Efficient quantum algorithms for nonlinear ODEs and PDEs

Jin-Peng Liu

Joint Center for Quantum Information and Computer Science,
Institute for Advanced Computer Studies,
Department of Mathematics,
University of Maryland

Jan 27th, 2022

UCLA IPAM
Reference

(Presented by Andrew Childs on Monday)

Quantum computers can offer potential \textit{exponential} speedup for producing the quantum-encoding solutions of

- quantum simulations\(^\dagger\);
- linear systems\(^\ddagger\);
- linear differential equations\(^\S\).

\(^\dagger\) [Lloyd 96; Berry et al. 15; Low, Chuang 17]
\(^\ddagger\) [Harrow, Hassidim, Lloyd 08; Ambainis 12; Childs, Kothari, Somma 15]
\(^\S\) [Berry 14; Berry et al. 17; Childs, Liu 19]
Quantum Scientific Computation

For real-world problems in aeronautics, climate, epidemic, finance... a challenge is the difference between the linearity of quantum mechanics and nonlinearities in complex systems.

Questions

- Can we provide exponential speedup for nonlinear dynamics?
- Can we postprocess the quantum states to provide meaningful classical information?
Quantum Algorithm for Nonlinear ODEs

Fundamental obstacles

- Direct simulation: represent nonlinearities by multiple copies of quantum states. Need to maintain overall $2^{O(T)}$ copies†.
- Quantum mechanics with strong nonlinearities can imply poly-time solution for NP-complete and $\#P$ problems‡.

Solutions§

- Carleman linearization for dissipative ODEs with $R < 1$, where R is a ℓ_2 ratio of nonlinearities and linear dissipation.
- When $R \geq \sqrt{2}$, there is a worst case such that any quantum algorithm must suffer from $\exp(T)$.

†[Leyton, Osborne 08]
‡[Abrams, Lloyd 98; Aaronson 05; Childs, Young 16]
§[Liu et al. 21]
Quantum Scientific Computation

Questions

- Can we provide exponential speedup for stronger nonlinear dynamics?
- Can we postprocess the quantum states to provide meaningful classical information?

Inspirations

- Carleman linearization practically works for well-behaved solutions even $R > 1$, e.g. laminar flows†.
- Analog of energy estimation in quantum physics/chemistry.

†[Liu et al. 21]
Reaction-diffusion Equations

\[
\frac{\partial u}{\partial t}(x, t) = D \Delta u(x, t) + f(u(x, t)), \quad x \in [0, 1]^d.
\] (1)

- \(f(u) = u - u^2 \): biology, ecology, social networks.
- \(f(u) = u - u^3 \): phase separation, data/image processing.
- \(f(u) = \sum_k a_k u^k \): disorder systems, credit valuation adjustment.

\(u(x, t) \) is the \(L^2 \) gradient flow of minimizing the energy functional

\[
E(u) = D \int |\nabla u|^2 \, dx + \int F(u) \, dx,
\] (2)

where \(\frac{\partial F}{\partial u}(u) = f(u) \). E.g. \(f(u) = u - u^3 \), \(F(u) = \frac{1}{4}(1 - u^2)^2 \).
Reaction-diffusion Equations

Spatial discretization

\[
\frac{dU_i}{dt} = D \sum_{k=1}^{n^d} (\Delta_h)_{ij} U_k + f(U_i), \quad i \in [n^d], \quad i \in [n^d],
\]

\(U_i(t) = u(x_i, t)\) on grids, \(\Delta_h\): Laplacian matrix with Dirichlet/mixed BCs. Assume polynomial \(f\) has roots \(\gamma_1 < \cdots < \gamma_M\), \(M \geq 2\).

Proposition

Comparison principle. If \(U_i(0)\) lies in \([\gamma_k, \gamma_{k+1}]\), then \(\forall\ t, U_i(t)\) always stays in \([\gamma_k, \gamma_{k+1}]\).

Maximum principle. If \(U_i(0)\) lies in \([\gamma_1, \gamma_M]\), then \(\forall\ t, U_i(t)\) always stays in \([\gamma_1, \gamma_M]\). It indicates that \(\|U(t)\|_\infty \leq \gamma := \max\{|\gamma_1|, |\gamma_M|\}\).
Carleman Linearization

Consider \(\frac{dU_i}{dt} = \frac{1}{h^2} (U_{i-1} - 2U_i + U_{i+1}) + U_i - U_i^2. \)

Embedding and truncation

- \(\frac{dU_i}{dt} = \frac{1}{h^2} (U_{i-1} - 2U_i + U_{i+1}) + U_i - U_i^2. \)
- \(\frac{dU_i^2}{dt} = 2U_i \frac{dU_i}{dt} = \frac{2}{h^2} (U_i U_{i-1} - 2U^2_i + U_i U_{i+1}^2) + 2U_i^2 - 2U_i^3. \)
- \(\ldots \ldots \)
- \(\frac{dU_i^N}{dt} \approx \frac{N}{h^2} (U_i^{N-1} U_{i-1} - 2U_i^N + U_i^{N-1} U_{i+1}) + N U_i^N. \)
- Give a linear ODE with variables \(y_j \approx U^j \in \mathbb{R}^{n^{jd}} \) for \(k \in [N]. \)

A system of \(n^d \)-dim nonlinear ODEs is embedded to a system of linear ODEs with truncation order \(N \), with dimension \(n^d + n^{2d} + \cdots + n^{Nd}. \)
We give a linear ODEs $\frac{d\hat{y}}{dt} = A\hat{y}$ with $\hat{y}(0) = \hat{y}_{\text{in}}$, by

$$
\begin{pmatrix}
\hat{y}_1 \\
\hat{y}_2 \\
\vdots \\
\hat{y}_N
\end{pmatrix}
=
\begin{pmatrix}
A_1^1 & \cdots & A_M^1 \\
A_1^2 & \cdots & \cdots \\
\vdots & \cdots & \cdots \\
A_{N-M+1}^N & \cdots & A_N^N
\end{pmatrix}
\begin{pmatrix}
\hat{y}_1 \\
\hat{y}_2 \\
\vdots \\
\hat{y}_N
\end{pmatrix},
$$

where $\hat{y}_j \approx U^\otimes j \in \mathbb{R}^{n^j_d}$, $\hat{y}_{\text{in}} = [U_{\text{in}}; U_{\text{in}}^\otimes 2; \ldots; U_{\text{in}}^\otimes N]$, and A_j^{j+k-1} encodes k-th order polynomial.

We denote the error from the truncation as $\eta_j(t) := U^\otimes j(t) - \hat{y}_j(t)$.
Carleman Linearization

\[
\frac{dU_i}{dt} = D \sum_{k=1}^{n^d} (\Delta_h)_{ij} U_k + a_1 U_i + a_2 U_i^2, \quad i \in [n^d].
\]

(5)

Assume the largest eigenvalue of \(\Delta_h + a_1 I\): \(\lambda_1 < 0\), and \(U_{in}\) satisfies Maximum Principle, then \(\forall t, \|U(t)\|_\infty \leq \gamma\).

Lemma (convergence analysis)

(i) Assume \(R = \frac{|a_2|}{|\lambda_1|} \|U_{in}\| < 1\). The \(\ell_2\) error bound satisfies

\[\|\eta_j(t)\| \leq \|U_{in}\|^j R^{N-1}.\]

(6)

(ii) Assume \(R_D = \frac{|a_2|}{|\lambda_1|} \gamma C < 1\), where \(C = O(d)\) and independent of \(n\). The \(\ell_\infty\) error bound satisfies

\[\|\eta_j(t)\|_\infty \leq \gamma^j R_D^{N-1}.\]

(7)

\[\text{[Liu et al. 21]}\]
Carleman Linearization

\[
\frac{dU_i}{dt} = D \sum_{k=1}^{n^d} (\Delta_h)_{ij} U_k + a_1 U_i + g(U_i), \quad i \in [n^d].
\]

(8)

g(u) = a_0 + \sum_{k=2}^{M} a_k u^k. \text{ Given } \lambda_1 < 0, \text{ and } \forall t, \|U(t)\|_\infty \leq \gamma.

Lemma (convergence analysis)

(i) Assume \(R = \frac{1}{|\lambda_1|\|U_{in}\|} g(\|U_{in}\|) < 1 \). The \(\ell_2 \) error bound satisfies

\[
\|\eta_j(t)\| \leq \|U_{in}\|^j R^{N-1}_{M-1}.
\]

(9)

(ii) Assume \(a_0 = 0, \ R_D = \frac{C}{|\lambda_1|\gamma} g(\gamma) < 1 \), where \(C = O(d) \) and independent of \(n \). The \(\ell_\infty \) error bound satisfies

\[
\|\eta_j(t)\|_\infty \leq \gamma^j R_D^{N-1}_{M-1}.
\]

(10)
Carleman Linearization

Figure: \(\frac{\partial u}{\partial t} = 0.2 \Delta u + 0.2u - u^2, \ u(x, 0) = 0.1 \left(1 - \cos(2\pi x)\right) \) with homogenous Dirichlet boundary condition. Spatial grid number \(n = 16. \ C = 4.4620, \ R_D = 0.5047. \) Left: \(l_\infty \) norm of the absolute error between the Carleman solutions. Right: convergence of the time-maximum error.
Quantum Carleman Linearization

We linearize the equation with the N-th order truncation, which we solve using the Euler method with step h and QLSA.

Theorem (quantum algorithm)

Assume $R_D < 1$. Let $q := \frac{\|U_{\text{in}}\|}{\|U(T)\|}$. There is a quantum algorithm that

(i) produces $|U\rangle \sim \sum_k U(kh)|k\rangle$ with $\tilde{O}(T^2 d^2 \|U_{\text{in}}\|^{2N} / \epsilon)$;
(ii) produces $|U(T)\rangle$ with $\tilde{O}(T^2 d^2 q \|U_{\text{in}}\|^{2N} / \epsilon)$.

Corollary

Assume $R < 1$ (or assume $R \leq 1$ with $R_D < 1$). The above results can be reduced to $\tilde{O}(T^2 d^2 q / \epsilon)$ and $\tilde{O}(T^2 d^2 / \epsilon)$.
Quantum Carleman Linearization

Why better convergence

- If there is a blow-up solution, the truncation error is generally unbounded. The exponentially increasing error is also used to show the worst-case complexity exponential in time\(^\dagger\).
- Maximum Principle: \(\forall t, \|U(t)\|_\infty \leq \gamma \).

Comparison

- \(R_D \ll R \) if \(\gamma \ll \|U_{in}\| \) for large \(n \) and \(d \).
- Assume \(R_D < 1 \), error decays in \(R_D^N \) and cost scales in \(\|U_{in}\|^{2N} \): a trade-off between the approximation and the cost; while there is no dependence of \(N \) when \(R < 1 \).

\(^\dagger\) [Liu et al. 21]
Applications

Postprocess the history or final state

We have developed efficient quantum algorithm for producing

$$|U\rangle = \frac{1}{Z_0} \sum_{k \in [m], l \in [n^d]} u(x_l, t_k) |l_1\rangle \ldots |l_d\rangle |k\rangle. \quad (11)$$

Postselecting $|U(T)\rangle$ ($T = mh$) relies on $q = \frac{\|U_{in}\|}{\|U(T)\|_\|}$.

- For homogeneous systems with $R < 1$, e.g. $f(u) = u - u^3$, the solution decays exponentially in time, i.e. $q = \exp(T)$.
- Given external forces or inhomogeneous BCs, the solution can remain nonzero, decay slowly, or be oscillatory i.e. $q = \text{poly}(T)$.
Applications

Ratio of mean square amplitude

\[
\frac{\int_{\Omega_t} \int_{\Omega_\mathbf{x}} |u(\mathbf{x}, t)|^2 \, dtd\mathbf{x}}{\int_0^T \int_{[0,1]^d} |u(\mathbf{x}, t)|^2 \, dtd\mathbf{x}} \sim \frac{\sum_{k\in I_t, l\in I_\mathbf{x}} |u(\mathbf{x}_l, t_k)|^2}{\sum_{k\in [m], l\in [n^d]} |u(\mathbf{x}_l, t_k)|^2}.
\]

(12)

Let the projector \(P \) associate with indices \(I_t \subset [m] \) and \(I_\mathbf{x} \subset [n^d] \):

\[
P = \sum_{k\in I_t, l\in I_\mathbf{x}} (|l_1\rangle\langle l_1|) \otimes \cdots \otimes (|l_d\rangle\langle l_d|) \otimes (|k\rangle\langle k|).
\]

Amplitude estimation: perform \(I - 2P \) with \(\tilde{O}(1/\epsilon) \) to estimate \(\langle U|P|U\rangle \).

Example: diffusive Lotka-Volterra equations

\[
\begin{align*}
\frac{\partial u}{\partial t} &= D \Delta u + \alpha u - \beta uv \\
\frac{\partial v}{\partial t} &= D \Delta v + \delta uv - \gamma v.
\end{align*}
\]

(13)

Traveling waves in predator-prey, economic cycle, and disease models.
Applications

Ratio of diffusive energy

We can produce

$$|\nabla_x U\rangle = \frac{1}{Z_1} \sum_{k \in [m], l \in [n^d]} \nabla x_j u(x_l, t_k) |j\rangle |l_1\rangle \ldots |l_d\rangle |k\rangle$$ \hspace{1cm} (14)

by performing QFT/IQFT on $|U\rangle$ with cost $\tilde{O}(d)$.

Quantum circuit for preparing a quantum state encoding partial derivatives
Applications

Ratio of diffusive energy

\[
\frac{\int_{\Omega_t} \int_{\Omega_x} |\nabla_x u(x, t)|^2 \, dt \, dx}{\int_0^T \int_{[0,1]^d} |\nabla_x u(x, t)|^2 \, dt \, dx} \sim \frac{\sum_{k \in I_t, l \in I_x} |\nabla_x u(x_l, t_k)|^2}{\sum_{k \in [m], l \in [n^d]} |\nabla_x u(x_l, t_k)|^2}.
\]

(15)

Perform \(I - 2P \) with \(\tilde{O}(1/\epsilon) \) to estimate \(\langle \nabla_x U | P | \nabla_x U \rangle \).

Example: Allen-Cahn equation

- \(\frac{\partial u}{\partial t} = D \Delta u + u - u^3 + F(t) \): phase separation and transition.
- \(\frac{\partial u}{\partial t} = D \Delta u + u - u^3 + F(u - u_0) \): data classification, graph cuts, signal or image denoising and reconstruction.

\(u \) is the \(L^2 \) gradient flow of minimizing a regularized energy functional.
\(\| \nabla_x u \|^2 \) measures the \(L^2 \) total variation distance.
Summary

Takeaways

- Quantum computer can efficiently characterize weak gradient flows in $\tilde{O}(T^2 d^2 / \epsilon)$ when $R_D < 1$ or $R < 1$. ℓ_∞ aprior estimate is used to improve the linearization and rule out the worst case.

- Nonlinear ODEs/PDEs exhibit rich phenomena. Ratio of energy proportion to amplitude squared and total variation can be estimated in $\tilde{O}(d / \epsilon)$.
Outlook

Quantum algorithm

- Advection term $f(u, \nabla u)$: N-S equation, Boltzmann equation.
- Non-dissipative systems: nonlinear Schrödinger equations.
- Discrete gradient flows for optimization and control.
- Hermitian/skew-Hermitian linearization.

Postprocessing

- Scattering cross section.
- Time frequency analysis.
- Free energy estimation: $D \int |\nabla u|^2 dx + \int F(u) dx$.