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* “Quantum linear systems algorithm with exponentially improved dependence on
precision”, A.M. Childs, R. Kothari, and R.D. Somma, SIAM J. Comp. 46, 1920 (2017).

* “Quantum algorithms for systems of linear equations inspired by adiabatic quantum
computing”, Y. Subasi, R.D. Somma, and D. Orsucci, Phys. Rev. Lett. 122, 060504 (2019).

* “Quantum state verification in the quantum linear systems problem”, R.D. Somma and Y.
Subasi, PRX Quantum 2, 010315 (2021)



Linear systems problem (LSP)

Givenan N x N matrix A, an N-dimensional vector 5, and the equation

A11 A12 ce 1 b1
ANt Ann]| [ZN] UM
equivalently A7 = b ,solvefor & = (x1,x2,...,ZN) .

 The best general purpose classical algorithm (conjugate gradient) has asymptotic
complexity O(N+/k) .

 Thisis a polynomial dependence in the dimension



Quantum linear systems problem (QLSP)

Given the previous system of linear equations, Harrow, Hassidim, Lloyd
prepare a quantum state that approximates: PRL 103, 150502 (2009)
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Quantum linear systems problem (QLSP)

Given the previous system of linear equations, Harrow, Hassidim, Lloyd
prepare a quantum state that approximates: PRL 103, 150502 (2009)
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Specifically, for a given precision € >0, the approximate (mixed or pure) quantum
state P, satisfies

1
5 1 |pe —[z)(z|] < €

e All known formulations and results for this problem can be described in this form



Why is this problem interesting?

Linear systems are ubiquitous in science, engineering, and more.

Quantum computers are known to provide exponential qguantum speedups for
some problems, so it is natural to understand what they can do in linear algebra

problems.

Beyond linear systems, studying new problems and how to solve them with
guantum computers sometimes result in new algorithmic primitives that are
used in other quantum algorithms.



Why is this problem interesting?

Linear systems are ubiquitous in science, engineering, and more.

Quantum computers are known to provide exponential guantum speedups for
some problems, so it is natural to understand what they can do in linear algebra
problems.

Beyond linear systems, studying new problems and how to solve them with
guantum computers sometimes result in new algorithmic primitives that are
used in other quantum algorithms.

This “guantum” version of the problem is, however, only useful for computing
expectation values in the solution of the system, but not for obtaining the
actual vector. That would take time that is, at least, linear in N.

Are there any interesting applications? “Read the fine print”, S.
Aaronson, Nature (2015)
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 Ais Hermitian and sparse, spectral norm 1, and of dimension NxN, N=2".

 Aisinvertible and its condition number, the ratio between the largest and
smallest singular values, is k<.
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Assumptions and queries in the QLSP

Assumptions on A:
 Ais Hermitian and sparse, spectral norm 1, and of dimension NxN, N=2".

 Aisinvertible and its condition number, the ratio between the largest and
smallest singular values, is k<.

There exists a procedure that computes the matrix elements of A as follows:
‘]> ‘Z> ’Z> U—A> ‘j> |’L> ‘Z o, Aj?,> , (matrix elements)

17) 1) M—A> D [ f(5, D) . (location of non-zero elements)

There exists another procedure that prepares the “initial state” as follows:

Zi\le bzm
(3o, |bs]) /2

b) = Up|0) , |b) =



Query complexity in the QLSP

Both procedures are considered as black boxes. While they eventually
need to be implemented using two-qubit gates, we will abstract away
their inner workings.

For simplicity, we will assume that these procedures can be
implemented in “constant” time. The number of uses of the procedures
determine then query complexity of the algorithm. We will separate
the different query complexities when necessary.

The number of queries also give a hint on what to expect for the gate
complexity, e.g., it provides a lower bound.



QLSP results on query complexity: polylog scaling in N

Harrow, Hasidim, Lloyd (2008): Quantum phase estimation
0(/«:2 log(N)/e)

Ambainis (2012): Variable time amplitude amplification

O(rlog(N)/e%)
Childs, Kothari, Somma (2017): LCU, Chebyshev approx.

O(rlog(N) poly log(1/e))

Subasi, Somma, Orsucci (2018): adiabatic quantum approach
O(r1og(N)/e)

An, Lin (2019): adiabatic quantum approach

O(rlog(N)/e)




The rest of this talk

* | will describe the high-level ideas in the HHL and one of our quantum
algorithms for the QLSP that exponentially improves the dependence in
precision.

* I'll make a quick comment on applications.
* | will present some recent results on the complexity of quantum state

verification in the QLSP, which demonstrate that prior quantum algorithms are
optimal and that recent variational approaches to this problem won’t work.



QLSP: The general idea
A, b 5 |z)oc AVD)

Goal: construct a unitary (quantum circuit) acting on a larger

space such that
cA 1| X
Y= ()

V[b)]0) = |c’|x'>|0>' + |trash)

If you find the ancilla in O, then you are done




HHL algorithm

e The HHL algorithm implements an approximation of 1/(kA) to the initial state
using quantum phase estimation (QPE).

* QPE provides an estimate of the eigenvalues of A in a different register.
Conditioned on this value, the HHL algorithm performs a rotation on an ancilla

qubit so that the amplitude in |0> is almost inverse proportional to the
eigenvalue.

* The next step is to perform amplitude amplification to obtain the desired state
with large probability.

* The complexity is given by the number of amplitude amplification rounds times
the complexity of QPE. In the worst case this is

O(r” log(N)/e)

Harrow, Hassidim, Lloyd, PRL 103, 150502 (2009)



LCU Algorithm: Linear combination of unitaries

1 i .
A Fourier transform approach: — = dydz ze © e YF

T \ 2T

. J K
Z> l - lay 5Z E EZ e—(Zk )? /2 e“i Linear combination of
A € k unitaries (LCU)

\ The maximum evolution
time satisfies

tmax = O(klog(k/€))

|
1.0

Childs, Kothari, Somma, SIAM J. Comp 46, 1920 (2017)



LCU Framework

(Vi + (Va)|9)
[(aVi + BV2)|¥)|

e

>0, a+08=1
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Childs, Kothari, Somma, SIAM J. Comp 46, 1920 (2017)



LCU Framework

(Vi + (Va)|9)
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¥)

unitaries

Childs, Kothari, Somma, SIAM J. Comp 46, 1920 (2017)



LCU Framework
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Childs, Kothari, Somma, SIAM J. Comp 46, 1920 (2017)



LCU Framework
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Childs, Kothari, Somma, SIAM J. Comp 46, 1920 (2017)



LCU Framework
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LCU Framework
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___If we measured here, we would

obtain the correct state with some
probability

Pr(Oanc) = [[(@V1 + BV2) |[¥)|*

* Actually, we will increase the desired amplitude using amplitude amplification

* This approach can be generalized to larger LCUs



LCU Algorithm: Complexity (worst case)

The complexity of the LCU algorithm is mainly given by the number of amplitude
amplification rounds times the complexity of implementing the LCU.

Since the largest eigenvalue is 1 and we are applying 1/(kA) to the initial state, we

need O (||(1/kA)|b)||~") rounds of amplitude amplification. This is linear in k in
the worst case.

Since the smallest eigenvalue is 1/ k, we need to evolve with A for time that is
linear in k and polylogarithmic in the precision parameter €.

Putting all together, the worst-case complexity is

O(x? polylog(1/e))

being an exponential improvement in precision.

Childs, Kothari, Somma, SIAM J. Comp 46, 1920 (2017)



Variable time amplitude amplification

K — K
 The quadratic dependence on Kk comes from two worst-case considerations: First,
the accurate implementation of the operator 1/(kA) is costly if the initial state has
support on the eigenspace of small singular values. Second, the number of rounds
in amplitude amplification is large if the initial state has support on the eigenspace
of large eigenvalues.

 VTAA ”solves” the problem in stages. The original idea is to use phase estimation
and amplitude amplification in various steps: First, apply 1/A for those eigenstates
with eigenvalues that are close to 1, then do amplitude amplification, then
implement 1/A to eigenstates with smaller eigenvalues, amplitude amplification,
and so on...

1/KkA; | 1/KA, | | |
1/kA; ...

1/k

Ambainis, arXiv: 1010.4458 (2010); Childs, Kothari, Somma, SIAM J. Comp 46, 1920 (2017)



Adiabatic-inspired algorithm

 The approach based on linear combinations of unitaries requires many ancillary
systems and even more if we use VTAA. This can be improved using techniques
such as quantum signal processing but still requires many ancillas.

* We resolved this issue by providing a quantum algorithm inspired by adiabatic
evolutions. We built a Hamiltonian whose eigenstate is the state we want to
prepare and found an interpolating path where the minimum gap scales as 1/k.

Boixo, Knill, Somma (2009): * Nearby measurements drive

Randomization method Sq =1
) the state to the target one
So (quantum Zeno effect)
S1
* Measurements are simulated
s =) by evolving with the
|b) H(0) — H(s) — H(1) Hamiltonian for random time

Subasi, Somma, Orsucci, Phys. Rev. Lett. 122, 060504 (2019)



Adiabatic-Inspired Algorithm

* The basic idea is to build a Hamiltonian whose eigenstate gives the solution to
the QLSP

0

V

B

= H2)1)=0,H=B"®0c +B®oc" = <£T g)
—

The ancilla can be discarded, but it’s
needed for the current approach

Interpolating Hamiltonian defined via: A(S) — (1 — S)] +sA,0<s<1

Subasi, Somma, Orsucci, Phys. Rev. Lett. 122, 060504 (2019)



Adiabatic-Inspired Algorithm

* The basic idea is to build a Hamiltonian whose eigenstate gives the solution to
the QLSP

0

B

= H2)1)=0,H=B"®0c +B®oc" = <£T g)
—

The ancilla can be discarded, but it’s
needed for the current approach

Interpolating Hamiltonian defined via: A(S) — (1 — 8)] +sA,0<s<1

Interpolation between a “simple” linear system Ix=b and a complicated one, Ax=Db



Adiabatic-Inspired Algorithm: Complexity (worst case)

z)[1)

A challenge: Find the
discretization points

* The expected evolution time with the Hamiltonians in the randomization

method satisfies
L2 L is the path length
Try =0 (€A) A is the min gap

€ is the error (trace norm)

* The overall complexity is (/-s; log( )/6)

Subasi, Somma, Orsucci, Phys. Rev. Lett. 122, 060504 (2019)



Adiabatic-Inspired Algorithm: Complexity

 The complexity is almost optimal, i.e., linear in the condition number

* The algorithm is built upon evolutions with “simple” Hamiltonians

* Only one ancilla required

* While the complexity is linear in 1/¢ it can be made logarithmic in this quantity

using a better method to simulate measurements [Boixo, Knill, Somma 2010].

e This algorithm has been derandomized by An, Lin (2019)



Why are these improvements useful?

« We were able to develop optimal algorithms for the QLSP using significantly less
resources than previous approaches.

* These improvements allowed us to prove a polynomial quantum speedup for
hitting time estimation of a Markov chain (A. Chowdhury, R.D. Somma, QIC 17,
0041 (2017)).

* Having a small complexity dependence on precision is important for, e.g.,
computing expectation values of observables at the quantum metrology limit.



We claim an exponential speedup, but...

 As mentioned, the QLSP solves a problem related to systems of linear equations
by encoding the solution in a quantum state. It does not output the full vector.

Applications showing a polynomial/unknown quantum speedup
* In physics, where the goal is to compute the expectation value of the inverse of a

matrix. This idea was used in [1] for obtaining the resistance of a network.

* In stat mech, where, e.g., estimating the hitting time of a Markov chain also
reduces to computing the expectation value of the inverse of a matrix [2].

* In ML, for solving problems related to least-squares estimation [3], by applying
the pseudoinverse.

* For “solving” certain linear differential equations [4].

[1] G. Wang, arXiv:1311.1851 (2013).

[2] A. Chowdhury and R. Somma, QIC 17, 0041 (2017)

[3] N. Wiebe, D. Braun, and S. Lloyd, PRL 109, 050505 (2012).

[4] D. Berry, A. Childs, A. Ostrander, and G. Wang, CMP 356, 1057 (2017)



We claim an exponential speedup, but...

Finding more applications for quantum algorithms like these is important,
especially if we find problems for which an exponential speedup is obtained.

More recent work on the computation of Green’s functions: Tong, An, Wiebe, Lin,
“Fast inversion, preconditioned quantum linear system solvers and fast
evaluation of matrix functions”, Phys. Rev. A 104, 032422 (2021).



QLSP: more recent ideas

Proposed variational and related quantum algorithms to this problem.

Claims: These approaches may be useful for NISQ technologies, may solve the
QLSP faster, may not need quantum error correction, etc.

Nice and simple ideas... do they work?

D. An and L. Lin, Quantum Linear System Solver Based on Time-Optimal Adiabatic Quantum
Computing and Quantum Approximate Optimization Algorithm, arXiv:1909.05500 (2019).

H.-Y. Huang, K. Bharti, and P. Rebentrost, Near-Term Quantum Algorithms for Linear Systems of
Equations, arXiv:1909.07344 (2019).

C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, Variational Quantum Linear
Solver: A Hybrid Algorithm for Linear Systems, arXiv:1909.05820 (2019).

X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan, Variational Algorithms for Linear Algebra,
arXiv:1909.03898 (2019).



QLSP: Variational approach

~ Processing:
Evaluation
of cost

. function




QLSP: Variational approach

- Processing:
Evaluation
of cost

. function

A(1 = [b){0]) Apg]

similar to asking A|1)) ‘b>?



QLSP: Variational approach

~ Processing:
Evaluation
of cost

K function ’

Stop

%

\

tr[A(1 = [b) (b]) Apg)



QLSP: more recent ideas

Do these approaches work?

* Do they require a costly optimization loop?

* Do they require computing cost functions within high accuracies?
 What’s the running time? How does it compare with other approaches?

* Isit correct to say that no quantum error correction is needed? Why are these
approaches suitable for NISQ?



QLSP: more recent ideas

Do these approaches work?

Do they require a costly optimization loop?
* Do they require computing cost functions within high accuracies?
 What’s the running time? How does it compare with other approaches?

* Isit correct to say that no quantum error correction is needed? Why are these
approaches suitable for NISQ?

* To analyze these questions, we need to understand first quantum state
verification in the QLSP.

 Thisis only part of the motivation. Regardless of these approaches, the QSV
problem is interesting in itself as it may tell us something about the
complexity of other quantum methods for other problems.



In the rest of my talk, | will introduce the quantum state
verification (QSV) problem and show that, indeed, QSV is
expensive. One implication is that these recent ideas
result in quantum algorithms with running times
significantly larger than previously known quantum
algorithms for the QLSP (i.e., bounded by a high degree
polynomial in the condition number).




Quantum state verification (QSV) in the QLSP

* Goal: Decide, with high probability,
whether a given quantum state P is close
or far from the solution of the QLSP.
(“Close” means within trace distance 1/8.
“Far” means beyond trace distance 1/2.)

e Build a guantum protocol € that outputs
a bit r as follows

. [>2/3if D,,<1/8,
Pr(r=1) {g 1/3 if D, >1/2.

h
where

Dye = 5Trlp— ) al]



Do not depend on b
The QSV prOtOCO| but may depend on A

___________________________________________________________________________________

The protocol &:

* Asequence of rules (quantum operations) that depend on the unknown initial
state preparation unitary U,,.

* The maximum number of uses of this unitary is g. However, the protocol may
stop and return the bit r before, where the number of uses of U, is random.



QSV in the QLSP

* Goal: Decide, with high probability,
whether a given quantum state p is close
or far from the solution of the QLSP.
(Close means within trace distance 1/8.
Far means beyond trace distance 1/2.)

e Main theorem:

Theorem 1. Consider any instance of the QQLSP, spec-

ified by A and l;, and any protocol for QSV as above.
Then, for all quantum states p that satisfy D, < 1/8,

the number of cUblLl 's required to tmplement £ on input
g = p®™ satisfies

1 K 1
P > = = . 5
r (q“ 13 JA-1]5) n) = ()
Somma, Subasi, PRXQ 2, 010315 (2021)




QSV in the QLSP

* Goal: Decide, with high probability,
whether a given quantum state P is close
or far from the solution of the QLSP.
(Close means within trace distance 1/8.
Far means beyond trace distance 1/2.)

e Main theorem:

Theorem 1. Consider any instance of the QQLSP, spec-

ified by A and l;, and any protocol for QSV as above.
Then, for all quantum states p that satisfy D, < 1/8,

the number of cUblLl 's required to tmplement £ on input
g = p®™ satisfies

1 K. 1
P > > — 5
(o> @D 2 6 )
Somma, Subasi, PRXQ 2, 010315 (2021)




QSV in the QLSP

It is simple to show:
1< A7 D)) < &

™ best case
\ worst case

But typically, we showed: HA_1|b>H ~ \/E

Somma, Subasi, PRXQ 2, 010315 (2021)



QSV in the QLSP

It is simple to show:

1< [ATHD) < &

™ best case
\ worst case

But typically, we showed: ||A_1|b>H ~ \/E

* Quantum state verification in the QLSP requires a number of resources
(query complexity) that goes, at least, as the square root of the
Z> condition number, which can be very large!

* It can be shown that the best way to verify is to solve the QLSP with one
of the algorithms | presented (e.g., HHL) and then use the swap test —
Matching upper bound for the query complexity.

 Bad news for variational and related approaches.



QSV in the QLSP

Things are actually worse for a restricted class of verification procedures,
called prepare-and-measure:

= b
b —
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Things are actually worse for a restricted class of verification procedures,
called prepare-and-measure:

Theorem 3. Consider any instance of the QQLSP spec-

ified by A and I;, and any protocol for QSV of the PM
type as above. Then, for all quantum states p that satisfy
D, . <1/8, the number of copies of |b) required by L for
oo = p®™ satisfies

1 K2 1
P > > — 9
(940> o) 2 5 -

Somma, Subasi, PRXQ 2, 010315 (2021)



QSV in the QLSP

Things are actually worse for a restricted class of verification procedures,
called prepare-and-measure:

Theorem 3. Consider any instance of the QQLSP spec-

ified by A and g, and any protocol for QSV of the PM
type as above. Then, for all quantum states p that satisfy
D, . <1/8, the number of copies of |b) required by L for
oo = p®™ satisfies

1 K2 1
P > = — 9]
; (q“"” 150 [ A1 [5) u?) = )

 The protocols used by proposed variational approaches can be cast as of
this type. The typical complexity will be at least linear in 4.

* Infact, proposed variational approaches do worse due to sampling noise,
with a complexity that scales with 4.



Basic idea for proof

)

\.x

') ./ %\\\ /0
b) 2 4

| B =A=1
Example.{ ) = [ A=1)+ (1/r)|A = 1/k)

IH

A “small” perturbation in the initial state can lead to a “big” change in the
solution (accept/reject): These are adversarial instances.
* One state must be accepted while the other must be rejected (whp).



Basic idea for proof

\.]x';(

') ./ %\\\ /0
b) 2 4

[1b) = b1 = O(I A~ [b)|/ )

A “small” perturbation in the initial state can lead to a “big” change in the
solution (accept/reject): These are adversarial instances.

* A quantum operation for QSV must resolve the difference between both
instances: complexity goes with the inverse of the difference of initial states.



Basic idea for proof

It is important to note that for each instance of the QLSP there is an
adversarial one. Therefore, one cannot make the statement that QSV may be
done more efficiently in typical cases, etc.

The actual proof is more technically involved. The bit » can be output after
any number of uses of the unitaries, and this number can be random. We
also need to show a way to construct the adversarial instance.

The quadratically worse bound is simply due to the fact that the trace
distance between m identical copies of two states increases only with the

square root of m.

See paper for full proof

Somma, Subasi, PRXQ 2, 010315 (2021)



QSV in the QLSP

The results apply to a weaker form of QSV for which some states that are
close to the solution of the QLSP can also be rejected. This is what happens
in variational and related optimization algorithms.

Pr(r=1) {g 1/3  if D, >1/2

Theorem 4. Consider any instance of the QLSP, spec-

ified by A and I;, and any protocol for QSV as above.
Then, for all quantum states p that satisfy C(p) < Chin,
the number of cUbil 's required to implement £ on input
oo = p®™ satisfies

1 K 1
P > _ 11
; (“”’ ” 3 AT H) = 5 (1)

Somma, Subasi, PRXQ 2, 010315 (2021)




Conclusions

Quantum computing is promising. Several quantum algorithms for problems
in linear algebra with significant speedups exist

| presented quantum algorithms to solve the quantum linear systems
problem. The techniques can be generalized to apply other operators (other
than the inverse of a matrix) to quantum states.

The advantages of the LCU algorithm are that the complexity dependence
on precision is only polylogarithmic, exponentially improving previous
algorithms for this problem. Further improvements are known.

The advantages of the adiabatic algorithm are that it doesn’t require many
ancillary qubits and the problem reduces to a simple Hamiltonian
simulation problem

It would be important to understand the applicability of the QLSP to
scientific problems beyond the ones | mentioned.



Conclusions

e |also showed that the problem of quantum state verification in the QLSP is
costly. In fact, the complexity of recent alternatives (variational algorithms)
is significantly higher than that of the HHL or LCU algorithms

 And it appears that one fast way of doing QSV is by using the HHL or LCU
algorithms

e Last, it'd be interesting to study related problems to the QLSP. In that case,
known lower bounds for the QLSP, including our results on QSV, may not

apply

Thank you.



