
On quantum linear algebra for machine learning

Ewin Tang
University of Washington

January 25, 2022

Guiding question: when can quantum computing speed up classical linear algebra tasks?

This question:

I is natural, in light of QSVT;

I reflects a hope for exponential speedup that drives some of the hype behind quantum computing.

Talk overview

We will discuss three lines of work in quantum computing in broad terms:

1. QSVT, which unifies many quantum algorithms by viewing them from a linear algebraic perspective

2. Quantum linear algebra algorithms, which use QSVT as a framework to solve linear algebraic tasks

3. “Dequantized” classical algorithms, which can perform “similarly” to quantum linear algebra
algorithms, under certain conditions

Throughout, we will assume a fault-tolerant circuit-based quantum computer (and later on, even more
hardware).

Quantum singular value transformation

[Gilyén, Su, Low, Wiebe – Quantum singular value transformation and beyond]1

1See also Yulong Dong’s talk!

“Quantum algorithms offer significant speedups over their classical counterparts for a variety of
problems. The strongest arguments for this advantage are borne by algorithms for quantum search,
quantum phase estimation, and Hamiltonian simulation, which appear as subroutines for large families of
composite quantum algorithms. A number of these quantum algorithms were recently tied together by a
novel technique known as the quantum singular value transformation (QSVT) [....] This overview
illustrates how QSVT is a single framework comprising the three major quantum algorithms [Shor’s
algorithm, Grover’s algorithm, and Hamiltonian simulation], thus suggesting a grand unification
of quantum algorithms.”

How to apply a matrix to a quantum state

Consider a matrix A ∈ CN×N and a vector v ∈ CN . Consider encoding a (nonzero) vector v ∈ CN
into the amplitudes of a quantum state:

|v〉 := 1

‖v‖

N∑
i=1

vi |i〉

and we want the state |Av〉.

If A is unitary, then we could try to find a circuit implementing it and simply apply it to |v〉.

|v〉 A |Av〉

What about if A isn’t unitary?

How to apply a matrix to a quantum state

Consider a matrix A ∈ CN×N and a vector v ∈ CN . Consider encoding a (nonzero) vector v ∈ CN
into the amplitudes of a quantum state:

|v〉 := 1

‖v‖

N∑
i=1

vi |i〉

and we want the state |Av〉.

If A isn’t unitary, we can still try to find a circuit U such that (rescaling so that ‖A‖ ≤ 1),

U =

[
A ·
· ·

]
⇐⇒ A = (〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I).

Then, we can do

|0〉⊗a
U

|v〉
If the measurement reads |0〉⊗a, the bottom state is |Av〉. This happens with probability
‖Av‖2
‖v‖2 ≤ ‖A‖

2.

Block-encodings formalizes these “linear algebraic” unitaries

Definition
We say we have a block-encoding of a matrix A with ‖A‖ ≤ 1 if we can efficiently apply U and U−1,
where U is a unitary matrix satisfying

U =

[
A ·
· ·

]
⇐⇒ A = (〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I).

Technical note: assuming U is easy to implement, the “cost” parameter of the block-encoding is 1/‖A‖.

The fundamental theorem of block-encodings
(aka “quantum singular value transformation”)

Theorem
Given a block-encoding of (Hermitian) A, we can get a block-encoding of 1

2p(A),
2 where p is a degree-d

polynomial satisfying ∣∣∣ max
x∈[−1,1]

p(x)
∣∣∣ ≤ 1.

The size of the quantum circuit implementing 1
2p(A) blows up by only a factor of d.

2If p is even or odd, the factor of two can be dropped, and the result can be generalized to non-Hermitian A.

Example: applying QSVT to matrix inversion [HHL09]

Suppose we have a block-encoding of A ∈ Cn×n such that ‖A‖ ≤ 1 and ‖A−1‖ ≤ κ, and copies of
the quantum state |b〉.

We want |A−1b〉 = |φ(A)b〉 where φ(x) = 1
κx .

1. Use QSVT to create a block-encoding of p(A), where∣∣∣p(x)− φ(x)∣∣∣ ≤ ε for all x ∈
[
− 1,− 1

κ

]
∪
[1
κ
, 1
]

and has degree O(κ log(1ε));

2. Apply p(A) to |b〉 and post-select to get |p(A)b〉 ≈ε |φ(A)b〉 = |A−1b〉

Any Lipschitz function can be approximated by a low-degree polynomial

Jackson’s inequality

Let f : [−1, 1]→ [−1, 1] be L-Lipschitz, i.e.
|f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [−1, 1].

Then there exists a polynomial p of degree ≤ L
ε

such that

sup
x∈[−1,1]

|f(x)− p(x)| ≤ Cε

Approximation of |x| by polynomials.3

So, QSVT can be used to perform a wide range of operations in O(logN) time, if we have the right
block-encodings.

3Source: Theon, Wikipedia Commons

There are major barriers when trying to apply QSVT to machine
learning tasks.

[Aaronson – Read the fine print]

A typical application of quantum linear algebra to machine learning

x = linalg.solve(A, b)
A.csv
b.csv x.csv

A typical application of quantum linear algebra to machine learning

Example: applying QSVT to matrix inversion [HHL09]

x = linalg.solve(A, b)
A.csv
b.csv x.csv

copies of |b⟩
circuit U encoding A

copies of
|x⟩ = |A⁻¹b⟩

more linear
algebra

some linear
algebra

super-fast QSVT!

1. Encode input matrices as block-encodings; encode input vectors as quantum states;

2. Use QSVT to compute an algebraic expression of the input;

3. Extract information from the output (say, an estimator of a desired value).

Hope: this gives exponential speedups.

Creating block-encodings

Consider some A ∈ CN×N . We can get a block-encoding to

I A/s if it is s-sparse with efficiently computable, bounded entries

I A/‖A‖F if it is in quantum random access memory4

4‖A‖F := (
∑N

i,j=1|Aij |2)
1
2

The input problem and the output problem

x = linalg.solve(A, b)
A.csv
b.csv x.csv

copies of |b⟩
circuit U encoding A

copies of
|x⟩ = |A⁻¹b⟩

more linear
algebra

some linear
algebra

super-fast QSVT!

The “dequantized algorithms” problem

[Chia, Gilyén, Li, Lin, T, Wang – Sampling-based sublinear low-rank matrix arithmetic
framework for dequantizing quantum machine learning]

A classical analogue to the QSVT framework

We define the notion of sampling and query access, which serves as the analogue to the block-encoding.

QSVT [GSLW19]

I Get block-encodings to A1, . . . , Ak.

I Get a block-encoding for A where A is some
bounded low-degree polynomial of the input.

I Apply to |b〉 to get |Ab〉.

QI-SVT

I Get SQ(A1), . . . ,SQ(Ak).

I Get SQ(A) where A is some smooth
function of the input.

I Apply to SQ(b) to get SQ(Ab).

This framework captures the capabilities of QRAM-based QSVT, giving strong evidence that quantum
linear algebra based on QRAM admits no exponential speedups.

How to think of dequantized algorithms

Can we perform a classical version of the quantum algorithm, using a little bit of information from the
quantum input assumptions (e.g. measurements of input quantum states)?

x = qsolve(A, b,
measurements)A.csv

b.csv qx.csv

copies of |b⟩
circuit U encoding A

copies of
|x⟩ = |A⁻¹b⟩

more linear
algebra

some linear
algebra

super-fast QSVT!

Well-known observation
Born rule-type measurements speed up machine learning and randomized linear algebra [SWZ16;
HKS11; KV17; DMM08; FKV98]

How to think of dequantized algorithms

Can we perform a classical version of the quantum algorithm, using a little bit of information from the
quantum input assumptions (e.g. measurements of input quantum states)?

x = qsolve(A, b,
measurements)A.csv

b.csv qx.csv

copies of |b⟩
circuit U encoding A

copies of
|x⟩ = |A⁻¹b⟩

more linear
algebra

some linear
algebra

super-fast QSVT!

Well-known observation
Born rule-type measurements speed up machine learning and randomized linear algebra [SWZ16;
HKS11; KV17; DMM08; FKV98]

Example: matrix inversion [SM21]

Consider solving a linear system with gradient descent:
when Ax∗ = b, x∗ = minx f(x) = minx ‖Ax− b‖2.

x(0) = ~0

x(t) = x(t−1) − ηt∇f(x(t−1))

Use samples to speed up evaluation of∇f(x).

∇f(x) = A†Ax−A†b

=

m∑
i=1

A†i,∗(Ai,∗x− bi)

=

m∑
i=1

A†i,∗
(n∑
j=1

Ai,jxj − bi
)

Use measurements to randomly sample i and j to get a
gi,j(x) such that Ei,j [gi,j(x)] = ∇f(x). This is called
randomized Kaczmarz [SV08].

Takeaways

QSVT with sparse input

I potential for exponential speedup

I mild hardware assumptions

I more brittle, less applicable

QSVT with QRAM input

I potential for large polynomial speedup

I advanced hardware assumptions

I less brittle, more applicable

My (biased) intuitions

I Though quantum computers implicitly perform extremely fast linear algebra, input and output
problems mean that QSVT is perhaps not a fruitful perspective towards finding new quantum
speedups to linear algebra calculations.

I Stepping outside this paradigm seems to be productive, i.e. by assuming quantum data.

Thank you!

	Quantum singular value transformation
	Challenges
	Dequantized algorithms

