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1. Introduction to quantum annealing

2. Three methods to enhance performance of quantum annealing
a. Non-stoquastic Hamiltonians
b. Inhomogeneous field-driving
c. Reverse annealing



Introduction to quantum annealing

Ground-state search of the Ising model

Goal : To solve ombinatorial optimization problems

Given {Jij} and {hi}, find the values of variables {σi
z} to minimize H0

Use quantum fluctuations to search for the solution. ⇓
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Spin-glass problem (8 spins)
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Schrödinger equation

Master equation/
thermal equilibrim

Kadowaki and Nishimori, Phys. Rev. E (1998)

First example of performance advantage
over classical simulated annealing



Recent benchmark
Spin-glass problem of size 16x16

Albash and Lidar, Phys. Rev. X (2018)

Direct embedding  (a physical qubit = a logical qubit)

Chimera embedding  (8 physical qubits =  single logical qubit)



Convergence conditions

Sufficient condition for convergence in the infinite-time limit
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Morita & Nishimori 
(2007)

(Geman-Geman 1984 for SA)
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Simulated annealing

Quantum annealing: perturbation with respect to Γ

Time complexity to reach a fixed 
amount of error in energy
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Stop the annealing process at a finite but large time and measure the residual energy 
(difference between the true ground-state energy and the actually reached energy)



Adiabatic theorem 2−∆∝τ
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1st order transition

2nd order transition
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Computational complexity
From the perspective of phase transitions

Very important to avoid 
1st order transition

∆

Phase transition



Performance enhancement
by non-traditional quantum driving

a. Non-stoquastic Hamiltonian
b. Inhomogeneous field-driving
c. Reverse annealing



Non-”stoquasticity”

Stoquastic=stochastic + quantum

Negative probability shows up if a>0: Non-stoquastic

Bravyi and Terhal 2009

Quantum but can be simulated efficiently by a classical stochastic process



Non-stoquastic Hamiltonian

Non-stoquasticity leads to an exponential speedup (not just impossibility of simulation).

Frontiers in ICT, 4, 2 (2017),  PRE 85, 051112 (2012),  J. Phys. A 48, 335301 (2015)

1st order transition
(Exponential time)

2nd order transition
Polynomial time

Conventional method

Impossible to simulate classically (sign problem).  “Strong” quantum effects.
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Hopfield model: random interaction
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k-body interaction. Randomness in interactions.
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1st order reduced to 2nd !

Non-stoquastic Hamiltonian is effective to speedup QA even for a problem with randomness.
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Inhomogeneous driving of the transverse field

Random-longitudinal-field Ising model, for which non-stoquastic method doesn’t work



Result

1st order phase transition disappears.

Exponential speedup by a simple inhomogeneous 
control of the transverse field.

J. Phys. Soc. Jpn. 87, 023002 (2018), arXiv:1808.01582 

Intial

Final

Conventional



Classical simulated annealing 
with inhomogeneous temperature drive

Assign local (inverse) temperature to each site and increase each of them one by one.

 First-order transition persists.
 To be contrasted with the quantum case: inhomogeneous transverse field 

erased the first order transition.
 Quantum approach is better than the corresponding classical approach.

“Limited quantum speedup”



Reverse annealing

Traditional quantum annealing

Strongly quantum state Final state

Reduce quantumness

Final state

Reverse annealing

Candidate classical state Mildly quantum state

Reduce quantumnessIncrease quantumness

Perdomo-Ortiz et al (2010)



Static properties
-- Analytical solution by the mean-field theory (1) --

Start from the classical state εi and then 
increase quantum fluctuations by HTF

Phys. Rev. A 98, 022314 (2018)

1st order

1st order disappearsConventional method

Bad initial state
c=0.7

Moderate initial state
c=0.74

Good initial state
c=0.8



Dynamic properties
-- Direct solution of the Schrodinger equation --

s=λ

Residual energy vs. TQA Error prob. vs. TQA TTS vs. TQA

Results for N=45, p=3, Γ=2Conventional QA

c=0.7 c=0.8 c=0.9



Summary

Quantum annealing with non-stoquastic Hamiltonian
Quantum annealing with inhomogeneous field driving
Quantum annealing with reverse annealing

 Exponential speedup in comparison with the conventional quantum 
annealing.      1st order  2nd order or no transition.

 Also in comparison with the corresponding classical simulated 
annealing for the inhomogeneous protocol

 Inhomogeneous driving and reverse annealing are realized (at least 
partially) on the latest D-Wave machine.

 Efforts exist toward hardware implementation of non-stoquastic 
Hamiltonians.
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