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Molecular simulation at a glance

• ∼30,000 research articles in 2017

• ∼25% of CPU time in scientific computing centers in 2017

• very broad scope of applications in

chemistry drug design materials science nanotechnologies

• 1998 and 2013 Nobel Prizes in Chemistry
(Kohn & Pople; Karplus, Levitt & Warshel)

• inexhaustible source of exciting problems for mathematicians and
computer scientists
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Molecular simulation is commonly used
• to explain experimental data
• to predict the properties of new molecules, materials and nanodevices

Possible contributions of applied mathematicians

1. design faster algorithms

2. assess the accuracy of simulation results (error analysis)

−→ part I of the talk

3. design mathematically justified reduced models more amenable to
numerical simulation

−→ part II of the talk (quantum dots in crystalline matrices)
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Usual setting in science and engineering
• the quantities of interest (QOI) can be scalar quantities (energies), finite-

dimensional vectors (interatomic forces), or functions (spectra);
• they are obtained from the solution u of an auxiliary infinite-dimensional

problem (e.g. a PDE such as the Schrödinger equation).

Exact value of the QOI: q(u)

Computed value of the QOI: q(uN ) (N : discretization parameters)

Assessing the quality of a scalar QOI is usually easy

|q(uN )− q(u)| ≤ tolerance ⇒ OK
|q(uN )− q(u)| > tolerance ⇒ not OK

There are however some caveats

For example, energy errors per atom are irrelevant QOI for
• large, inhomogeneous systems (e.g. local defects in crystals);
• when seeking rare events in the framework of large deviation theory.
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Usual setting in science and engineering
• the quantities of interest (QOI) can be scalar quantities (energies), finite-

dimensional vectors (interatomic forces), or functions (spectra);
• they are obtained from the solution u of an auxiliary infinite-dimensional

problem (e.g. a PDE such as the Schrödinger equation).

The quality of the numerical solution uN depends on the QOI

u
(1)
N u

(2)
N u

(3)
N

As a consequence, we need to have at our disposal several norms to measure
distances between u and its approximation uN

−→ deriving useful error estimators requires advanced functional analysis
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Three kinds of error analysis results

1. A priori error estimators

|q(uN )− q(u)| ≤ C1‖uN − u‖σ? , ‖uN − u‖? ≤
C2

N s
(or C2 e

−αN)

• the norm ‖ · ‖? depends on the QOI
• the rate of decay s > 0 depends on the norm ‖ · ‖? and on the PDE
• the constants C1 and C2 are (usually) not known explicitly
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Three kinds of error analysis results

1. A priori error estimators

2. A posteriori error estimators

ηl.b.(uN ) - q(uN )− q(u) - ηu.b.(uN )

↑ ↑ ↑ ↑
lower bound computed exact upper bound
of the error value value of the error
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Three kinds of error analysis results

1. A priori error estimators

2. A posteriori error estimators

ηl.b.(uN ) - q(uN )− q(u) - ηu.b.(uN )

Ideally, the lower and upper bounds ηl.b.(uN ) and ηu.b.(uN ) should be
• guaranteed (- can be replaced by ≤)

or at least:
– asymptotically guaranteed (for N large enough)
– or guaranteed provided some checkable condition is satisfied
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Three kinds of error analysis results

1. A priori error estimators

2. A posteriori error estimators

ηl.b.(uN ) - q(uN )− q(u) - ηu.b.(uN )

Ideally, the lower and upper bounds ηl.b.(uN ) and ηu.b.(uN ) should be
• guaranteed
• fully computable (from uN and the data)

or at least, the leading terms (forN large) should be fully computable

ηj,l.b.(uN , u) = η
(1)
j,l.b.(uN )︸ ︷︷ ︸
∼CN−s

+ η
(2)
j,l.b.(uN , u)︸ ︷︷ ︸
o(N−s)
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Three kinds of error analysis results

1. A priori error estimators

2. A posteriori error estimators

ηl.b.(uN ) - q(uN )− q(u) - ηu.b.(uN )

Ideally, the lower and upper bounds ηl.b.(uN ) and ηu.b.(uN ) should be
• guaranteed
• fully computable
• accurate

Efficiency factor: Ceff ≥ 1 such that for all (possibly large enough)N ,

|qj(uN )−qj(u))| ≤ max(|ηj,l.b.(uN )|, |ηj,u.b.(uN )|) ≤ Ceff|qj(uN )−qj(u))|.
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Three kinds of error analysis results

1. A priori error estimators

2. A posteriori error estimators

ηl.b.(uN ) - q(uN )− q(u) - ηu.b.(uN )

Ideally, the lower and upper bounds ηl.b.(uN ) and ηu.b.(uN ) should be
• guaranteed
• fully computable
• accurate

Some a posteriori estimators are asymptotically exact:

ηj,l.b.(uN ) ∼
N→∞

qj(uN )− qj(u) ∼
N→∞

ηj,u.b.(uN )

The a posteriori error estimator can then be used for post-treatment:
for largeN , qj(uN )−ηj,?.b.(uN ) provide better approximations of qj(u)
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Three kinds of error analysis results

1. A priori error estimators

2. A posteriori error estimators

ηl.b.(uN ) - q(uN )− q(u) - ηu.b.(uN )

Ideally, the lower and upper bounds ηl.b.(uN ) and ηu.b.(uN ) should be
• guaranteed
• fully computable
• accurate
• cheap to compute
• robust, e.g. valid for any molecular configuration,

or at least valid in some interesting set of molecular configurations
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Three kinds of error analysis results

1. A priori error estimators

2. A posteriori error estimators

ηl.b.(uN ) - q(uN )− q(u) - ηu.b.(uN )

Ideally, the lower and upper bounds ηl.b.(uN ) and ηu.b.(uN ) should be
• guaranteed
• fully computable
• accurate
• cheap to compute
• robust
• able to guide black-box improvement methods
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Automatic mesh refinement for a finite element computation

find u : Ω→ R such that −∆u(x) = 1 in Ω, u(x) = 0 on ∂Ω

86 triangles 448 triangles 1119 triangles
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A posteriori error estimators for linear and nonlinear elliptic eigenvalue problems

disc. guaranteed fully comput. accurate cheap robust aut. improv.
Laplace

Schrödinger
Gross-Pitaevskii

Kohn-Sham
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A posteriori error estimators for linear and nonlinear elliptic eigenvalue problems

disc. guaranteed fully comput. accurate cheap robust aut. improv.
Laplace FE X X X X fairly X

Schrödinger
Gross-Pitaevskii

Kohn-Sham

Laplace operator on a bounded polyhedral domain

−∆u = λu in Ω, u = 0 on ∂Ω,

ˆ
Ω

u2 = 1

QOI: the jth eigenvalue (robustness ↓ when j ↑)

EC, Dusson, Maday, Stamm, Vohralík, SINUM ’17 + submitted
following many previous works by many authors listed in the bibliography
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A posteriori error estimators for linear and nonlinear elliptic eigenvalue problems

disc. guaranteed fully comput. accurate cheap robust aut. improv.
Laplace FE X X X X fairly X

Schrödinger
Gross-Pitaevskii

Kohn-Sham

Laplace operator on a bounded polyhedral domain

−∆u = λu in Ω, u = 0 on ∂Ω,

ˆ
Ω

u2 = 1

QOI: the jth eigenvalue (robustness ↓ when j ↑)

EC, Dusson, Maday, Stamm, Vohralík, SINUM ’17 + submitted
Main ideas: residual norm estimates, local conforming residual liftings
(lower bound) and equilibrated flux reconstruction (upper bound).
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A posteriori error estimators for linear and nonlinear elliptic eigenvalue problems

disc. guaranteed fully comput. accurate cheap robust aut. improv.
Laplace FE X X X X fairly X

Schrödinger FE X X X X not much X
Gross-Pitaevskii

Kohn-Sham

Schrödinger equation on a bounded polyhedral domain

−∆u + V u = Eu in Ω, u = 0 on ∂Ω,

ˆ
Ω

u2 = 1

QOI: the jth eigenvalue (robustness ↓ when j ↑ or ‖V ‖L∞ ↑)

EC, Dusson, Maday, Stamm, Vohralík, submitted
Main ideas: residual norm estimates, local conforming residual liftings
(lower bound) and equilibrated flux reconstruction (upper bound).
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A posteriori error estimators for linear and nonlinear elliptic eigenvalue problems

disc. guaranteed fully comput. accurate cheap robust aut. improv.
Laplace FE X X X X fairly X

Schrödinger PW asymp. X a. exact X X NA
Gross-Pitaevskii

Kohn-Sham

Schrödinger equation with periodic boundary conditions

−∆u + V u = Eu, u ∈ H1
per(Ω), Ω = (0, 2π)d,

ˆ
Ω

u2 = 1

QOI: clusters of eigenvalues (gap assumption)

EC, Dusson, Maday, Stamm, Vohralík, in preparation
Main idea: consider the exact solution as a perturbation of the approxi-
mate solution and use Rayleigh-Schrödinger perturbation theory.
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A posteriori error estimators for linear and nonlinear elliptic eigenvalue problems

disc. guaranteed fully comput. accurate cheap robust aut. improv.
Laplace FE X X X X fairly X

Schrödinger PW asymp. X a. exact X X NA
Gross-Pitaevskii PW asymp. lead. terms a. exact X X NA

Kohn-Sham

Gross-Pitaevskii equation with periodic boundary conditions

−∆u + V u + µu3 = λu, u ∈ H1
per(Ω), Ω = (0, 2π)d,

ˆ
Ω

u2 = 1

QOIs: ground state energy and density

EC, Dusson, Maday, Stamm, Vohralík, CRM ’14
Main idea: consider the exact solution as a perturbation of the approxi-
mate solution and use nonlinear Rayleigh-Schrödinger perturbation theory.
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A posteriori error estimators for linear and nonlinear elliptic eigenvalue problems

disc. guaranteed fully comput. accurate cheap robust aut. improv.
Laplace FE X X X X fairly X

Schrödinger PW asymp. X a. exact X X NA
Gross-Pitaevskii PW asymp. lead. terms a. exact X X NA

Kohn-Sham PW asymp. lead. terms a. exact X X NA

Kohn-Sham LDA equations on a periodic supercell Ω

−1

2
∆φi + V KS

ρΦ
φi = εiφi, Φ = (φ1, ·· ·, φN) ∈ (H1

per(Ω))N ,

ˆ
Ω

φiφj = δij, ρΦ =

N∑
i=1

|φi|2

QOIs: ground state energy and density

EC, Dusson, Maday, Stamm, Vohralík, J. Comp. Phys. ’16
Main idea: consider the exact solution as a perturbation of the approxi-
mate solution and use nonlinear Rayleigh-Schrödinger perturbation theory.
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CO2 molecule, KS-LDA, Troullier-Martins pseudopotentiels, KSSOLV
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Three kinds of error analysis results

1. A priori error estimators

2. A posteriori error estimators

3. Asymptotic expansions

q(uN )− q(u) =
α

N 5/3
+

β

N 2
+

γ

N 7/3
+ o

(
1

N 7/3

)
• allow extrapolation

Makov-Payne correction, Gontier & Lahbabi ’15
smearing methods for k-point sampling in metals, EC et al. submitted

• not so common in practice
• only useful in the asymptotic regime
• completely useless in the pre-asymptotic regime
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Three kinds of error analysis results

1. A priori error estimators

2. A posteriori error estimators

3. Asymptotic expansions

q(uN )− q(u) =
α

N 5/3
+

β

N 2
+

γ

N 7/3
+ o

(
1

N 7/3

)
• allow extrapolation
• not so common in practice
• only useful in the asymptotic regime
• completely useless in the pre-asymptotic regime

Warning: in general, it is not possible to derive asymptotic expansions
w.r.t. external parameters

e.g.: error estimators for energy differences and forces (EC, Dusson ’17)
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Reference model for the mathematical analysis: reduced Hartree-Fock
(Kohn-Sham with Exc = 0)

Existence of a ground state density matrix for neutral systems
Uniqueness of the ground state density (Solovej, Invent. Math. ’91)

EC, A. Deleurence and M. Lewin, Comm. Math. Phys. ’08
EC and M. Lewin, Arch. Ration. Mech. Anal. ’10
EC and G. Stoltz, Ann. IHP ’12
EC, S. Lahbabi and M. Lewin, J. Pure Appl. Math. ’13

The resulting embedding model can be used for Kohn-Sham calculations

EC, A. Deleurence and M. Lewin, J. Phys.: Cond. Mat. ’08
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A quantum dot can be seen as a defect on the surface or in the bulk of an
insulator or a semiconductor
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Usual approaches:

• supercell model

• perturbative methods, Green functions

• phenomenological embedding methods

L

Supercell Phenomenological embedding
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The supercell method and its shortcomings

L

• spurious interactions between the defects and its periodic images
• the total charge distribution ρ in the supercell must be neutral;

otherwise the Poisson equation −∆V = 4πρ has no periodic solution
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Defect = quasi-molecule embedded in the host crystal

ρnuc = ρnuc
per + m γ0 = γ0

per + Qm,εF ρ0 = ρ0
per + ρm,εF

Nuclear charge m of the quasi-molecule

Nucleus of charge z

Nucleus of charge z’
(impurity)

Ghost nucleus of charge −z

Goal: find a way to directly compute Qm,εF and ρm,εF
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Bulk limit of the supercell model, with and without defect

L L

L

?

E
m,εF
sc,L , ρ

m,εF
sc,L , γ

m,εF
sc,L E0

sc,L, ρ
0
sc,L, γ

0
sc,L εm,εF, ρm,εF, Qm,εF

Theorem (EC, Deleurence, Lewin, Comm. Math. Phys. ’08). Assume that
the host crystal is an insulator or a semiconductor. Then

1. (ρ0
sc,L, γ

0
sc,L) converges to (ρ0

per, γ
0
per) when L goes to infinity

2. Em,εF
sc,L − E0

sc,L has a finite limit εm,εF
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• A self-adjoint operator Q on L2(R3) is called trace-class if

Q =

+∞∑
i=1

λi|φi〉〈φi| with 〈φi|φj〉 = δij,

+∞∑
i=1

|λi| <∞

If Q is trace-class then

ρQ(r) = Q(r, r) =

+∞∑
i=1

λi|φi(r)|2 ∈ L1(R3)

and for any orthonormal basis (en)n∈N of L2(R3),
ˆ
R3
ρQ = Tr(Q) =

+∞∑
i=1

λi =
∑
n∈N

〈en|Q|en〉 = charge of Q

• A self-adjoint operator Q on L2(R3) is called Hilbert-Schmidt if

Q =

+∞∑
i=1

λi|φi〉〈φi| with 〈φi|φj〉 = δij,
+∞∑
i=1

|λi|2 <∞
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3. ρm,εF
sc,L − ρ0

sc,L converges to ρm,εF ∈ L2(R3)

4. γm,εF
sc,L − γ0

sc,L converges to some Hilbert-Schmidt operator Qm,εF (u.t.e.)

5. ρm,εF is the density associated with Qm,εF in some weak sense

Theorem (EC and Lewin, ARMA ’10). As a consequence of the long-range
of the Coulomb potential

• Qm,εF is not trace-class (except possibly when
ˆ
R3
m = 0)

Reminiscent of the renormalization problem in QED
(see Gravejat, Lewin, Séré for a mathematical analysis)

• ρm,εF is not an integrable function for anisotropic crystals

There exist two orthonormal bases (φn)n∈N and (ψn)n∈N of L2(R3) such that
+∞∑
n=0

〈φn|Qm,εF|φn〉 6=
+∞∑
n=0

〈ψn|Qm,εF|ψn〉 6= lim
R→+∞

ˆ
|r|<R

ρm,εF(r) dr

How to define the electronic charge of the defect?
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Definitions of the “bare” and “renormalized” charges of the defect

There exists
• an orthonormal basis (φ−i )i>N− ofH− = Ran(γ0

per)

• an orthonormal basis (φ+
i )i>N+ ofH+ = Ran(1− γ0

per)

such that in the orthonormal basis ((φ−i ), (φ+
i )) of L2(R3) = H− ⊕H+

γ0
per =

(
I 0

0 0

)
Qm,εF =


−IN− 0 0 0

0 diag(−a1,−a2, · · · ) 0 diag(b1, b2, · · · )
0 0 IN+ 0
0 diag(b1, b2, · · · ) 0 diag(a1, a2, · · · )


with

0 ≤ ai < 1,

+∞∑
i=1

ai < +∞, bi =
√
ai(1− ai)

Tr0(Qm,εF) := Tr([Qm,εF]++ + [Qm,εF]−−) = N+ −N− = “bare” charge of Qm,εF
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We can prove that for an isotropic crystal, there exist εµ > εM > 1 (εM:
macroscopic dielectric permittivity of the host crystal) such that if the Coulomb
energy of m is small enough, then

• Tr0(Qm,εF) = 0 so that the “bare” charge of the defect is

q”bare” =

ˆ
R3
m− Tr0(Qm,εF) =

ˆ
R3
m

• if ρQm,εF ∈ L1(R3), then
ˆ
R3
ρQm,εF =

εµ − 1

εµ

ˆ
R3
m, and the “observed” or

“renormalized” charge of the defect is

q”renormalized” =

ˆ
R3
m−

ˆ
R3
ρQm,εF =

1

εµ

ˆ
R3
m
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Characterization of Qm,εF

Let H̃ρm,εF be the Hartree Hamiltonian of the crystal with the local defect

H̃ρm,εF = H0
per − V Coulomb

m + V Coulomb
ρm,εF

Qm,εF satisfies the Dyson-like self-consistent embedding equation

Qm,εF = 1(−∞,εF ](H̃ρm,εF)− 1(−∞,εF ](H
0
per)

ε
F

Can we obtained Qm,εF by minimizing some energy functional on some
variational set?
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Variational characterization of Qm,εF

LetH− = Ran(γ0
per) andH+ = Ran(1− γ0

per). Then L2(R3) = H−⊕H+ and

γ0
per =

(
I 0

0 0

)
H0

per−εF =

(
[H0

per − εF]−− ≤ 0 0

0 [H0
per − εF]++ ≥ 0

)
Qm,εF is a minimizer (and ρm,εF is the unique minimizing density) to

inf
{
EmεF

(Q), Q ∈ Q
}

EmεF
(Q) = Tr0((H0

per − εF)Q)−
ˆ
R3
ρQV

Coulomb
m +

1

2

ˆ
R3

ˆ
R3

ρQ(r) ρQ(r′)

|r− r′|
dr dr′

Q =


Q−− ≤ 0 Q−+

trace-class Hilbert-Schmidt
Q+− Q++ ≥ 0

Hilbert-Schmidt trace-class

 ,
Q∗ = Q
0 ≤ γ0

per + Q ≤ 1
|∇|Q++|∇|, |∇|Q−−|∇| trace-class



2 - Quantum dots embedded in crystalline matrices 24
.

Wannier Functions

The Bloch decomposition H− = ”Span”(φn,ke
ik·r)1≤n≤z,k∈BZ is not optimal

for expanding localized functions

There exists an orthonormal basis (φi,R)1≤i≤z, R∈R ofH− such that

∀1 ≤ i ≤ z, R ∈ R, φi,R ∈ L2(R3), φi,R(r) = φi,0(r−R)

If the host crystal is an insulator with vanishing Chern numbers, the φi,R
can be chosen exponentially decreasing (Panati ’07)

Maximally Localized Wannier Functions (Marzari-Vanderbilt ’97) are
Wannier functions minimizing the spread (variance of the position)

z∑
i=1

(
〈φi,0||r|2|φi,0〉 − |〈φi,0|r|φi,0〉|2

)
Wannier functions depend only on the host crystal, not on the defect
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Examples: Wannier functions of diamond Silicon (left) and graphene (right)
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A hierarchical family of variational approximations V h
− of H− can be ob-

tained by

• computing z Maximally Localized Wannier Functions (φi,0)1≤i≤z associ-
ated with the occupied space of the host crystal

• considering
V h
− = Span(φi,R)1≤i≤z, R∈Rh

whereRh is a finite set of points of the lattice in the vicinity the defect

Note that the (φi,0)1≤i≤z only depend on the host crystal, not on the defect.
They are universal basis functions, that can be computed once and for all,
and stored in databases. The basis sets (φi,R)1≤i≤z, R∈Rh are local and mini-
mal
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There is more flexibility in the design of variational approximations V h
+ ofH+

• consider Maximally Localized Wannier Functions associated with the
lowest virtual bands of the host crystal

• enrich the so-obtained space by adding projected atomic orbitals of the
atoms and ghost atoms involved in ν (using the functions (φi,R)1≤i≤z, R∈R
to project out theH− component does not kill the locality)

The Wannier Functions are well-localized and are obtained by translating
a small number of mother Wannier functions (one mother Wannier func-
tion per band of the host crystal). Better localization can be obtained using
non-orthogonal generalized Wannier functions

−→ Toward efficient linear scaling algorithms?
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Up to a change of variable, the discretized minimization problem to be
solved is of the form

inf
{
Ẽh(P h), P h ∈ Ph

}
Ph =

{
P h ∈ RNb×Nb, P h = [P h]T , 0 ≤ P h ≤ 1, Tr(P h) = Nh

}

−→ Relaxed Constrained Algorithms

• EC and Le Bris, IJQC ’00
• EC, J. Chem. Phys. 114 ’01
• Kudin, Scuseria and EC , J. Chem. Phys. ’02
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Conclusions of this part

1. Using rigorous bulk limit arguments, we have obtained a (non-trivial)
variational model for computing the electronic ground state of insulat-
ing and semiconducting crystals with local defects.

This model takes into account the screening effect in insulators and
semi-conductors in an implicit (but exact) way.

2. Hierarchical variational approximations of the modification Qm,εF of
the density matrix can be computed using a (possibly enriched) ba-
sis of Maximally Localized Wannier Functions of the host crystal (EC,
Deleurence and Lewin, J. Phys.: Cond. Mat. ’08)

−→ Accurary? - Linear scaling? - Sublinear scaling?


