lighly Oscillatory Dynamics	Our work (qHOP)	
	00 000000000	

Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics

Di Fang

Department of Mathematics Challenge Institute of Quantum Computing University of California, Berkeley

Based on joint work with Dong An (U Maryland) and Lin Lin (UC Berkeley)

Workshop on "Quantum Numerical Linear Algebra" IPAM, 2022

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000000	

Outline

- First source of oscillations
- Second source of oscillations
- 2 Major Question
- Our work (qHOP)
 - Idea of the algorithm
 - Interaction Picture and Superconvergence
- 4 Conclusion and Remarks

Highly Oscillatory Dynamics	Our work (qHOP)	
● ○○ ○○	00 000000000	
First source of oscillations		

Hamiltonian Simulation Problem: Given a description of the Hamiltonian H(t), an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ .

Highly Oscillatory Dynamics	Our work (qHOP)	
• 00 00	00 000000000	
First source of oscillations		

Hamiltonian Simulation Problem: Given a description of the Hamiltonian H(t), an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ .

$$\begin{split} \mathrm{i}\partial_t \left| \psi(t) \right\rangle &= H(t) \left| \psi(t) \right\rangle, \quad \left| \psi(0) \right\rangle = \left| \psi_0 \right\rangle \\ H(t) &\equiv H, \quad \left\| \mathcal{U}_{\mathsf{app}} - e^{-\mathrm{i}Ht} \right\| \leq \epsilon. \\ \\ &\left\| \mathcal{U}_{\mathsf{app}} - \mathcal{T} e^{-\mathrm{i}\int_0^t H(s) \, ds} \right\| \leq \epsilon. \end{split}$$

Highly Oscillatory Dynamics	Our work (qHOP)	
• 00 00	00 000000000	
First source of oscillations		

Hamiltonian Simulation Problem: Given a description of the Hamiltonian H(t), an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ .

$$\mathrm{i}\partial_t |\psi(t)\rangle = H(t) |\psi(t)\rangle, \quad |\psi(0)\rangle = |\psi_0\rangle.$$

$$H(t) \equiv H, \quad \left\| \mathcal{U}_{\mathsf{app}} - e^{-\mathrm{i}Ht} \right\| \leq \epsilon.$$

$$\left\| \mathcal{U}_{\mathsf{app}} - \mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} \right\| \leq \epsilon.$$

The difficulties of the simulation increase as the underlying unitary becomes **highly oscillatory**.

Highly Oscillatory Dynamics	Our work (qHOP)	
• 00 00	00 000000000	
First source of oscillations		

Hamiltonian Simulation Problem: Given a description of the Hamiltonian H(t), an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ .

$$\mathrm{i}\partial_t |\psi(t)\rangle = H(t) |\psi(t)\rangle, \quad |\psi(0)\rangle = |\psi_0\rangle.$$

$$H(t) \equiv H, \quad \left\| \mathcal{U}_{\mathsf{app}} - e^{-\mathrm{i}Ht} \right\| \leq \epsilon.$$

$$\left\| \mathcal{U}_{\mathsf{app}} - \mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} \right\| \leq \epsilon.$$

The difficulties of the simulation increase as the underlying unitary becomes **highly oscillatory**.

• 1st source: ||H|| is large.

Highly Oscillatory Dynamics	Our work (qHOP)	
• 00 00	00 000000000	
First source of oscillations		

Hamiltonian Simulation Problem: Given a description of the Hamiltonian H(t), an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ .

$$\mathrm{i}\partial_t |\psi(t)\rangle = H(t) |\psi(t)\rangle, \quad |\psi(0)\rangle = |\psi_0\rangle.$$

$$H(t) \equiv H, \quad \left\| \mathcal{U}_{\mathsf{app}} - e^{-\mathrm{i}Ht} \right\| \leq \epsilon.$$

$$\left\| \mathcal{U}_{\mathsf{app}} - \mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} \right\| \leq \epsilon.$$

The difficulties of the simulation increase as the underlying unitary becomes **highly oscillatory**.

- 1st source: ||H|| is large.
- 2nd source: *H*(*t*) oscillates itself!

Our work (qHOP) 00 0000000000 Conclusion and Remarks

First source of oscillations

Highly Oscillatory Dynamics are Ubiquitous!

Highly Oscillatory Dynamics are Ubiquitous!

Highly Oscillatory Dynamics	Our work (qHOP)	
00● 00	00 000000000	
First source of oscillations		

• Trotterization:

1st-order Trotter formula

$$e^{-iHt} = \left(e^{-iH_1t/L}e^{-iH_2t/L}\right)^L + \mathcal{O}(\|[H_1, H_2]\|t^2/L)$$

High order (*p*-th) generalization depending on nested commutators. [Childs-Su-et al. 2021] $\mathcal{O}(\|\mathsf{Comm}\|^{1/p} t^{1+1/p})$

Highly Oscillatory Dynamics	Our work (qHOP)	
00● 00	00 000000000	
First source of oscillations		

• Trotterization:

1st-order Trotter formula

$$e^{-iHt} = \left(e^{-iH_1t/L}e^{-iH_2t/L}\right)^L + \mathcal{O}(\|[H_1, H_2]\|t^2/L)$$

High order (*p*-th) generalization depending on nested commutators. [Childs-Su-et al. 2021] $\mathcal{O}(\|\text{Comm}\|^{1/p} \frac{t^{1+1/p}}{\epsilon^{1/p}})$

• LCU, e.g. Truncated Taylor series:

$$\mathcal{O}\left(\|H\|t\frac{\log(1/\epsilon)}{\log\log(1/\epsilon)}\right).$$

- Qubitization/QSP/QSVT: $O(||H||t + \log(1/\epsilon))$
- Randomized algorithms e.g., qDRIFT: Weak Convergence wrt the diamond norm of Quantum channels

$$\mathcal{O}\left(\|\boldsymbol{H}\|t^2/\epsilon\right).$$

Highly Oscillatory Dynamics	Our work (qHOP)	
000 ● 0	00 000000000	
Second source of oscillations		

Commutator scaling gives great cancellation. [Childs-Su-et al. 2021]

Question: Can one explore the commutator scaling in the time-dependent case H(t)?

Highly Oscillatory Dynamics	Our work (qHOP)	
000 ● 0	00 000000000	
Second source of oscillations		

Commutator scaling gives great cancellation. [Childs-Su-et al. 2021]

Question: Can one explore the commutator scaling in the time-dependent case H(t)? Scaling such as $\|[H(s), H(\tau)]\|$?

Highly Oscillatory Dynamics	Our work (qHOP)	
000 ● 0	00 000000000	
Second source of oscillations		

Commutator scaling gives great cancellation. [Childs-Su-et al. 2021]

Question: Can one explore the commutator scaling in the time-dependent case H(t)? Scaling such as $||[H(s), H(\tau)]||$?

Additional Challenge for time-dependent case: High oscillations caused by the rapid change of H(t).

Second Source of Oscillations

Highly Oscillatory Dynamics	Our work (qHOP)	
000 ● 0	00 000000000	
Second source of oscillations		

Commutator scaling gives great cancellation. [Childs-Su-et al. 2021]

Question: Can one explore the commutator scaling in the time-dependent case H(t)? Scaling such as $||[H(s), H(\tau)]||$?

Additional Challenge for time-dependent case: High oscillations caused by the rapid change of H(t).

Second Source of Oscillations

e.g. interaction picture $e^{iAs}Be^{-iAs}$ with $||A|| \gg 1$.

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0 0	00 000000000	
Second source of oscillations		

• Trotterization: $H = H_1(t) + H_2(t)$

$$\mathcal{T}e^{-\mathrm{i}\int_{t_j}^{t_{j+1}}H(s)\,ds}\approx e^{-\mathrm{i}hH_2(\tau_j)}e^{-\mathrm{i}hH_1(\tau_j)},$$

where $\tau_j \in [t_j, t_{j+1}]$ are chosen according to Suzuki construction. The number of unitaries depends on $\|\partial_t H(t)\|$.

¹[Wiebe-Berry-Hoyer-Sanders 2010]

Di Fang (UC Berkeley)

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0 0	00 000000000	
Second source of oscillations		

• Trotterization:
$$H = H_1(t) + H_2(t)$$

$$\mathcal{T}e^{-\mathrm{i}\int_{t_j}^{t_j+1}H(s)\,ds}\approx e^{-\mathrm{i}hH_2(\tau_j)}e^{-\mathrm{i}hH_1(\tau_j)},$$

where $\tau_j \in [t_j, t_{j+1}]$ are chosen according to Suzuki construction. The number of unitaries depends on $\|\partial_t H(t)\|$.

 $\text{High-order ($p$-th) generalization} \left(\sum_{j=1}^m \|\partial_t^p H_j\| \right)^{1/(p+1)} \mathbf{1}$

¹[Wiebe-Berry-Hoyer-Sanders 2010]

Di Fang (UC Berkeley)

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0 ●	00 000000000	
Second source of oscillations		

• Trotterization: $H = H_1(t) + H_2(t)$

$$\mathcal{T}e^{-\mathrm{i}\int_{t_j}^{t_{j+1}}H(s)\,ds}\approx e^{-\mathrm{i}hH_2(\tau_j)}e^{-\mathrm{i}hH_1(\tau_j)},$$

where $\tau_j \in [t_j, t_{j+1}]$ are chosen according to Suzuki construction. The number of unitaries depends on $\|\partial_t H(t)\|$.

High-order (*p*-th) generalization $\left(\sum_{j=1}^m \|\partial_t^p H_j\|\right)^{1/(p+1)}$

• Randomized algorithms (first-order accuracy and weak conv) e.g., [Poulin-Qarry-Somma-Verstraete 2011], continuous qDRIFT.

¹[Wiebe-Berry-Hoyer-Sanders 2010]

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0 ●	00 000000000	
Second source of oscillations		

• Trotterization: $H = H_1(t) + H_2(t)$

$$\mathcal{T}e^{-\mathrm{i}\int_{t_j}^{t_{j+1}}H(s)\,ds}\approx e^{-\mathrm{i}hH_2(\tau_j)}e^{-\mathrm{i}hH_1(\tau_j)},$$

where $\tau_j \in [t_j, t_{j+1}]$ are chosen according to Suzuki construction. The number of unitaries depends on $\|\partial_t H(t)\|$.

High-order (*p*-th) generalization $\left(\sum_{j=1}^m \|\partial_t^p H_j\|\right)^{1/(p+1)}$

- Randomized algorithms (first-order accuracy and weak conv) e.g., [Poulin-Qarry-Somma-Verstraete 2011], continuous qDRIFT.
- Dyson series (LCU) based
 e.g. truncated Dyson series, rescaled Dyson

e.g., truncated Dyson series, rescaled Dyson series, etc.

¹[Wiebe-Berry-Hoyer-Sanders 2010]

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0 ●	00 000000000	
Second source of oscillations		

Trotterization:

High-order (*p*-th) generalization

tion
$$\left(\sum_{j=1}^m \|\partial_t^p H_j\|\right)^{1/(p+1)}$$

- Randomized algorithms (first-order accuracy and weak conv) e.g., [Poulin-Qarry-Somma-Verstraete 2011], continuous qDRIFT.
- Dyson series (LCU) based

e.g., truncated Dyson series, rescaled Dyson series, etc.

¹[Wiebe-Berry-Hoyer-Sanders 2010]

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0 ●	00 000000000	
Second source of oscillations		

Trotterization:

High-order (*p*-th) generalization

tion
$$\left(\sum_{j=1}^m \|\partial_t^p H_j\|\right)^{1/(p+1)}$$

- Randomized algorithms (first-order accuracy and weak conv) e.g., [Poulin-Qarry-Somma-Verstraete 2011], continuous qDRIFT.
- Dyson series (LCU) based

e.g., truncated Dyson series, rescaled Dyson series, etc.

¹[Wiebe-Berry-Hoyer-Sanders 2010]

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0●	00 000000000	
Second source of escillations		

• Trotterization:

High-order (p-th) generalization $\int_{-\infty}^{\infty}$

$$\left(\sum_{j=1}^m \|\partial_t^p H_j\|\right)^{1/(p+1)}$$

- Randomized algorithms (first-order accuracy and weak conv)
 e.g., [Poulin-Qarry-Somma-Verstraete 2011], continuous qDRIFT.
- Dyson series (LCU) based

e.g., truncated Dyson series, rescaled Dyson series, etc.

The dependence on $\partial_t^p H(t)$ are suppressed!

¹[Wiebe-Berry-Hoyer-Sanders 2010]

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0●	00 000000000	
Second source of escillations		

Trotterization:

High-order (*p*-th) generalization
$$\left(\sum_{j=1}^{m} \|\partial_t^p H_j\|\right)^{1/(p+1)}$$

- Randomized algorithms (first-order accuracy and weak conv) e.g., [Poulin-Qarry-Somma-Verstraete 2011], continuous qDRIFT.
- Dyson series (LCU) based
 - e.g., truncated Dyson series, rescaled Dyson series, etc.

The dependence on $\partial_t^p H(t)$ are suppressed! But no commutator scaling!

¹[Wiebe-Berry-Hoyer-Sanders 2010]

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0 0	00 000000000	
Second source of escillations		

• Trotterization:

High-order (*p*-th) generalization
$$\left(\sum_{j=1}^{m} \|\partial_t^p H_j\|\right)^{1/(p+1)}$$

- Randomized algorithms (first-order accuracy and weak conv) e.g., [Poulin-Qarry-Somma-Verstraete 2011], continuous qDRIFT.
- Dyson series (LCU) based

e.g., truncated Dyson series, rescaled Dyson series, etc.

The dependence on $\partial_t^p H(t)$ are suppressed! But no commutator scaling! Applying to interaction picture (IP)?

¹[Wiebe-Berry-Hoyer-Sanders 2010]

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0 ●	00 000000000	
Second source of oscillations		

• Trotterization:

High-order (*p*-th) generalization
$$\left(\sum_{j=1}^{m} \|\partial_t^p H_j\|\right)^{1/(p+1)}$$

- Randomized algorithms (first-order accuracy and weak conv) e.g., [Poulin-Qarry-Somma-Verstraete 2011], continuous qDRIFT.
- Dyson series (LCU) based

e.g., truncated Dyson series, rescaled Dyson series, etc.

Interaction Picture: Best asymptotic scaling. The circuit requires complicated quantum control logic for time clocking, which can lead to undesirable constant factor.²

[[]Wiebe-Berry-Hoyer-Sanders 2010]

²[Su-Berry-Wiebe-Rubin-Babbush PRX Quantum 2021]

Highly Oscillatory Dynamics	Our work (qHOP)	
000 0●	00 000000000	
Second source of oscillations		

Trotterization:

High-order (p-th) generalization $\left(\sum_{j=1}^m \|\partial_t^p H_j\|\right)^{1/(p+1)}$

- Randomized algorithms (first-order accuracy and weak conv)
 e.g., [Poulin-Qarry-Somma-Verstraete 2011], continuous qDRIFT. Interaction Picture: hybridized methods (first order)²
- Dyson series (LCU) based

e.g., truncated Dyson series, rescaled Dyson series, etc. Interaction Picture: Best asymptotic scaling. The circuit requires complicated quantum control logic for time clocking, which can lead to undesirable constant factor.³

¹[Wiebe-Berry-Hoyer-Sanders 2010]

²[Rajput-Roggero-Wiebe 2021]

³[Su-Berry-Wiebe-Rubin-Babbush PRX Quantum 2021]

Highly Oscillatory Dynamics	Major Question	Our work (qHOP)	
000 00	000	00 000000000	

- Two challenges: ||H|| large; rapid change of H.
- Two desirable features: commutator scaling (like Trotter for time-independent); weak dependence on derivatives (e.g. randomized/ Dyson-based methods).
- Question: Can we get both?

	Major Question	Our work (qHOP)	
000 00	000	00 000000000	

Ideal: An algorithm

	Major Question	Our work (qHOP)	
000 00	000	00 000000000	000

Ideal: An algorithm

- Simple to implement
- exploring commutator scaling
- remaining insensitive to the rapid change of the Hamiltonian
- is high-order (in accuracy).

	Major Question	Our work (qHOP)	
000 00	000	00 000000000	000

Ideal: An algorithm

- Simple to implement
- exploring commutator scaling
- remaining insensitive to the rapid change of the Hamiltonian
- is high-order (in accuracy).

	Major Question	Our work (qHOP)	
000 00	000	00 000000000	000

Ideal: An algorithm

- Simple to implement
- exploring commutator scaling
- remaining insensitive to the rapid change of the Hamiltonian
- is high-order (in accuracy).

	Major Question	Our work (qHOP)	
000 00	000	00 000000000	000

Ideal: An algorithm

- Simple to implement
- exploring commutator scaling
- remaining insensitive to the rapid change of the Hamiltonian
- is high-order (in accuracy).

	Major Question	Our work (qHOP)	
000 00	000	00 000000000	000

Ideal: An algorithm

Simple to implement

(no time-clocking related control units)

- exploring commutator scaling
- remaining insensitive to the rapid change of the Hamiltonian
- is high-order (in accuracy).

000		
00	00 000000000	

Ideal: An algorithm

- Simple to implement
 (no time-clocking related control units)
- exploring commutator scaling
 (in high precision limit)
- remaining insensitive to the rapid change of the Hamiltonian
- is high-order (in accuracy).

	Major Question	Our work (qHOP)	
000 00	000	00 000000000	

Ideal: An algorithm

- Simple to implement
 - (no time-clocking related control units)
- exploring commutator scaling
 (in high precision limit)
- remaining insensitive to the rapid change of the Hamiltonian
 (log dependence on derivative)
- is high-order (in accuracy).

Question	Our work (qHOP)	Conclusion and Remarks
	00 000000000	
	Question	Ouestion Our work (dHOP) OO 00000000000

Ideal: An algorithm

Simple to implement

(no time-clocking related control units)

- exploring commutator scaling
 (in high precision limit)
- is high-order (in accuracy).
- achieves superconvergence in the digital simulation of Schrödinger equation, yielding a surprising second order convergence rate.

	Major Question	Our work (qHOP)	
000 00	000	00 000000000	

A naive (but insufficient) attempt for commutator bound

• Standard Trotter: As an example, take the special controlled form

 $H(t) = f_1(t)H_1 + f_2(t)H_2$

with f_1 and f_2 smooth and scalar, and the second order time discretization. (step size: *h*) [Lloyd 1996]

$$U_s(t+h,t) = e^{-\frac{ih}{2}f_1(t+\frac{h}{2})H_1}e^{-ihf_2(t+\frac{h}{2})H_2}e^{-\frac{ih}{2}f_1(t+\frac{h}{2})H_1}$$
Highly Oscillatory Dynamics	Major Question	Our work (qHOP)	
000 00	000	00 000000000	

A naive (but insufficient) attempt for commutator bound

• Standard Trotter: As an example, take the special controlled form

 $H(t) = f_1(t)H_1 + f_2(t)H_2$

with f_1 and f_2 smooth and scalar, and the second order time discretization. (step size: *h*) [Lloyd 1996]

 $U_s(t+h,t) = e^{-\frac{\mathrm{i}h}{2}f_1(t+\frac{h}{2})H_1}e^{-\mathrm{i}hf_2(t+\frac{h}{2})H_2}e^{-\frac{\mathrm{i}h}{2}f_1(t+\frac{h}{2})H_1}.$

Take the case $[H_1, H_2] = 0.$

Error is not machine precision! \Rightarrow No commutator scaling.

Highly Oscillatory Dynamics	Major Question	Our work (qHOP)	
000 00	000	00 000000000	

A naive (but insufficient) attempt for commutator bound

• Standard Trotter: As an example, take the special controlled form

 $H(t) = f_1(t)H_1 + f_2(t)H_2$

with f_1 and f_2 smooth and scalar, and the second order time discretization. (step size: *h*) [Lloyd 1996]

$$U_s(t+h,t) = e^{-\frac{i\hbar}{2}f_1(t+\frac{\hbar}{2})H_1}e^{-ihf_2(t+\frac{\hbar}{2})H_2}e^{-\frac{i\hbar}{2}f_1(t+\frac{\hbar}{2})H_1}.$$

• Generalized Trotter [Huyghebaert–De Raedt 1990] For general $H_1(t) + H_2(t)$,

$$\mathcal{T}e^{-\mathrm{i}\int_{t_{j}}^{t_{j+1}}H(s)\,ds} = \mathcal{T}e^{-\mathrm{i}\int_{t_{j}}^{t_{j+1}}H_{1}(s)\,ds}\mathcal{T}e^{-\mathrm{i}\int_{t_{j}}^{t_{j+1}}H_{2}(s)\,ds} + \mathcal{O}(\max_{s,\tau\in[t_{j},t_{j+1}]}\|[H_{1}(s),H_{2}(\tau)]\|\,h^{2}).$$

NOT an algorithm yet! Two time-dependent Ham. sim. problems still need to implement!

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000000	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \quad 4$$

⁴widely used in Trotter for time-dependent Ham., randomized product formula, e.g. [Poulin-Qarry-Somma-Verstraete 2011], classical Magnus integrator, etc

Di Fang (UC Berkeley)

Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	• 0 000000000	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}}H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}}H(s)ds} \quad 4$$

$$\approx e^{-\mathrm{i}h\frac{1}{M}\sum_{k=0}^{M-1}H(jh+kh/M)}$$

⁴widely used in Trotter for time-dependent Ham., randomized product formula, e.g. [Poulin-Qarry-Somma-Verstraete 2011], classical Magnus integrator, etc

Di Fang (UC Berkeley)

Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	• 0 000000000	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \quad 4$$

 $\approx e^{-\mathrm{i}h\frac{1}{M}\sum_{k=0}^{M-1}H(jh+kh/M)}$

⁴widely used in Trotter for time-dependent Ham., randomized product formula, e.g. [Poulin-Oarry Somma-Varstraata 2011], classical Magnus integrator, etc. Di Fang (UC Berkeley) Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics 11/25

Highly Oscillatory Dynamics	Our work (qHOP)	
000	00 000000000	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}} H(s)ds}$$

$$\approx e^{-\mathrm{i}h\frac{1}{M}\sum_{k=0}^{M-1}H(jh+kh/M)}$$

• Rectangular quadrature (*aka* Riemann sum with *M* quadrature points).

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000000	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}} H(s)ds}$$

$$\approx e^{-\mathrm{i}h\frac{1}{M}\sum_{k=0}^{M-1}H(jh+kh/M)}$$

 Due to LCU, cost ~ log(M) ⇒ This is the most "intrinsically quantum" part in qHOP.

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	• 0 000000000	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} = 4$$

$$\approx e^{-\mathrm{i}h\frac{1}{M}\sum_{k=0}^{M-1}H(jh+kh/M)}$$

- Due to LCU, cost ~ log(M) ⇒
 This is the most "intrinsically quantum" part in qHOP.
- share the spirit of multi-scale integrator with $\Delta T = t_{j+1} - t_j$ and Δt for quadrature within each time step.

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	• 0 000000000	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}}H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}}H(s)ds} \quad 4$$

$$\approx e^{-\mathrm{i}h\frac{1}{M}\sum_{k=0}^{M-1}H(jh+kh/M)}$$

- Due to LCU, cost ~ log(M) ⇒ This is the most "intrinsically quantum" part in qHOP.
- share the spirit of multi-scale integrator with $\Delta T = t_{j+1} - t_j$ and Δt for quadrature within each time step.
- Time-dependent Ham. Sim
 ⇒ Time-independent!
 can use QSVT and OAA.

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000000	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} 4$$

$$\approx e^{-\mathrm{i}h\frac{1}{M}\sum_{k=0}^{M-1}H(jh+kh/M)}$$

Questions:

- 1. How to implement?
- 2. What are the approximation errors?

Di Fang (UC Berkeley)

Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics

⁴widely used in Trotter for time-dependent Ham., randomized product formula, e.g. [Poulin-Qarry-Somma-Verstraete 2011], classical Magnus integrator, etc

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	● ○ ○○○○○○○○○○	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} 4$$

$$\approx e^{-\mathrm{i}h\frac{1}{M}\sum_{k=0}^{M-1}H(jh+kh/M)}$$

Questions:

- 1. How to implement?
- 2. What are the approximation errors?

Answer to Q1:

⁴widely used in Trotter for time-dependent Ham., randomized product formula, e.g. [Poulin-Qarry-Somma-Verstraete 2011], classical Magnus integrator, etc

Highly Oscillatory Dynamics	Our work (qHOP)	
000	•o	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} 4$$

$$\approx e^{-\mathrm{i}h\frac{1}{M}\sum_{k=0}^{M-1}H(jh+kh/M)}$$

Questions:

- 1. How to implement?
- 2. What are the approximation errors?

Answer to Q2: (h: step size)

$$\begin{aligned} \|U_{\text{exact}}(t_{j+1},t_j) - U_{\text{num}}(t_{j+1},t_j)\| \\ \leq h^2 \Big(\underbrace{\frac{1}{2} \max_{s,\tau \in [jh,(j+1)h]} \|[H(\tau),H(s)]\|}_{\text{Dropping time-ordering}} + \underbrace{\frac{1}{M} \max_{s \in [jh,(j+1)h]} \|H'(s)\|}_{\text{numerical quadrature error} \Rightarrow \log \text{(LCU)}} \Big). \end{aligned}$$

⁴widely used in Trotter for time-dependent Ham., randomized product formula, e.g. [Poulin-Qarry-Somma-Verstraete 2011], classical Magnus integrator, etc

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000000	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}} H(s)ds}$$
$$\approx e^{-ih\frac{1}{M}\sum_{k=0}^{M-1} H(jh+kh/M)}$$

Query Complexity:

$$\widetilde{\mathcal{O}}(f) = \mathcal{O}(f \mathsf{polylog} f)$$

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000000	
Idea of the algorithm		

$$U(t_{n+1}, t_n) = \mathcal{T}e^{-i\int_{t_n}^{t_{n+1}} H(s)ds} \approx e^{-i\int_{t_n}^{t_{n+1}} H(s)ds}$$
$$\approx e^{-ih\frac{1}{M}\sum_{k=0}^{M-1} H(jh+kh/M)}$$

Query Complexity:

$$\widetilde{\mathcal{O}}\left(\max_{s,t\in[0,T]} \left\| \left[H(s),H(t)\right] \right\| \frac{T^2}{\epsilon} + \max_{s\in[0,T]} \left\|H(s)\right\| T\right)$$

 $\widetilde{\mathcal{O}}(f) = \mathcal{O}(f \mathsf{polylog} f)$

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 ●00000000	
Interaction Picture and Superconvergence		

H = A + B and A has a much larger norm but fast-forwardable. $\mathrm{i}\partial_t\psi = H\psi = (A+B)\psi$

Highly Oscillatory Dynamics		Our work (qHOP)	
000 00		00 ●00000000	
Interaction Picture and Superconvergence	e		

H = A + B and A has a much larger norm but fast-forwardable.

 $i\partial_t \psi = H\psi = (A+B)\psi$

Motivation: e.g., Schrödinger equation

$$H = -\frac{1}{2}\Delta + V(x), \quad \|\Delta_h\| \gg \|V\|$$

Highly Oscillatory Dynamics		Our work (qHOP)	
000 00		00 ●00000000	
Interaction Picture and Superconvergence	3		

H = A + B and A has a much larger norm but fast-forwardable.

 $i\partial_t \psi = H\psi = (A+B)\psi$

Motivation: e.g., Schrödinger equation

$$H = -\frac{1}{2}\Delta + V(x), \quad \|\Delta_h\| \gg \|V\|$$

Interaction Picture [Low-Wiebe 2018]:

Highly Oscillatory Dynamics		Our work (qHOP)	
000 00		00 ●00000000	
Interaction Picture and Superconvergence	e.		

H = A + B and A has a much larger norm but fast-forwardable.

 $i\partial_t \psi = H\psi = (A+B)\psi$

Motivation: e.g., Schrödinger equation

$$H = -\frac{1}{2}\Delta + V(x), \quad \|\Delta_h\| \gg \|V\|$$

Interaction Picture [Low-Wiebe 2018]:

$$H_I(t) := e^{iAt}Be^{-iAt}, \psi_I := e^{iAt}\psi$$
 and $i\partial_t\psi_I = H_I\psi_I$

Highly Oscillatory Dynamics		Our work (qHOP)	
000 00		00 ●00000000	
Interaction Picture and Superconvergence	3		

H = A + B and A has a much larger norm but fast-forwardable.

 $i\partial_t \psi = H\psi = (A+B)\psi$

Motivation: e.g., Schrödinger equation

$$H = -\frac{1}{2}\Delta + V(x), \quad \|\Delta_h\| \gg \|V\|$$

Interaction Picture [Low-Wiebe 2018]:

$$H_I(t) := e^{iAt}Be^{-iAt}, \psi_I := e^{iAt}\psi$$
 and $i\partial_t\psi_I = H_I\psi_I$
Why is this any good? $||H_I|| = ||B|| \ll ||H||.$

Highly Oscillatory Dynamics		Our work (qHOP)	
000 00		00 ●00000000	
Interaction Picture and Superconvergence	ne -		

H = A + B and A has a much larger norm but fast-forwardable.

 $i\partial_t \psi = H\psi = (A+B)\psi$

Motivation: e.g., Schrödinger equation

$$H = -\frac{1}{2}\Delta + V(x), \quad \|\Delta_h\| \gg \|V\|$$

Interaction Picture [Low-Wiebe 2018]:

 $H_I(t) := e^{iAt}Be^{-iAt}, \psi_I := e^{iAt}\psi$ and $i\partial_t\psi_I = H_I\psi_I$ Why is this any good? $||H_I|| = ||B|| \ll ||H||$. Challenges? highly oscillatory time-dependent problem

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 0●0000000	
1		

Interaction Picture A + B(t)

Take A + B for simplicity. It also works for A + B(t)(and even f(t)A + B(t)) given $O_A(s) := e^{-iAs}$ fast-forwardable.

$$H_I(s) = e^{iAs}Be^{-iAs}$$

Highly Oscillatory Dynamics		Our work (qHOP)	
000 00		00 00 0 000000	
Interaction Picture and Superconvergence	e		

Schrödinger equation (Unbounded/Real-space Ham. Sim.)

 $H = -\Delta + V(x)$

Di Fang (UC Berkeley)

Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics

⁵similar for spectral methods and other Galerkin approximations.

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 00●000000	
Interaction Picture and Superconvergence		

Schrödinger equation (Unbounded/Real-space Ham. Sim.)

 $H = -\Delta + V(x)$

Take one-spatial dimension with domain $\left[0,1\right]$ for simplicity. Using N spatial grids,

$$\Delta_h^{\text{per}} := N^2 \begin{pmatrix} -2 & 1 & & 1 \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ 1 & & & 1 & -2 \end{pmatrix},$$

for finite difference. 5

⁵similar for spectral methods and other Galerkin approximations.

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 00●000000	
Interaction Picture and Superconvergence		

Schrödinger equation (Unbounded/Real-space Ham. Sim.)

 $H = -\Delta + V(x)$

Take one-spatial dimension with domain $\left[0,1\right]$ for simplicity. Using N spatial grids,

$$\Delta_h^{\text{per}} := N^2 \begin{pmatrix} -2 & 1 & & 1 \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ 1 & & & 1 & -2 \end{pmatrix},$$

for finite difference. 5

After discretization using N spatial grids, $||A|| = ||-\Delta_h|| = O(N^2)!$ But gate $\sim O(||H|| n^k)$, where n is the number of qubits and $2^n = N$.

⁵similar for spectral methods and other Galerkin approximations.

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000000	
Interaction Picture and Superconvergence		

Commutator reductions?

 $\|[A,B]\| \sim N, \quad \|[B,[A,B]]\| \sim N, \quad \|[A,[A,B]]\| \sim N^2$

⁶[An-Fang-Lin arXiv 2012.13105]

Di Fang (UC Berkeley)

Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000000	
Interaction Ricture and Superconvergence		

Commutator reductions?

 $||[A,B]|| \sim N, ||[B,[A,B]]|| \sim N, ||[A,[A,B]]|| \sim N^2$

When applying Trotter-type algorithm,

• NOT enough for *N*-independent when measuring operator norm error of unitary evolutions.

⁶[An-Fang-Lin arXiv 2012.13105]

Di Fang (UC Berkeley)

Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000●000000	
Interaction Picture and Superconvergence		

Commutator reductions?

 $||[A,B]|| \sim N, ||[B,[A,B]]|| \sim N, ||[A,[A,B]]|| \sim N^2$

When applying Trotter-type algorithm,

- NOT enough for *N*-independent when measuring operator norm error of unitary evolutions.
- It can be fixed by vector norm analysis ⁶ if assuming good regularity on initial condition and measuring in vector norm

$$\left| U_{\mathsf{exact}}(T,0)\vec{\psi}(0) - U_{\mathsf{num}}(T,0)\vec{\psi}(0) \right|$$
.

 \Rightarrow *N*-independent vector norm scaling.

⁶[An-**Fang**-Lin arXiv 2012.13105]

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000●000000	
Interaction Picture and Superconvergence		

Commutator reductions?

 $||[A,B]|| \sim N, ||[B,[A,B]]|| \sim N, ||[A,[A,B]]|| \sim N^2$

When applying Trotter-type algorithm,

- NOT enough for *N*-independent when measuring operator norm error of unitary evolutions.
- It can be fixed by vector norm analysis ⁶ if assuming good regularity on initial condition and measuring in vector norm

$$\left| U_{\text{exact}}(T,0)\vec{\psi}(0) - U_{\text{num}}(T,0)\vec{\psi}(0) \right|$$
.

 \Rightarrow N-independent vector norm scaling.

N-independent operator norm scaling? \Rightarrow Interaction Picture!

⁶[An-Fang-Lin arXiv 2012.13105]

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 0000●00000	
Interaction Picture and Superconvergence		

$$h \max_{s \in [-h,h]} \left\| [B, e^{iAs}Be^{-iAs}] \right\| \le 2h \left\| B \right\|^2$$

 \Rightarrow First order scheme with N independent error preconstant.

Highly Oscillatory Dynamics		Our work (qHOP)	
000 00		00 0000●00000	
Interaction Ricture and Superconvergence	20		

$$h \max_{s \in [-h,h]} \left\| [B, e^{iAs}Be^{-iAs}] \right\| \le 2h \left\| B \right\|^2$$

 \Rightarrow First order scheme with N independent error preconstant.

Claim: It is in fact of second order with error preconstant independent of *N*! **Superconvergence**!

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000000	
Interaction Picture and Superconvergence		

$$h \max_{s \in [-h,h]} \left\| [B, e^{iAs}Be^{-iAs}] \right\| \le 2h \left\| B \right\|^2$$

 \Rightarrow First order scheme with N independent error preconstant.

Claim: It is in fact of second order with error preconstant independent of *N*! **Superconvergence**!

Theorem (An-Fang-Lin arXiv:2111.03103)

For a smooth function V bounded together with all of its derivatives and $0 < h \leq 1$, we have

$$\max_{s\in[-h,h]} \left\| [V(x), e^{\mathrm{i}s\Delta}V(x)e^{-\mathrm{i}s\Delta}] \right\|_{\mathcal{L}(L^2)} \le C_V h,$$

where C_V depending only on V and its the derivatives (and independent of the number of spatial grids N!).

Di Fang (UC Berkeley)

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 00000●0000	
Interaction Picture and Superconvergence		

Numerical Evidence of Superconvergence

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 0000000000	
Internet Birther Birther		

High Level Idea of the Proof of Superconvergence

 $[B, e^{\mathrm{i}As}Be^{-\mathrm{i}As}].$

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000●000	
Internet in Pinternet O		

High Level Idea of the Proof of Superconvergence

$$[B, e^{\mathrm{i}As}Be^{-\mathrm{i}As}].$$

False Approach:

Imagine Taylor expand $e^{iAs} = I + iAs + \cdots$ and e^{-iAs} .

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000●000	
1		

High Level Idea of the Proof of Superconvergence

$$[B, e^{\mathrm{i}As}Be^{-\mathrm{i}As}].$$

False Approach:

Imagine Taylor expand $e^{iAs} = I + iAs + \cdots$ and e^{-iAs} .

Second term $[B, [A, B]]s \sim N$

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000●000	
Internetion Distance and Company and and		

High Level Idea of the Proof of Superconvergence

$$[B, e^{\mathrm{i}As}Be^{-\mathrm{i}As}].$$

False Approach:

Imagine Taylor expand $e^{iAs} = I + iAs + \cdots$ and e^{-iAs} .

Second term $[B, [A, B]]s \sim N$

• But this still depend on A which depends on the number of spatial grids N!
Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 000000●000	
Internetion Distance and Company and and		

High Level Idea of the Proof of Superconvergence

$$[B, e^{\mathrm{i}As}Be^{-\mathrm{i}As}].$$

False Approach:

Imagine Taylor expand $e^{iAs} = I + iAs + \cdots$ and e^{-iAs} .

Second term $[B, [A, B]]s \sim N$

- But this still depend on *A* which depends on the number of spatial grids *N*!
- Note this indeed resembles Trotter, where second order Trotter depends on [B, [A, B]] ∼ N and [A, [A, B]] ∼ N².

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 0000000●00	
Internet Birther I O		

High Level Idea of the Proof of Superconvergence

 $[B, e^{iAs}Be^{-iAs}]$

Highly Oscillatory Dynamics		Our work (qHOP)	
000 00		00 0000000●00	
Interaction Picture and Superconvergence	e		

High Level Idea of the Proof of Superconvergence

$$[B, e^{iAs}Be^{-iAs}]$$

Real Approach:

No truncations! Borrow from pseudo-differential calculus.

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 0000000●00	
Internetion Distance and Company and and		

High Level Idea of the Proof of Superconvergence

 $[B, e^{iAs}Be^{-iAs}]$

Real Approach:

No truncations! Borrow from pseudo-differential calculus.

op(a(x, p)) is a so-called quantization:

$$\mathsf{op}(x) = x, \quad \mathsf{op}(p) = -\mathrm{i}\partial_x$$

$$e^{i\Delta s}V(x)e^{-i\Delta s} = \mathsf{op}(V(x-2ps))$$

Exact! No truncation of series!

$$[B, e^{\mathrm{i}As}Be^{-\mathrm{i}As}] = [\mathsf{op}(V), \mathsf{op}(V(x-2ps))]$$

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 0000000●00	
Internetion Distance and Company and and		

High Level Idea of the Proof of Superconvergence

 $[B, e^{iAs}Be^{-iAs}]$

Real Approach:

No truncations! Borrow from pseudo-differential calculus.

op(a(x, p)) is a so-called quantization:

$$\mathsf{op}(x) = x, \quad \mathsf{op}(p) = -\mathrm{i}\partial_x$$

$$e^{i\Delta s}V(x)e^{-i\Delta s} = \mathsf{op}(V(x-2ps))$$

Exact! No truncation of series!

$$[B, e^{\mathrm{i}As}Be^{-\mathrm{i}As}] = [\mathsf{op}(V), \mathsf{op}(V(x-2ps))]$$

$$\sim \{V(x), V(x-2ps)\} \sim \nabla_x V(x) \cdot \nabla_x V(x-2ps)s$$

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 0000000●0	
Interaction Picture and Superconvergence		

Numerical results: superconvergence

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 00000000	
Interaction Picture and Superconvergence		

qHOP can be viewed as a generalization of the first and second order Trotter formulae.

$$e^{-\mathrm{i}At_n}\mathcal{T}e^{-\mathrm{i}\int_{t_{n-1}}^{t_n}H_I(s)\,ds}\cdots\mathcal{T}e^{-\mathrm{i}\int_0^hH_I(s)\,ds}$$
$$\approx e^{-\mathrm{i}At_n}e^{-\mathrm{i}\int_{t_{n-1}}^{t_n}H_I(s)\,ds}\cdots e^{-\mathrm{i}\int_0^hH_I(s)\,ds}$$

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 00000000	
Interaction Picture and Superconvergence		

qHOP can be viewed as a generalization of the first and second order Trotter formulae.

$$e^{-\mathrm{i}At_n} \mathcal{T} e^{-\mathrm{i}\int_{t_{n-1}}^{t_n} H_I(s)\,ds} \cdots \mathcal{T} e^{-\mathrm{i}\int_0^h H_I(s)\,ds}$$
$$\approx e^{-\mathrm{i}At_n} e^{-\mathrm{i}\int_{t_{n-1}}^{t_n} H_I(s)\,ds} \cdots e^{-\mathrm{i}\int_0^h H_I(s)\,ds}$$

Use midpoint quadrature rule (remember $H_I(s) = e^{iAs}Be^{-iAs}$)

$$\int_{a}^{b} f(x) dx \approx f\left((a+b)/2\right)(b-a)$$

Highly Oscillatory Dynamics	Our work (qHOP)	
000 00	00 00000000	
Interaction Picture and Superconvergence		

qHOP can be viewed as a generalization of the first and second order Trotter formulae.

$$e^{-\mathrm{i}At_n}\mathcal{T}e^{-\mathrm{i}\int_{t_{n-1}}^{t_n}H_I(s)\,ds}\cdots\mathcal{T}e^{-\mathrm{i}\int_0^{h}H_I(s)\,ds}$$
$$\approx e^{-\mathrm{i}At_n}e^{-\mathrm{i}\int_{t_{n-1}}^{t_n}H_I(s)\,ds}\cdots e^{-\mathrm{i}\int_0^{h}H_I(s)\,ds}$$

Use midpoint quadrature rule (remember $H_I(s) = e^{iAs}Be^{-iAs}$)

$$\int_{a}^{b} f(x) dx \approx f\left((a+b)/2\right)(b-a)$$

$$e^{-iAt_{n}}e^{-iH_{I}(t_{n+1/2})h}\cdots e^{-iH_{I}(h/2)h}$$

$$=e^{-iAt_{n}}e^{-ie^{iAt_{n+1/2}}Be^{-iAt_{n+1/2}h}}\cdots e^{-ie^{iAh/2}Be^{-iAh/2}h}$$

$$=e^{-iAt_{n}}e^{iAt_{n+1/2}}e^{-iBh}e^{-iAt_{n+1/2}}\cdots e^{iAh/2}e^{-iBh}e^{-iAh/2}$$

$$=e^{-iAh/2}e^{-iBh}e^{-iAh}e^{-iBh}\cdots e^{-iAh}e^{-iBh}e^{-iAh/2}.$$

Highly Oscillatory Dynamics		Our work (qHOP)	
000 00		00 00000000●	
Interaction Picture and Superconvergence	A		

qHOP can be viewed as a generalization of the first and second order Trotter formulae.

Use midpoint quadrature rule (remember $H_I(s) = e^{iAs}Be^{-iAs}$)

$$\int_{a}^{b} f(x) dx \approx f\left((a+b)/2\right)(b-a)$$

$$e^{-iAt_{n}}e^{-iH_{I}(t_{n+1/2})h}\cdots e^{-iH_{I}(h/2)h}$$

$$=e^{-iAt_{n}}e^{-ie^{iAt_{n+1/2}}Be^{-iAt_{n+1/2}h}}\cdots e^{-ie^{iAh/2}Be^{-iAh/2}h}$$

$$=e^{-iAt_{n}}e^{iAt_{n+1/2}}e^{-iBh}e^{-iAt_{n+1/2}}\cdots e^{iAh/2}e^{-iBh}e^{-iAh/2}$$

$$=e^{-iAh/2}e^{-iBh}e^{-iAh}e^{-iBh}\cdots e^{-iAh}e^{-iBh}e^{-iAh/2}.$$

This is the second order Trotter formula!

Highly Oscillatory Dynamics		Our work (qHOP)	
000 00		00 00000000●	
Interaction Picture and Superconvergence	A		

qHOP can be viewed as a generalization of the first and second order Trotter formulae.

Use midpoint quadrature rule (remember $H_I(s) = e^{iAs}Be^{-iAs}$)

$$\int_{a}^{b} f(x) dx \approx f\left((a+b)/2\right)(b-a)$$

$$e^{-iAt_{n}}e^{-iH_{I}(t_{n+1/2})h}\cdots e^{-iH_{I}(h/2)h}$$

$$=e^{-iAt_{n}}e^{-ie^{iAt_{n+1/2}}Be^{-iAt_{n+1/2}h}}\cdots e^{-ie^{iAh/2}Be^{-iAh/2}h}$$

$$=e^{-iAt_{n}}e^{iAt_{n+1/2}}e^{-iBh}e^{-iAt_{n+1/2}}\cdots e^{iAh/2}e^{-iBh}e^{-iAh/2}$$

$$=e^{-iAh/2}e^{-iBh}e^{-iAh}e^{-iBh}\cdots e^{-iAh}e^{-iBh}e^{-iAh/2}.$$

This is the second order Trotter formula! (Similarly, end-point quadrature rule gives the first order Trotter.)

Di Fang (UC Berkeley)

Major Question	Our work (qHOP)	Conclusion and Remarks
	00 000000000	•00
	Major Question	Major Question Our work (qHOP) 000 00 0000000000 0000000000

Conclusion and Remark

We propose a simple algorithm, called quantum Highly Oscillatory Protocol (qHOP), which does not require complicated quantum control logic for handling time-ordering operators.

This new algorithm:

- to our knowledge, is the **first** quantum algorithm that is proved to simultaneously exhibit commutator scaling (in high precision limit) and remain insensitive to fast oscillations of *H*(*t*).
- when applying to the interaction picture, can be viewed as a generalization of the first and second order Trotter formulae.
- achieves superconvergence for the digital simulation of the Schrödinger equation, achieving a surprising second order convergence *independent* of the number of spatial grids N.

	Our work (qHOP)	Conclusion and Remarks
000 00	00 000000000	000

Superconvergence for other A and B? What is the criterion for general A and B to achieve such superconvergence? Is there simpler argument/proofs?

Highly Oscillatory Dynamics	Our work (qHOP)	Conclusion and Remarks
000 00	00 000000000	000

- Superconvergence for other A and B? What is the criterion for general A and B to achieve such superconvergence? Is there simpler argument/proofs?
- Asymptotically, high-order generalization?

 $\mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} = e^{\mathrm{i}\int_{0}^{t}H(t_{1})\,\,\mathrm{d}t_{1} - \frac{1}{2}\int_{0}^{t}\mathrm{d}t_{1}\int_{0}^{t_{1}}\mathrm{d}t_{2}\,\,[H(t_{1}),H(t_{2})] + \cdots$

Conjecture: It keeps the best asymptotic scaling as the truncated Dyson series and exhibits commutator scaling at the same time.

Highly Oscillatory Dynamics	Our work (qHOP)	Conclusion and Remarks
000 00	00 000000000	000

- Superconvergence for other A and B? What is the criterion for general A and B to achieve such superconvergence? Is there simpler argument/proofs?
- Asymptotically, high-order generalization?

 $\mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} = e^{\mathrm{i}\int_{0}^{t}H(t_{1})\,\,\mathrm{d}t_{1} - \frac{1}{2}\int_{0}^{t}\mathrm{d}t_{1}\int_{0}^{t_{1}}\mathrm{d}t_{2}\,\,[H(t_{1}),H(t_{2})] + \cdots$

Conjecture: It keeps the best asymptotic scaling as the truncated Dyson series and exhibits commutator scaling at the same time.

Practical implementation: other low order algorithms.

Highly Oscillatory Dynamics	Our work (qHOP)	Conclusion and Remarks
000 00	00 000000000	000

- Superconvergence for other A and B? What is the criterion for general A and B to achieve such superconvergence? Is there simpler argument/proofs?
- Asymptotically, high-order generalization?

 $\mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} = e^{\mathrm{i}\int_{0}^{t}H(t_{1})\,\,\mathrm{d}t_{1} - \frac{1}{2}\int_{0}^{t}\mathrm{d}t_{1}\int_{0}^{t_{1}}\mathrm{d}t_{2}\,\,[H(t_{1}),H(t_{2})] + \cdots$

Conjecture: It keeps the best asymptotic scaling as the truncated Dyson series and exhibits commutator scaling at the same time.

 Practical implementation: other low order algorithms.
 Conjecture: Superconvergence for low order truncations. (observed numerically; proof ongoing)

Highly Oscillatory Dynamics	Our work (qHOP)	Conclusion and Remarks
000 00	00 000000000	000

- Superconvergence for other A and B? What is the criterion for general A and B to achieve such superconvergence? Is there simpler argument/proofs?
- Asymptotically, high-order generalization?

 $\mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} = e^{\mathrm{i}\int_{0}^{t}H(t_{1})\,\,\mathrm{d}t_{1} - \frac{1}{2}\int_{0}^{t}\mathrm{d}t_{1}\int_{0}^{t_{1}}\mathrm{d}t_{2}\,\,[H(t_{1}),H(t_{2})] + \cdots$

Conjecture: It keeps the best asymptotic scaling as the truncated Dyson series and exhibits commutator scaling at the same time.

- Practical implementation: other low order algorithms.
 Conjecture: Superconvergence for low order truncations. (observed numerically; proof ongoing)
- Problem set-up with physical/chemical applications.
- Explicit dimension dependence.

	Our work (qHOP)	Conclusion and Remarks
000 00	00 000000000	000

References

1. Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics, (with Dong An and Lin Lin) [arXiv:2111.03103].

2. Time-dependent unbounded Hamiltonian simulation with vector norm scaling, (with Dong An and Lin Lin), Quantum, 2021 [arXiv 2012.13105].

Thank you for your attention! (and ...)

IPAM long program "Mathematical and Computational Challenges in Quantum Computing", Fall 2023

Workshop 1: Quantum algorithms for scientific computation

Workshop 2: Mathematical aspects of quantum learning

Workshop 3: Many-body quantum systems via classical and quantum computation

Workshop 4: Topology, quantum error correction and quantum gravity

Lecture Notes on "Quantum Algorithms for Scientific Computation" by Lin Lin [arXiv:2201.08309]