

Quantum Computing and Materials Challenges

Matthias Troyer

Beyond exascale computing

Enabling technologies for beyond exascale computing

- We are not referring to 10**21 flops
- "Beyond exascale" systems as we are defining them will be based on new technologies that will finally result in the much anticipated (but unknown) phase change to truly new paradigms/methodologies.

Paul Messina

Director of Science Argonne Leadership Computing Facility Argonne National Laboratory

July 9, 2014 Cetraro

Develop and deploy a scalable, commercial quantum system to solve today's unsolvable problems

Developing quantum applications

1. Find quantum algorithm with quantum speedup

quantum software engineers

2. Confirm quantum speedup after implementing all oracles

3. Optimize code until runtime is short enough

4. Embed into specific hardware estimate runtime

A quantum machine to solve hard optimization problems

The D-Wave quantum annealer

An analog quantum device to solve quadratic binary optimization problems

$$C(x_{1},...,x_{N}) = \sum_{ij} a_{ij} x_{i} x_{j} + \sum_{i} b_{i} x_{i}$$

with $x_{i} = 0,1$

Can be built with imperfect qubits

Significant engineering achievement to scale it to two thousand qubits So far no (scaling) advantage has been observed Quantum tunneling can be simulated classically!

Early value: quantum inspired optimization

Mimic quantum tunneling on classical computers today!

Research into quantum algorithms often uncovers new classical algorithms

Better optimization methodsBetter training algorithmsBetter models for machine learning

Yoshihisa Yamamoto, Monday 10:15am

Hidetoshi Nishimori, Tuesday 4:00pm

Developing quantum applications

1. Find quantum algorithm with quantum speedup

Stephen Jordan (Microsoft) http://math.nist.gov/quantum/zoo/

 < >	,8	F 💷		math.nist.gov			Ő			1
 A	LIFS - News	Mac #	Mooree IDEA ~ Phys	ics Y Travel Y	comp ~	Add to Tripit	TinyURU	"loodie ∨	TV #	
			Di	uantum Algorithm	7nn					
Quantum Alg	orithm	Zoo		0.0900	٦٣	Ou	Ì0	0110011	10100110102	0.01
This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please email me at stephen.jordan@nist.gov. Your help is appreciated and will be approximated.									Navigation	
Algebraic and Number Theoretic Algorithms Algerithm: Factoring Speecup: Superpolynomial Description: Given an <i>a</i> -bit integer, fnd the prime factorization. The quantum algorithm of Peter Shor								Oracular Approximation and Simulation Acknowledgments References		
solves this in $O(n^3)$ time [§2,125]. The fastest known classical algorithm for integer factorization is the general number field slove, which is believed to run in time $2^{O(n^3)}$. The best rigorously proven upper bound on the classical complexity of factoring is $O(2^{n(3+c(1))})$ [252]. Shor's factoring algorithm breaks ESA public-key encryption and the closely related quantum algorithms for discrete logarithms breaks the DSA and ECDSA digital signature schemes and the Diffe-Helman key-exchange protocol. There are proposed classical public-key cryptosystems not believed to be bloken by quantum algorithms, cl. [248]. At the core of Shor's factoring algorithm is enter finding, which can be reduced to the Abelian hidden subgroup problem, which is solved using the quantum Fourier transform. A number of other problems are income to roduce to integer factorization including the membership problem for matrix groupe over fields of odd order [253], and certain diophartine problems relevant to the synthesis of quantum droutis [254].									hme I	

Impact on Cryptography

Quantum computers break widely used public key encryption RSA-2048 with 4100 qubits ECC: Bitcoin with 2330 qubits

New quantum-safe cryptography Quantum key distribution "Post-quantum" classical cryptography

Developing quantum applications

1. Find quantum algorithm with quantum speedup

2. Confirm quantum speedup after implementing all oracles

Grover search

Search an unsorted database of N entries with \sqrt{N} queries

However, the query needs to be implemented!

A single quantum query needs at least O(N) time since all entries must be read! While reading the data *once* we can already find the desired entry!

Only useful if the query result can be efficiently calculated on the fly! What are the important applications satisfying this criterion?

Developing quantum applications

1. Find quantum algorithm with quantum speedup

2. Confirm quantum speedup after implementing all oracles

3. Optimize code until runtime is short enough

Solving linear systems of equations

Harrow, Hassidim, Lloyd, PRL (2009)

Solve linear system Ax=b in log(N) time

Time evolution using the matrix A needs to be implemented efficiently

$$e^{-iAt}|b\rangle$$

Exponential speedup for wave scattering problem (Clader et al, PRL, 2013)!

Estimated to use 10²⁹ gate operations for a problem that is still tractable on a classical supercomputer (arXiv:1505.06552).

First applications that reached a petaflop on Jaguar @ ORNL

Domain area	Code name	Institution	# of cores	Performance	Notes
Materials	DCA++	ORNL	213,120	1.9 PF	2008 Gordon Bell Prize Winner
Materials	WL-LSMS	ORNL/ETH	223,232	1.8 PF	2009 Gordon Bell Prize Winner
Chemistry	NWChem	PNNL/ORNL	224,196	1.4 PF	2008 Gordon Bell Prize Finalist
Materials	DRC	ETH/UTK	186,624	1.3 PF	2010 Gordon Bell Prize Hon. Mention
Nanoscience	OMEN	Duke	222,720	> 1 PF	2010 Gordon Bell Prize Finalist
Biomedical	МоВо	GaTech	196,608	780 TF	2010 Gordon Bell Prize Winner
Chemistry	MADNESS	UT/ORNL	140,000	550 TF	
Materials	LS3DF	LBL	147,456	442 TF	2008 Gordon Bell Prize Winner
Seismology	SPECFEM3D	USA (multiple)	149,784	165 TF	2008 Gordon Bell Prize Finalist

Source: T. Schulthess

The Theory of Everything

The N-body Schrödinger equation

$$i\hbar \frac{\partial \Psi(\vec{r}_1, \dots, \vec{r}_N, t)}{\partial t} = H\Psi(\vec{r}_1, \dots, \vec{r}_N, t)$$

Describes (almost) everything we encounter in daily life with a very simple Hamilton

$$H = \sum_{i} \left(-\frac{1}{2m_i} \Delta_i + V^{ext}(\vec{r}_i) \right) + \sum_{i,j} \frac{q_i q_j}{\left| \vec{r}_i - \vec{r}_j \right|}$$

It is a simple linear partial differential equation (PDE)

But is exponentially complex since it lives in 3N dimensions

Density functional theory and quantum chemistry

Approximates the N-body Schrödinger by a tractable 1-body problem

 $E_0 = \min_{\rho(\vec{r})} \left(F[\rho] + \int d^3 \vec{r} V(\vec{r}) \rho(\vec{r}) \right)$

Successful in calculating properties many metals, insulators, semiconductors

Walter Kohn

John A. Pople

1998 Nobel prize in chemistry

Band structure of silicon

Cuprate high temperature superconductors

Undoped materials:

half-filled band and metal according to DFT but antiferromagnetic insulator in experiment! Band structure calculation breaks down!

Doped materials: high-temperature superconductors

What causes superconductivity?

Are there room temperature superconductors?

Band structure of La₂CuO₄

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

Feynman proposed to use quantum computers to simulate quantum physics

Simulating quantum materials on a quantum computer

Can we use quantum computers to design new quantum materials?

- A room-temperature superconductor?
- Non-toxic designer pigments?
- A catalyst for carbon fixation?
- Better catalysts for nitrogen fixation (fertilizer)?

Solving materials challenges with strong correlations has exponentially complexity on classical hardware polynomial complexity on quantum hardware!

Garnet Chan, Monday 11:30am

Markus Reiher, Tuesday 9:00am

Significant progress in qubit quality is to a large extent due to progress in materials quality

Topological qubits will be another step forward

Yasuyuki Kawahigashi, Wednesday 10:15am

Zhenghan Wang, Wednesday 2:00pm

Majorana Fermions

Predicted by Ettore Majorana in 1937

Majorana qubits: split the information

Store a qubit in a superposition of 0 or 1 electrons Split 0 or 1 electrons into two "Majorana" particles

Bela Bauer, Tuesday 10:15am

Roman Lutchyn, Tuesday 11:30am

Qubit modeling and design optimization

Edwin Barnes, Monday 4:00pm

Susan Coppersmith, Tuesday 2:30pm

Rick Muller, Wednesday 9:00am

Materials Simulations and Characterization

Band structure calculations

ARPES experiments

InAs/Al interfaces

p-pol

LH

First principles simulations of nano devices?

Journal of Physics: Conference Series 46 (2006) 292–298 SciDAC 2006

SciDAC 2006

Predicting the electronic properties of 3D, million-atom semiconductor nanostructure architectures

A. Zunger, A. Franceschetti, G. Bester, Materials Science Center, NREL.
W.B. Jones, Kwiseon Kim and P. A. Graf, Scientific Computing Center, NREL.
L-W. Wang, A. Canning, O. Marques, C. Voemel Computational Research Division, LBNL.
J. Dongarra, J. Langou and S. Tomov Dept. of Computer Science, University of Tennessee.

Eric Cances, Monday 2:30pm

Sophia Economou , Wednesday 11:30

First-principles calculations of InSb band structure Simple functionals fail in most of the zincblende semiconductors InSb is gapless using LDA and GGA due to wrong band ordering

Using hybrid functionals

Admix some Hartree-Fock exchange energy for the short range part of the interaction

$$E_{\rm xc}^{\rm HSE} = E_{\rm xc}^{\rm LDA}(\mu) - \frac{1}{4} (E_{\rm xc}^{\rm LDA}(\mu) + E_{\rm x}^{\rm HF}(\mu)) \qquad \mu = 0.2 \mathring{A}^{-1}$$

Strategy for numerical simulations

Constructing tight-binding models

Choose an energy window and build a tight binding model

Souza, Marzari, Vanderbilt, PRB'01

Accurate tight-binding models respecting symmetries

Bela Bauer, Tuesday 10:15am

Roman Lutchyn, Tuesday 11:30am

Better materials will be important for better qubits

5 nm

Imagine the quantum future of materials ...

Nitrogen Fixation

cheap fertilizer everywhere Carbon Capture

mitigate global warming Materials Science Iossless power lines

better batteries

smart materials

Machine learning