

-ls independent of previous measurements

-Gives exp vanishing returns

The simplest quantum-enhanced experiment

2n classical bits for N rounds creates Bell sketch of state $\{b_i^{k,t}\}$

$$O = \sigma_1 \otimes \sigma_2 \dots \otimes \sigma_n$$

$$|s_{k}^{(t)}\rangle = \frac{1}{\sqrt{2}} I \otimes Z^{b_{1}^{k,t}} X^{b_{2}^{k,t}} (|00\rangle + |11\rangle) \qquad S_{k}^{(t)} = |s_{k}^{(t)}\rangle \langle s_{k}^{(t)}$$

$$\hat{a}(O) = \frac{1}{N} \sum_{t=1}^{N} \prod_{k=1} \operatorname{Tr} \left[(\sigma_k \otimes \sigma_k) S_k^{(t)} \right] \longrightarrow \text{Estimate of } |\operatorname{Tr}[\rho O]|^2$$

Depth 1 clifford gates

$$\rho \propto (I + \alpha P)$$

Google Al Quantum

Samples ~
$$\frac{1}{\epsilon^4}$$
 Computation time ~ nN

Summarizing the scale of the separation

N copies of $\, \rho \propto (I + \alpha P) \,$

Take any measurements you want on the N copies

Collect classical data signature of state

Given new Pauli operator O, predict $|{
m Tr}[
ho O]|$ to error ϵ

Bell measurements as a feature in learning

2n classical bits for N rounds creates Bell sketch of state $\{b\}$

 $\{b_i^{k,t}\}$

Could we use this "feature" of a quantum state to learn this task?

Can state specific noise or features boost the performance? Or the performance of an adversary?

Unsupervised

10

1.5

Supervised

Imagining and emulating a quantum data pipeline

Always(?) unprotected

Proofs have some experimental flexibility but not unlimited - ultimate test is empirical

Noise in state prep and computation here let us test separation on simple tasks in more realistic conditions

Using our chip to understand performance on real data

[&]quot;Transduction"

Experimental demonstration of advantage

Trained on noiseless data n < 8

Test on n up to 20 (= 40 physical qubits)

We've learned about states... how about processes?

Given access to a process \mathcal{E} N times, determine if (a) random time-reversal symmetric evolution (b) random unitary

		Number of qubits	Number of gates	Circuit depth
Google Al Quantum	1D dynamics	40	842	40
	2D dynamics	40	1388	54

Unsupervised discovery

Unsupervised classification of processes

⁽¹D scrambling data)

		Number of qubits	Number of gates	Circuit depth
Google Al Quantum	1D dynamics	40	842	40
	2D dynamics	40	1388	54

SWAPs and virtual distillation to the quantum PCA

This work: Proof in a conventional scenario that exponential number of copies are required to learn about principal component vs constant in quantum enhanced setting.

Google Al

Recall dequantization

Quantum linear solution of equations Quantum PCA Quantum recommendation systems

Quantum access models

Explicit

Conventional

Sample-and-query (SQ) access model (Classical)

Sample - The oracle outputs i with probability $|x_i|^2/\sum |x_j|^2$ **Query(i)** - The oracle outputs \mathcal{X}_i to arbitrary precision

```
QueryN - The oracle outputs ||x||_2
```


Dequantization (informal) - If SQ access to data allows classical algorithms to match the advertised scaling of quantum algorithms up to poly overhead, the algorithm is said to be dequantized.

Take care when invoking SQ access - sometimes too powerful

Explicit

Prepare
$$\{x_i\}_{i=1...2^n} \rightarrow \frac{1}{||x||_2} \sum_i x_i |i\rangle$$

Real vector search problem

(Quantum) Requires ~2ⁿ calls to **Prepare**

(Classical) Requires 1 call to Query(0)

(Other quantum - builds SQ reversibly)

Implicit $U|0...\rangle \rightarrow \sum_{i} c_{i}|i\rangle$ i $U|0...\rangle \rightarrow \sum_{i} c_{i}|i\rangle$ V_{Nuses} V_{Nuses}

Query(0) enables strong simulation \rightarrow solves #P-Complete problems efficiently

Reading state to accuracy required for **Query(i)** has exponential cost

Google Al Quantum

(ArXiv:2112.00811)

Þ

Summary & Outlook

Punchline - IF we could find a suitable data source, our cloud quantum devices **today** allow us to learn things that are otherwise inaccessible.

Quantum processing + Measurement +

(Recall computational vs data advantage)

This work

- Proofs of advantage in state learning, process learning, and quantum PCA
- Experimental demonstration of state and process learning using up to 40 physical qubits & 1300 gates

Outlook

- Inspire work on quantum data sources & sensors (beyond quadratic)
- Deeper connection to physics? Interferometry?
- Other tasks with 2-copy + Clifford advantage?
- Beyond Bell features?
- Can these proof techniques tell us something about existing learning tasks or quantum techniques?

Acknowledgements

Hsin-Yuan (Robert) Huang

A A

Michael Broughton

23

Brooks Foxen

Jordan Cotler Sitan Chen Jerry Li Masoud Mohseni Hartmut Neven Ryan Babbush Richard Kueng John Preskill QCS, physics, calibration, and entire hardware team

Quantum Al

Quantum advantage in learning from experiments

Google Al Quantum Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean arXiv:2112.00778 (2021)