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2 Section 1
1. Introduction.

Disordered systems are among the most fascinating, and most difficult, problems in sta-
tistical physics. They arise immediately whenever the hypothesis of translation invariance is
put in question, as happens almost always already in solid state physics (where perfect crys-
tals are expensive and impurities are the rule). More importantly, dropping this hypothesis
allows physics to expand well beyond its own field into areas of application where a complex
and messy underlying structure of interaction is fundamental, and nobody would dream to

use a homogeneous perfect system even as a first approximation.

The reason why physics can still have a say in such situations is by the ingenious idea to
bring order back into the chaos by stepping one level up: moving from disordered systems
to random systems allows us to speak instead of some messy hard to describe object of the
particular realization of a random object governed by nice and regular probability distribu-
tion. This construct does not only offer conceptual advantages, but also makes quantitative

computations — at least in principle — feasible.

The statistical mechanics of random systems has thus become a huge field with many
existing and even more potential applications. Theoretical research by physicist in this field
has been and is dominated by what is known as the replica method [MPV]: basically, an
ingenious trick that allows to some extend to transform the original random system back into
a deterministic system, albeit with same strange properties, which than can be subjected to
the usual tools of statistical mechanics such as expansions, renormalization group methods,
etc. The power of this method is absolutely stunning, as it allows to solve problems that
appear otherwise totally hopeless. This applies in particular to problems of combinatorial
optimization that have been heavily tried in vain with conventional methods. The main
disadvantage of the method is that from a mathematical point of view, it appears to make
no sense whatsoever. In fact, for a mathematician, it consist of a sequence of prescriptions to
perform formal manipulations for which there is no justification. However, the results of the
replica method, if carefully performed, seem to be, for the most part, perfectly correct. This
is, for the mathematician, a tremendous challenge. When does the replica method work, and

why does it work?

The other main tool of theoretical physics in the field is numerical simulation, i.e. Monte
Carlo methods. However, by and large they do not work terribly well in disordered systems,
due to very slow equilibration and strong finite size effects. In a way, the most interesting

aspect of Monte Carlo methods in the area of random systems is the analysis of these methods,
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i.e. Markov chains that are reversible with respect to the Gibbs measures, themselves. After
all, they are reasonable models for the dynamical behaviour of such systems, which in many

ways are of even greater interest than their equilibrium properties.

Mathematical physics has caught an interest in random systems early on, but compared
to the theoretical physics rapid progress, has been slow treading, although not without some
remarkable success stories. The most fundamental problems concern the description of the
phase structure, i.e. the classification of the Gibbs measures and their description. One can

roughly classify the typical problems according to the criteria
e mean field models vs. lattice models

e high temperature vs. low temperature

e weak disorder vs. strong disorder

Let me give a brief survey of the state of the art according to this classification. More
details can be found in [N,Fr,B].

1.1. Lattice models.
1.1.1. High temperature.

The high temperature phase of lattice models is probably the best understood part of
the entire field. There are reasonable criteria, based on high-temperature expansions or Do-
brushin uniqueness arguments augmented with percolation results, when to expect uniqueness
of the Gibbs state. This is to a large extend to be expected: high temperature means that the
interaction is rather irrelevant, be it random or not. In fact all existing difficulties stem from
the fact that in random systems one often cannot require uniform boundedness of potentials.
Work has then to be put into showing that, under reasonable assumptions on the distribu-
tions of the random parameters, this still does not destroy phase uniqueness[Be,Gi,KM]. A
more interesting issue arises if one also drops the assumption of absolute summability of the
interaction. This is naturally the case in some models of spin glasses. Uniqueness may then
only hold in a weak sense [FZ1,FZ2] and even in one dimensions very strange phenomena
may take place [GNS].

1.1.2. Low temperature.

1.1.2.1. Weak disorder.

Naturally, the first question one would ask is whether small random perturbation alter the

phase structure of the model at low temperature. It turns out that the nature of the random
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perturbation is very important. In particular it is important to know whether the random
perturbation breaks the internal symmetries of the model or not. The two key models that
differ in that respect are the dilute Ising model and the random field Ising model. The dilute

Ising model has the Hamiltonian

Hp(o) = — Z 00 J;; (1.1)
li—jll=1,ivieA

where J;; are independent random variables with positive mean and small variance. The +
symmetry of the model is unbroken, and it is a rather simple matter to show by an extension
of the Peierls argument that the model has two phases at small enough temperatures, if the
variance of the J;; is small enough [ARS,Ge2]. In particular cases, this can be made very
precise even using results from percolation theory [ACCN]. The point here is that the disorder
acts on the energy of barriers between regions where the system in the different ground states,
but the equality of the ground state energy is not affected. Thus small enough perturbations
still leave the energetic suppression of “domain walls” intact and long-range order is not
affected. Note however, that these statements hold only for the translation invariant Gibbs
states. In the ferromagnetic Ising model there exist also non-translation invariant “Dobrushin
states” in dimension d > 2. It is strongly believed that these will not exist in the dilute model
in d = 2, no matter how small the variance of J;; is, while at least some of them will be
stable against small perturbations in d > 3. This believe is based on corresponding rigorous
results in simplified (SOS) models of interfaces [BKul,BKu2].

The random field Ising model has the Hamiltonian

Hp(o) = — Z 00 — Zaihi (1.2)
li—jll=1,ivieA i€A

where now h; are i.i.d. random variable with symmetric distribution and small variance. The
point here is that the spin flip symmetry is broken in a typical realization of the disorder
variables (even though statistically the symmetry is preserved). This leads to a breakdown
of the Peierls argument and which left the issue of the existence of a phase transition at
low temperatures open to debate for a long time. In fact, in the 80’s, there was a heated
debate in the theoretical physics community on whether the lowest dimension for which
several phases could exist in this model was 3 or 4. The indecision was due to the fact
that two convincing heuristic arguments (the “Imry-Ma argument” [IM] and the theory of
“dimensional reduction” [We]) gave contradicting answers. The issue was resolved in 1988

by a remarkable rigorous proof of the existence of two phases in d = 3 by J. Bricmont and
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A. Kupiainen [BrKup], which followed an earlier result of J. Imbrie [I] who proved in the
same dimension the existence of two ground-states. Shortly afterwards Aizenman and Wehr
[AW1,AW2] proved the uniqueness of the Gibbs state in dimension 2. Unfortunately, there
has been only limited progress on these general stability questions since then (except for
the extension of the method to disordered SOS models [BKul,BKu2] and continuous spin
models [Kul,Ku2]. All these papers concern only the case where symmetries are statistically
unbroken. In ordered models, there is the well developed Pirogov-Sinai theory [PiSi] that
allows the analysis of phase diagrams also in the absence of symmetries. Zahradnik has
started a program of developing a version of this theory for randomly perturbed models, but
the announcement in some conference proceedings [Za] have not been followed by full proofs.
This is in my view an absolute desideratum, and on the basis of the present technology

perfectly doable.
1.1.2.2. Strong disorder.

By strong disorder I will understand situations where the random interactions have strong
competing components, and, in particular, there are no “obvious” deterministic or random
candidates for “ground states” that can provide a basis for a perturbative treatment. The
main task in such a situation becomes than to understand and describe the emergence of
a genuinely random structure in the low temperature phases. The prototypical model is
the Edwards-Anderson spin glass, those Hamiltonian looks like (1.1), but where the random
couplings J;; are now i.i.d. random variables with mean equal (or very close to) zero and
variance of the order of 1. (In the original model of Edwards and Anderson, they are taken
to be uniformly distributed on the interval [—J, J], but one might just as well take other
distributions like symmetric Bernoulli or centered Gaussian). It is probably not doing too
much injustice to anyone to say that we know nothing rigorously about the low temperature
phases of this model in any dimension above one. This is to except a number of general
properties of the Gibbs states that can be deduced from soft arguments of ergodic theory,
which have been obtained for the greater part in recent work of Ch. Newman and D. Stein
[N,N1,N2,N3,N4,N5] in an attempt to provide some hard checks into the raging dispute in
the physics community on whether this model is or is not well described by mean-field theory
or not. Apart from that, there is at present little reason to believe that progress can be made

in the near future.
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1.2. Mean field models.
1.2.1. Weak disorder.

The mean field analogues of the models discussed under 1.1.2.1., the dilute Curie-Weiss
model and the random field Curie- Weiss model are reasonably simple mean field models that
can be analysed with the standard methods of large deviation theory. They offer no particular
challenges. However, they may still serve as illustrations for some of the effects that can occur
in disordered systesm [Ku3,Ku4]. Another random generalization of the Curie-Weiss model
it the family of models known as “Hopfield models”[Ho, AGS]. Their Hamiltonian is of the
form

| XN M
Hy.m(0) = =% > (Z 555;‘) 0i0; (1.3)

ij=1 \u=1
where ¢! are i.i.d. symmetric Bernoulli random variables. If M = 1, the model is equivalent
to the Curie-Weiss ferromagnet by a gauge transformation. When M is finite, it can again be
analysed with standard large deviation methods and offers no particular challenge, although it
shows already 2M extremal Gibbs states. As M is allowed to grow with N the model becomes
more and more interesting and challenging, while, as long as M < alN with a < 1 it remains
somewhat in a “weak disorder regime”, even though it then has infinitely many extremal
Gibbs states at low temperatures, and a “complete” analysis of the full phase structure is
only possible if the temperature is not too low (as a function of «). This class of models has
become a most interesting playground for developing methods to tackle disordered systems.
There are a number of review papers dealing with these developments [BG1,B] and I will not

deal with these models in these notes.

1.2.2. Strong disorder.

The most interesting situation in disorder arises when structure emerges out of complete
randomness in a “self-organizing” way. This phenomenon appear in the most striking way in
mean field models of spin-glasses. The prototypical model here is the classical Sherrington-
Kirkpatrick (SK)[SK] model, with Hamiltonian

Hy(o) = —% IS;SN ;010 (1.4)
where the J;; are i.i.d. centered Gaussian random variables with variance 1. A variant of

this model which is of some importance are the p-spin interaction SK models, where

p!
Hyn(o) = —4/ Ne=D Z Jiy..ipCiy - - - Oiy) (1.5)

1<i1 < <ip<N
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It is also of interest to consider these models with an external magnetic field term, k), o3,
added.

All these models have been solved completely with the help of the replica method and
Parisi’s replica symmetry breaking scheme, which is being reviewed in Monasson’s tutorial.
Some of these results have recently been recovered via rigorous implementations of the so-

called “cavity method”, mainly through the work of M. Talagrand.
1.2.2.1. High temperatures.

In the standard SK model, there is a region in the 8, h plane (bounded by the “Almeida-
Thouless line” where what in the language of the replica method is called the “replica sym-
metric solution” is supposed to hold. it is now understood that this corresponds to the
situation that the Gibbs state is “unique” in the sense that the Gibbs measure in finite vol-
ume converges to a unique random product measure on {—1,1}°°, as N 1 co. The probability
distribution of this random measure depends on two parameters (the “mean”, m, and the
“overlap parameter”, q) that satisfy a set of nonlinear equation that are exactly what comes
out of the “replica symmetric solution” in the replica method. At present, it is possible to
prove that this is indeed correct in a subset of the region where it this is expected to hold.
Similar result are now known in a number of mean field models such as the Hopfield model
and the perceptron (in this case, in a recent paper [ST], Shcherbina et al. prove such a result

indeed for the entire region where it is expected to hold).

The method behind these proofs are always induction over the volume. This program goes
in fact back to work of L. Pastur and M. Shcherbina [PS] that first established in this way
rigorously the relation between the factorisation of the Gibbs measure and the validity of the
replica symmetric ansatz. Talagrand [T6] has improved these results by proving inductively
at the same time that the factorization hypothesis hold in certain parameter ranges. The

proofs are, unfortunetely very demanding.
1.2.2.2. Low temperatures.

Moving to low temperatures, results become much sparser. Basically, there are two exam-
ples now where at least part of the low temperature region is explored. In the Hopfield model
for small « this has been possible by some a priori control on the support properties of the
Gibbs measure in some essentially “deterministic” sets [BGP,BG2]. The conditional measures
on a connected component can then be shown via the cavity method to be asymptotically

product, and the replica symmetric solutions can be established [BG1,BG3,T2,T5].
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Even more recently, Talagrand has provided a similar result in the p-spin interaction SK
models for large p [T3,T7,T8]. In this setting the Gibbs measure concentrates on a random
set of disjoint subsets. A crucial new ingredient in this analysis are the so-called Ghirlanda-
Guerra identities [GG,AC] which I will explain in great detail in the main part of the paper.
However, also this situation is, from the replica theory point of view, quite trivial, as only a
single step of the replica symmetry breaking proceedure is necessary, while in the standard
SK model, or even in the p-spin or the Hopfield model at lower temperatures, an infinity of

steps is required.

There is, however, annother class of mean field spin glasses, introduced by Derrida in the
80’s, called the Generalized Random Energy models (GREM), that are for some technical
reasons much simpler to analyse, although from a replica point of view they exhibit the full
complexity of infinite replica symmetry breaking as the SK models. Ifind it rather interesting
tht with the help of the Ghirlanda-Guerra identities and some relatively elementary work,
we can now understand and anlyse these models in full detail and rigor and get in this way
a glimpse of the beautiful structure and physical meaning of the structures predicted by the

replica theory. I will devote a large part of these notes to the review of these recent results.

The remainder of these notes consists of three Section. In Section 2 I will will introduce and
formalize the Gibbsian setting for random spin systems and briefly introduce the metastate
formalism. Section 3 is devoted to a pedagogical toy model, the random energy model. Here
we will get an occasion to introduce some important concepts in an elementary setting. In

Section 4 I will apply these concepts to Derrida’s models.

2. Random Gibbs measures and metastates.

We will now give a general definition of disordered lattice spin systems and discuss the
basis of the Gibbsian formalisms as well as the notion of metastates in this context. This
is an abbreviated version of part 2 of my MaPhySto lectures [B]. We consider a lattice Z¢,
a single site spin space (Sy, Fo,vp) and the corresponding a priori product space (S, F,v).
We add a (rich enough) probability space (€2, B,P) where Q will always be assumed to be a

Polish space. On this probability space we construct a random interaction as follows:

Definition 2.1: A random interaction ® is a family {®a}acze of random variables on
(Q, B,P) taking values in B(S,Fa4), i.e. measurable maps 4 : Q> w — Palw] € B(S,Fa).

A random interaction is called reqular, if, for P-almost all w, for any x € Z%, there exists a
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finite constant c|w], such that

> 1 afw]lloo < clu] < 00 (2.1)
Adzx
A regular random interaction is called continuous if for each A C A, ® 4 is jointly continuous

in the variables n and w.

In the present section we discuss only regular random interactions. Some of the most inter-
esting physical systems do correspond to irregular random interactions. In particular, many

real spin glasses have a non-absolutely summable interaction, called the RKKY-interaction.

Remark: In most examples of interest one assumes that the random interaction has the

property that ® 4 and ®p are independent, if AN B = 0.

Given a random interaction, it is straightforward to define random finite-volume Hamilto-
nians

Hywl(o)= Y. @alwl(0) (2.2)

ANA#D

. Note that for regular random interactions, H, is a random variable taking values in the
space B, (S), i.e. the mapping w — H[w] is measurable. If moreover the ® 4 are continuous

functions of w, then the local Hamiltonians are also continuous functions of w.

Random local specifications ux)ﬁ[w] are again defined in complete analogy to the deter-

ministic case, i.e.

1
U] (do) = — e PHNLIENI 5, (doy )b (drye) (23)
Zﬁ,A[w]

The important point is that the maps w — /‘E\.?ﬁ [w] are again measurable in all appropriate

senses. In particular:
Lemma 2.2: Let ® be a reqular random interaction. Then

(i) forallA C Z% and A € F, u(ﬁ")A(A) s measurable function w.r.t. the product sigma-algebra
fAc X B

(11) For P-almost all w, for alln € S, ,uX’)ﬂ [w](do) is a probability measure on S.

(113) For almost all w, the family {u(ﬁ')A[w]}A L is a local specification for the interaction ®[w]
’ c

and inverse temperature 3.
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(% 18 a conitnuous reqguiar ranaom 1IiNniteracrions, eEn jor any jinite [\, U w| 18 joinily
v) If ® i ti ! dom interactions, th ite A, u 5[] is jointl

continuous in n and w.
We can now define random infinite-volume Gibbs measures.

Definition 2.3: A measurable map pg : Q@ — My(S,F) is called a random Gibbs
measure for the reqular random interaction ® at inverse temperature 3, if, for almost all w,

pplw] is compatible with the local specification {ug)A[w]}A . for this interaction.
3 CZ

The first question concerns the existence of such random Gibbs measures. One would
expect that, at least for compact state space, a simple compactness argument should prove
provide existence of such random Gibbs measures. Now it is indeed obvious in the compact
case that for almost all w, any sequence ,ug A, [w] taken along an increasing and absorbing
sequence of volumes possesses limit points, and therefore, there exist convergent subsequences
Ao such that ug’ Anfo] [w] converges and the limit is a Gibbs measure for the interaction ®[w].
The non-trivial issue provoked by the fact that the subsequence A, [w] must in general depend
on the realization of the disorder is, whether the measures obtained by this construction

depend on w in a measurable way?

This question may first sound like some irrelevant mathematical sophistication, and indeed
this problem was mostly disregarded in the literature. To my knowledge this problem was
first discussed in a paper by van Enter and Griffiths [vEG] and studied in more detail by
Aizenman and Wehr [AW1], but it was Ch. Newman and D. Stein [NS1,NS2,N] to have
brought the intrinsic physical relevance of this issue to light. Needless to say the issue arises
only when limits along deterministic subsequences cannot be constructed, and this could be

feared mainly in very strongly disordered systems such as spin-glasses as we will discuss later.

On more physical terms, the construction of infinite-volume Gibbs measures via limits
along random subsequences can be criticised by its lack of actual approximative power. An
infinite-volume Gibbs measure is supposed to approximate reasonably a very large system
under controlled conditions. If, however, this approximation is only valid for certain very
special finite volumes that depend on the specific realization of the disorder, while for other
volumes the system is described by other measures, knowledge of just what are the infinite-

volume measures is surely not enough, if nothing is known about the relevant subsequences.

As far as proving the existence of random Gibbs measures is concerned, there is a rather
simple way out of the random subsequence problem. This goes by extending the local speci-

fications to probability measures Kg A on QxS in such a way that the marginal distribution
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of Kj , on Q is simply PP, while the conditional distribution, given B, is ,u(") [w].

Theorem 2.4: Let @ be a continuous reqular random interaction. Let Ké’)A be the

corresponding measure defined as above. Then

(i) If for some increasing and absorbing sequence, A,, and some n € S the weak limit
limntoo K o = Kj exists, then its conditional distribution K5(:|B x S) given B is a

random Gibbs measure for the interaction ®.

(1) If S is compact, then there exist increasing and absorbing sequences A, such that the
hypothesis of (i) is satisfied.

Proof: The proof of this theorem is rather instructive. Let f € C(S,F) be a continuous

function. We must show that

KI(f1B x 8)lw] = KI(uSL[w](1)]B x 8)lw] (2.4)

Let Bg, k € N be a filtration of the sigma-algebra B where B, is generated by the interaction
potentials ®4 with A C Ay with Ay some increasing and absorbing sequence of volumes.

Note that
K4 (f1B x S)w] = fim lim Kg o, (f1Br x S)[w] (2.5)

Let us denote by Bi[w] the set of all w’ € Q that have the same projection to By as w, more

formally
Bilw] = {0 € Q|VaeBwea : ' € A} (2.6)

But for any fixed A and n large enough,
Ramy ’ _ w (71) W' QNG
[, P = [ Pl @) (sa10)
= [ P ) (nEaiel) (27)
. PG ) (A1) — HEAA)

The first term in the last expression converges to K "(ué"}x[ 1(f)|B x S)[w], while for the last

we observe that due to the continuity of the local specifications in w, uniformly in n,

| P ) (A1) - ug”A[w](f))‘
By [w] (2.8)

< sup sup [ufA (1) — wAWl()] L0,
w!'EBg[w]NES
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as k 1 co. This proves the Theorem.<>

Theorem 2.4 appears to solve our problems concerning the proper Gibbsian set-up for
random systems. We understand what a random infinite-volume Gibbs measure is and we
can prove their existence in reasonable generality. Moreover, there is a constructive procedure
that allows us to obtain such measures through a procedure of taking infinite-volume limits.
However, upon closer inspection, the construction is not quite as satisfactory as it seems. The
unsatisfactory point lies actually hidden in equation (2.5) that tells us what conditioning on
B actually amounts to. In all the examples of interest, the space Q will itself be some infinite
product space §2 = Q%d, and will be equipped with the product topology. The filtration By
will then consist of the Borel-field of Qg’“ for some increasing and absorbing sequence of finite
volumes Aj. That is, the measures Kg(|Bk x §) are actually averages of Gibbs measures
over the values of the random interactions outside a finite region Ay, and so their limit still
contains an averaging over the realization of the disorder “at infinity”. This manifests itself
in the fact that the measures Kj(-|B x S) will often be mixed states. In particular, this state
will not actually describe the result of the observations of one sample of the material at given
conditions, but rather the average over many samples that have been prepared to look alike

locally. This is clearly not a very physical situation.

While we have come to understand that it may not be realistic to construct a state that
predicts the outcome of observations on a single (infinite) sample, it would already be more
satisfactory to obtain a probability distribution for these predictions (i.e. a random proba-
bility measure) rather than just a mean prediction (and average over probability measures).
This led Aizenman and Wehr [AW1] and more emphatically Newman and Stein [NS1] to
an extension of the preceding construction to a measure-valued setting. That is, rather
than to consider measures on the space 2 x S, they introduced measures IC; A on the space
Q x My(S), defined in such a way that the marginal distribution of ICZ7 A on Q is again PP,
while the conditional distribution, given B, is 5/43\ ]’ the Dirac-measure concentrated on the

corresponding local specification. We will introduce the symbolic notation

n —
’Cﬂ,A =P x 5#;")3\ ] (2.9)
One has the following analogue of Theorem 2.4:
Theorem 2.5: Let ® be a continuous reqular random interaction. Let K[S)A be the

corresponding measure defined as above. Then

(i) If for some increasing and absorbing sequence, A,, and some n € S the weak limit
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limppoo K3 . = K exists, then its conditional distribution Kj(-|B x S) given B is a
probability distribution on M1(S) that, for almost all w, gives full measure to the set of
infinite-volume Gibbs measures corresponding to the interaction ®|w| at inverse tempera-
ture 8. Moreover,

KJ(|B x 8) = K3 (ulB x 8) (2.10)

(ii) If S is compact, then there exist increasing and absorbing sequences A, such that the

hypothesis of (i) is satisfied for any 7.

Remark: The conditional measure

K =IKC5([B x S) (2.11)

is called the Aizenman-Wehr metastate (following the suggestion of Newman and Stein [NS1]).

Proof: A proof of this theorem can be found in [N]. Here I will give a simple proof following
[AW1]. Note that the assertion (i) will follow if for any bounded continuous function f : § —
R, and any finite A C Z¢%, we can show that

B [ K3(dulB x $)@) u() ~ u (1§\11() | =0 (2.12)

But the left hand side clearly equals

[ K ) () = (4 )| (213)

Now u(g) is trivially a continuous function of y if g is continuous. By Lemma 1.9, ,ug Alwl(f)
is continuous in f whenever ®[w] is regular and continuous, i.e. for almost all w. Thus, both
wu(f) and p (NZA[W](f)) are continuous in y, and hence the integrand in (2.12) is a bounded
continuous function of y and w. But then, by definition, the left-hand side of (2.13) is given
by the limit

lim [ Ky (dp,dw) [u(F) = s (1 A1)

ntoo

= Tim E |} 5 [W)(F) = 1§ 0, 0] (15 o 1)(0))|

n?too

(2.14)

But the first term in the last line is equal to zero as soon as n is so large that A C A,, which

implies that (2.12) holds. Assertion (ii) follows by compactness. <

At this stage the reader may rightly hold his breath and ask the question whether all this

abstract formalism is really necessary, or whether in reasonable situations, we will not get
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away without all of this? To answer this question, we need to look at specific results, and

above all, at examples.

Unfortunately, there are almost no lattice spin models that we could work out to sufficient
precision to be able to really construct any metastate explicitely. In fact, the only example
where this has been done very recently is a ferromagnetic Ising model with random boundary
conditions [vEMN]. Of course this goes a little against our original intentions. Despite the
fact that we cannot work out an explicit metastate, Newman and Stein have brough up this
concept precisely in the context of lattice spin glasses. Their main intention was to verify
which of the general properties that come out of the mean field solution of Sherrington-
Kirkpatrick model can possibly remain true in a lattice model in finite dimensions, and how
the various quantities ought to be interpretated in a mathematically sound framework. This
has led to considerable clarifications, at least in my view. However, since lattice models are
not necessarily the main concern of this meeting, I will not follow this line, and rather turn

to the analysis of mean field models there these concepts can be nicely interpreted.

3. The simplest example: The random energy model.

The random energy model, introduced by Derrida [D1,D2] can be considered as the ulti-
mate toy model of a disordered system. In this model, rather little is left of the structure
of interacting spins, but we will still be able to gain a lot of insight into the peculiarities of
disordered systems by studying this simple system. For rigorous work on the REM see e.g.
[Ei,OP,GMP,DW].

The REM is a model with state space Sy = {—1,+1}". For fixed N, the Hamiltonian is
given by
Hy(o) = —VNX, (3.1)
where X, is a family of 2V i.i.d. centered normal random variables.

3.2.1. The free energy.

Before turning to the question of Gibbs measures, we turn to the simpler question of
analysing in some detail the partition function. In this model, the partition function is of

course just the sum of i.i.d. random variables, i.e.

Zogn=2"N Y fVNX (3.2)
ocESN

One usually asks first for the exponential asymptotics of this quantity, i.e. one introduces
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the free energy,
1
Fﬂ,N = —N anﬂ,N (33)

and tries to find its limit as IV 1 co. Let me mention that in general mean field spin glasses,
the existence of the limit even of the averaged free energyt has been a long standing open
problem. While writing these note, a preprint by Guerra and Toninelli [GT] has appeared in
which a simple and clever proof of the existence of the limit in a rather large class of mean

field spin glass models is given.

In our simple model we expect of course to be able to compute this limit exactly. In fact,
the first guess would be that a law of large numbers might hold, implying that Zg n ~ EZ3 n,

and hence 0

1
I%iTrgo Fgn = },1%{)10 N InEZg Ny = 5 as (3.4)

It turns out that this is indeed true, but only for small enough values of 8, and this can
be linked precisely to a critical value for the breakdown of the law of large numbers. The

analysis of this problem will allow us to compute the free energy exactly.

Theorem 3.1: In the REM,

N

_ B
lim EFBJV _ { 227 for /3 < /Bc (35)
Ntoo —Be —(B—-B.)B., for B> 8.

where B, = vV21In2.

Proof: We give the proof of this theorem since it allows us to show the working of an impor-
tant idea, the method of truncated second moments which was introduced by M. Talagrand
[T2,T3]. We will first derive a lower bound for EFg n. Note first that by Jensen’s inequality,
Eln Z <InEZ, and thus

2
BFp > o (3.6)

On the other hand we have that

d —1/2 EUXUBB\/NX‘T —1/2
B Fon = NTESTS2S—— < NTVIE max X, < fY2W2(14 O/N) - (3.)

B8,N

for some constant C. Moreover, since dd—;ng, ~ < 0, we may combine (3.6) and (3.7) to deduce

that

EFg n > sup (3-8)

Bo>0

{ _f’_;, for < By
—% _ (8- By)V2In2(1 + C/N), for B> B
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It is easy to see that the supremum is realized (ignore the C'/N correction) for 5y = v21In2.
This shows that the right hand side of (3.5) is a lower bound.

It remains to show the corresponding upper bound. The basic idea behind this approach

is to obtain a variance estimate on the partition function* . Naively, one would compute

BZ3 y = B, By BV RO )

= 972N Z eNo® 4+ ZeZNﬂz (3.9)

oF#a’! o

— NP [(1 97Ny 2‘”e”ﬁz]

where all we used is that for ¢ # ¢’ X, and X, are independent. Now we see that the
second term in the square brackets is exponentially small if and only if 32 < In2. For such

values of 3 we have that

ZﬂN ZﬂN —eN ZﬂN N
l ? 3 € ) €
n ‘ > eN] =P [7@ <e or 7& >e

Zp.N 4 ’ | — g—cN)2
wzpn 1) 70T
EZ} n /(EZpx)? — 1
— (1_6—6N)2
2~N 4 9= NNB*

=T (1 —e )2

(3.10)

which is more than enough to get (3.4). But of course this does not correspond to the critical
value of B claimed in the proposition! Some reflection shows that the point here is that when
computing Eeﬂ‘/NZX”, the dominant contribution comes from the part of the distribution
of X, where X, ~ 2ﬁ\/ﬁ , whereas in the evaluation of EZg n the values of X, where
Xy ~ ﬁ\/]v give the dominant contribution. Thus one is led to the realization that it is not
the second moment of Z one should control, but rather that of a truncated version of Z,
namely, for ¢ > 0,

Zon(e) =B, PV (3.11)

An elementary computation using the standard bound, for u > 0,

1 2 1 o 2 1 2
Ty )] 9, =2 _/ —z%/2 Ty )]
e 1—2u < e dzr < e 3.12
V21U ( ) T2 Sy TV 27u ( )

4This idea can be traced to Aizenman, Lebowitz, and Ruelle [ALR], and later Comets and Neveu [CN]
who used it in the proofs of a central limit theorem for the free energy.



Disordered systems 17

shows that
2 e~ N(=B)2/2 :
N N (1= Gy 1L+ OU/N)), i <
BZ, () = (3.13)
: 140(1/N) Nge—Ng if 3> ¢
V2rN(B—c) ’

Note that (3.13) shows that this truncation essentially does not influence the mean partition

function, if 8 < c.

But now compute the mean of the square of the truncated partition function:
EZf v (c) = (1 =27 N)[EZp (o)) + 27 VELSVVXol, oy (3.14))

where the second term satisfies (we do not mention the irrelevant O(1/N) error term anymore)

_ 2~Neg28°N if 28 <c
9—N 26V NX, Iy .. &< reaN — 2N (3.15)
7 2_N (Z,@—T;T—N s OtherWise,
Combined with (3.13) this implies
e~ Nn2-p%) if B<g,
2 NEe2VNXoq @ N(em8)?—N(m2- 2
s<cVN e~ N(e=B)?—N(in2- %) e e
(JEZ )2 : RSN A if 3<B<e (3.16)
ik e(c?/2=1n2)N /5 AT (gﬂ_—C)cz . if B>c
Therefore, for all ¢ < v/2In2, and all 8 # ¢,
~ ~ 2
ZﬂaN(c)’v_ EZﬂyN (C) S e—Ng(c,,@) (317)
EZg N (c)

with g(e, 8) > 0. Thus Chebyshev’s inequality implies that
P [%,N(c) —EZsn(c)] > 51Ez~ﬂ,N(c)] < 52 Na(e:h) (3.18)
which implies in particular that

1 = 1 =~
I%iTrgo NEIH Zg,n(c) = J\IIITIBO N InEZg n(c) (3.19)

for all ¢ < v/21In2 = B.. But this implies that for all ¢ < 3.

2
%, for B <ec

2 (3.20)
S +c(B—c), for B>c

1 1 ~
]\l,iTrilo N InEZg n > Illl%go N InEZg n(c) = {
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which converges to minus the right hand side of (3.5) as ¢ 1 .. This proves the theorem.{
3.2.2. Fluctuations and limit theorems.

Knowing the free energy is important, but, as one may expect, it is not enough to under-
stand the properties of the Gibbs measures completely. It is the analysis of the fluctuations
of the free energy that will reveal, as we will see, the necessary information. In the REM this

can be done using classical results from the theory of extreme value statistics. The proofs

are, nonetheless, quite cumbersome, and may be found in in [BKL] or [B].

Theorem 3.2: The partition function of the REM has the following fluctuations:

(1) If B < \/In2/2, then

oy, Z
e (2= 1y ZBN B pr 1), (3.21)
Z8,N
(11) If B = +/In2/2, then
Vae ¥ 2= 1y D8N D \ro 1), (3.22)
BZp,n

(iii) Let a = B/v2In2. If \/In2/2 < 8 < +/2In2, then

N 2, a Z e
¥ (VIR Wi tninl g PN D[ e p(az) —eran), (323)

where P denotes the Poisson point process® on R with intensity measure e~ *dz.

(iv) If B =+/21n2, then

) Z 1 In(NIn2) +In4ny p [° _ T
5 [In(N In 2)+1n 47] ( B8N 2 ) / z L,z / z
e + — e*(P(dz)—e *dz)+ | e*P(dz).

EZgn 2 4v/7TN1n?2 oo (P(dz) ) / (d2)

(3.24)
(v) If B > v/21In2, then
e—N[,B\/2ln2—1n2]+%[1n(N1n2)+1n41r]Zﬂ’N g / e**P(dz) (3.25)
and - -
InZsn —Eln Zgy 2 In / e**P(dz) — Eln / e“*P(dz). (3.26)

5For a thorough exposition on point processes and their connection to extreme value theory, see in par-
ticular [Re].
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Remark: Note that expressions like f_ooo e*(P(dz) — e *dz) are always understood as
limy| oo fyo e*(P(dz) — e *dz). All the functionals of the Poisson point process appearing are
almost surely finite random variables. Note that the limit in (3.23) has infinite variance and

the one in (3.25) has infinite mean.

Let us just briefly comment on how these results are obtained. In fact, (i) follows from

the standard CLT for arrays of independent random variables une Lindeberg’s condition.

As the Lindeberg condition fails for 262 > In2, it is clear that we cannot expect a simple
CLT beyond this regime. Such a failure of a CLT is always a problem related to “heavy
tails”, and results from the fact that extremal events begin to influence the fluctuations of
the sum. It appears therefore reasonable to separate from the sum the terms where X, is
anomalously large. For Gaussian r.v.’s it is well known that the right scale of separation is

given by uy(z) defined by

T dz 2
2N / e /2=e" 3.27
or (3.27)
un (@)
which (for x > —In N/In2) is equal to (see e.g. [LLR])
In(N1In2) 4+ In4
un(z) = VANTZ+ 2 _ N2 +lndm (3.28)

V2N In2 2v/2N In2

z € R is a parameter. The key to most of what follows relies on the famous result on the
convergence of the extreme value process to a Poisson point process. Let us now introduce
the point process on R given by

PN= Y b, i(x,y (3.29)

ocESN

A classical result from the theory of extreme order statistics (see e.g. [LLR]) asserts that
Theorem 3.3: The point process Py converges weakly to a Poisson point process on R with
intensity measure e~ *dr. The key idea is then to split the sum by a cutoff corresponding
to whether X, is biger or smaller than uy(z); the former can then be represented as a
functional of the extremal process that converges to the Poisson process, and the latter has

to be controlled carefully. The computations are in fact quite tedious.

Iw we write
Zg,N=Zsn+ (ZsN— Z5N) (3.30)
for 8> +v2In2

ZgN — ZEN _ eN[ﬁ\/2ln2—ln2]—%[ln(Nln2)+ln41r] Z H{ufl(a)n}e"“;vl(X") (3.31)
’ N

cESN
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so that for any z € R,
(Zﬂ,N _ ZE’N)B—N[ﬂ\/Zln 2—In 2]+%[1n(N1n 2)+1n 47] 2) /CazP(dZ). (332)

The remaining term is shown to converge to zero under this scaling. <

3.2.3. The Gibbs measure.

With our preparation on the fluctuations of the free energy, we have accumulated enough
understanding about the partition function that we can deal with the Gibbs measures. Clear-
ly, there are a number of ways of trying to describe the asymptotics of the Gibbs measures.
Recalling the general discussion on random Gibbs measures, it should be clear that we are
seeking a result on the convergence in distribution of random measures. To be able to state
such a results, we have to introduce a topology on the spin configuration state that makes
it uniformly compact. The usual topology we used to do this was the product topology,
and this clearly would be an option here. However, given what we already know about the
partition function, this topology does not appear suited to give describe the measure appro-
priately. Recall that at low temperatures, the partition function was dominated by a ‘few’
spin configurations with exceptionally large energy. This is a feature that should remain
visible in a limit theorem. The question we therefore must address in mean field models is
how to describe a limiting measure on an infinite dimensional cube that properly reflects the
symmetry (under permutation) of the finite dimensional object, in other words that views

this object in an unbiased way.

A first attempt consists in mapping the hypercube to the interval [—1, 1] via
N
Syo0—ry(0) =) 027 € [-1,1] (3.33)
i=1

Define the pure point measure fig,n on [—1,1] by

pe,N = Z Orn () 18,N (0) (3.34)
ocESN

Our results will be expressed in terms of the convergence of these measures. It will be
understood in the sequal that the space of measures on [—1, 1] is equipped with the topology

of weak convergence, and all convergence results hold with respect to this topology.
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As the diligent reader will have expected, in the high temperature phase the limit is the

same as for 8 = 0, namely
Theorem 3.4: If 8 <+/2In2, then

pg,N — %)\, a.s. (3.35)
where \ denotes the Lebesque measure on [—1,1].

Proof: Note that we have to prove that for any finite collection of intervals Iy,...,I; C
[—1, 1], the family of random variables {fig (1), ..., ig,n(Ir) converges jointly almost surely
to %|Il|, cen %|Ik| But by construction these random vectors are independent, so that this
will follow automatically, if we can prove the result in the case k = 1. Our strategy is to get

first very sharp estimates for a family of special intervals.

In the sequel we will always assume that N > n. We will denote by II,, the canonical
projection from Sy to S,. To simplify notation, we will often write o, = Il,,0c when no

confusion can arise. For o € Sy, set
an (o) = r,(Il,,0) (3.36)

and
I,(0) = [an(0) — 27", a,(0) +277) (3.37)

Note that the union of all these intervals forms a disjoint covering of [—1,1). Obviously, these

intervals are constructed in such a way that

fig.N (In(0)) = ppn ({0’ € Sy : TIn(0") =11, (0)}) (3.38)

The first step in the proof consists in showing that the masses of all the intervals I,,(o) are

remarkably well approximated by their uniform mass.

Lemma 3.5: Set 3 = ,/Njinﬁ. For any o0 € Sy,

(i) If B < /B2,
g N (In(0)) — 277 < 27" (N"mn2=60)y g (3.39)

where Yn has bounded variance, as N 1 oo.
(it) If /132 < B’ < V2In2,

|ﬂB,N(In(a)) _ 2—n| S 2—ne—(N—n)(\/21n 2—ﬂ')2/2—aln(N—n)/2YN_n (340)
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where Yy s a random variable with bounded mean modulus.
(iii) If B = v/21In2, then, for any n fized,

lig,n(In(0)) —27"| — 0 in probability (3.41)

Remark: Note that in the sub-critical case, the results imply convergence to the uniform
product mesure on S in a wvery strong sense. In particular, the base-size of the cylinders
considered (i.e. n) can grow proportionally to N, even if almost sure convergence uniformly
for all cylinders is required! This is unusually good. However, one should not be deceived
by this fact: even though seen from the cylinder masses the Gibbs measures look like the
uniform measure, seen from the point of view of individual spin configurations the picture
is quite different. In fact, the measure concentrates on an ezponentially small fraction of
the full hypercube, namely those O(exp(N(In2 — 32?/2))) vertices that have energy ~ BN
(Exercise!). It is just the fact that this set is still exponentially large, as long as 8 < v/2In2,
and is very uniformly dispersed over Sy, that produces this somewhat paradoxical effect.
The rather weak result in the critical case is not artificial. In fact it is not true that almost
sure convergence will hold. This follows e.g. from Theorem 1 in [GMP]. One should of course

anticipate some signature of the phase transition at the critical point.

Proof: The proof of this lemma is a simple application of the first three points in Theorem

3.2. Just note that the partial partition functions

Z,@,N(o-n) = Ea-l eﬁ‘/ﬁX”’ ]Inn (e )=0r (342)

are independent and have the same distribution as 27" Zg n_,. But

Zg.n — Zg,N(on)| + Zp,n(0n)

fig,N(In(on)) = [ (3.43)

Note that Zg n(0,) and [Zg N — Zg,n(0n)] are independent. It should now be obvious how
to conclude the proof with the help of Theorem 3.2.

Once we have the excellent approximation of the measure on all of the intervals I, (o),
almost sure convergence of the measure in the weak topology is a simple consequence. Of
course, this is just a coarse version of the finer results we have, and much more precise
information on the quality of approximation can be inferred from Lemma 3.5. But since the

high-temperature phase is not our prime concern, we will not go further in this direction.
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Somehow much more interesting is the behaviour of the measure at low temperatures that
we will discuss now. Let us introduce the Poisson point process R on the strip [—1,1] x R
with intensity measure %dy x e~ *dx. If (Yx, X%) denote the atoms of this process, define a

new point process W, on [—1,1] x (0, 1] whose atoms are (Yj,wy), where

ean

wy = W (3.44)

for @ > 1. Let us note that the process W = > x Wk is known in the literature as the

Poisson-Dirichlet process with parameter o [K].
With this notation we have that

Theorem 3.6: If 3 > V2In2, with a = /v2In2,

fion B iip = / Wa(dy, dw)s, w (3.45)
[-1,1]x(0,1]

Proof: With uy(z) defined in (3.28), we define the point process Ry on [—1,1] X R by

RN = D Srnloraz (o) (3.46)
ocESN
A standard result of extreme value theory (see [LLR|, Theorem 5.7.2) is easily adapted to
yield that
Ry B3R, asN?too (3.47)

where the convergence is in the sense of weak convergence on the space of sigma-finite mea-

sures endowed with the (metrizable) topology of vague convergence. Note that

eau;Jl (Xo) eau;rl (Xo) 348
up,N(0) = > poun (Xo) [ R (dy,dz)ex= (3.48)

Since [ Rn(dy,dz)e*® < co a.s., we can define the point process
Wy= ) 6 el xen ) (3.49)

rn(o),
oc€ESN ( fRN(dy,dw)exp(aw)

on [—1,1] x (0,1]. Then
fig N = / Wi (dy, dw)s, w (3.50)
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The only non-trivial point in the convergence proof is to show that the the contribution to
the partition functions in the denominator from atoms with un (X, ) < x vanishes as z | —oo.
But this is precisely what we have shown to be the case in the proof of part (v) of Theorem

3.2. Standard arguments then imply that first Wy 3 W, and consequently, (3.45). {

Remark: Note that Theorem 3.6 contains in particular the convergence of the Gibbs measure
in the product topology on Sy, since cylinders correspond to certain subintervals of [—1, 1].

On the other hand, it implies that the point process of weights ) 0,5 n (o) CONVETgES in

ocESN
law to the marginal of Wy on (0, 1] which is the process introduced by Ruelle [Ru4]. The
formulation of Theorem 3.6 is moreover very much in the spirit of the metastate approach
to random Gibbs measures. The limiting measure is a measure on a continuous space, and
each point measure on this set may appear as “pure state”. The “metastate”, i.e. the law of
the random measure fig is a probability distribution concentrated on the countable convex
combinations of pure states randomly chosen by a Poisson point process from an uncountable
collection, while the coefficients of the convex combination are again random and selected via
another point process. The only aspect of metastates that is missing here is that we have not
“conditioned on the disorder”. The point is, however, that there is no natural filtration of the
disorder space compatible with, say, the product topology, and thus in this model we have
no natural urge to “fix the disorder locally”; note that it is possible to represent the i.i.d.
family X, as a sum of “local” couplings, i.e. let Jy, for any I C N be i.i.d. standard normal
variables. Then we can represent X, = 2~ N/2 dorc {1,...N} orJr; obviously these variables
become independent of any of the Jr, with I fixed, so that conditioning on them would not

change the metastate.

Let us discuss the properties of the limiting process fig. It is not hard to see that with
probability one, the support of fig is the entire interval [—1,1]. On the other hand, its mass
is concentrated on a countable set, i.e. the measure is pure point. To see this, consider the
rectangle A, = (Ine, 00) x [—1,1]. Clearly, the process R restricted to this set has finite total

intensity given by e~!.

i.e. the number total number of atoms in that set is a Poissonian
random variable with parameter e~!. Now if we remove the projection of these finitely many
random points from [—1, 1], we will show that the total mass that remains goes to zero with
€. Clearly, the remaining mass is given by

ax Ine azx
e

R(dy,de) = Plde) —
/[—I,I]X(—oo,lne) ( )fp(dl.l)eam —o0 ( )fp(dl.l)eam

We want to get a lower bound in probability on the denominator. The simplest possible

(3.51)

bound is obtained by estimating the probability of the integral by the contribution of the



Disordered systems 25

largest atom which of course follows the double-exponential distribution. Thus
az —e InZ/a —Zii
P| [ P(dz)e*™ <Z|<e =e (3.52)

Setting Q7 = {P : [ P(dz)e™®® < Z}, we conclude that, for a > 1,

Ine ar Ine ar
e e .

- Ine

<P P(dz)e™® >~Z, Q| + P[Qz]
- Ine

<P P(dz)e®® > 7Z| + P[Qy] (3.53)
. Ine

E P(dx)e*”
< J- o Plde) + P[Qz]
Y

60(—1 _Zfé

< -
S (a_1)72+e

Obviously, for any positive 7 it is possible to choose Z as a function of € in such a way that
the right hand side tends to zero. But this implies that with probability one, all of the mass

of the measure fig is carried by a countable set, implying that fig is pure point.

So we see that the phase transition in the REM expresses itself via a change of the prop-
erties of the infinite volume Gibbs measure mapped to the interval from Lebesgue measure

at high temperatures to a random dense pure pure point measure at low temperatures.

3.2.4. The replica overlap.

While the random measure description of the phase transition in the REM appears rather
nice, one would argue that it ignores fully the geometry of the statespace as a hypercube. A
neat object to measure look at in this respect would be the mass dustribution around a given

configuration,

m(,(t) = ug,N (RN(O', 0") > t) (3.54)

where the o is fixed and the measure p refers to the configuration o’. m,(-) is a probability
distribution function on [—1,1]. As a function of o, this is a measure values random variable.
Taking the overage of this quantity again with respect to the Gibbs distribution of o, we

obtain the popular “overlap distribution”,

fo,Nwl(dz) = pg,N (M, (d2)) = pp,n[w] ® pp,N[w] (BN(0,0) € d2) (3.55)
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AS we have seen in the discussion of the metastate, it pays to pass again to a measure valued
description, that it to say, the following object

’C57N = Z ,ug,N(a)émU(.) (356)
ocESN

contains more information than just the overlap distribution. In fact, it tells us the probability
to see a given miss distribution around oneself, if one is distributed with the Gibbs measure.

Of course we have that

fanll) = [ Kaw(amym() (3.57)

Of course, in the REM, one is not likely to see anything very exciting, the overlap distri-

bution is asympototically concentrated on the values 0 and 1 only:
Theorem 3.7:

(i) For all B < +v/2In2

1%1%20 fﬂ,N = (50, a.s. (358)
(11) For all B> +/2In2
fan 3 6 (1 - / W(dy, dw)w2> + 6 / W(dy, dw)w? (3.59)

(iit) The random measures Kg n converge to a random probability distribution Kg that is sup-

ported on the atomic measures with support on {0,1}, more precisesly if B > v21n2,
’Clg = /W(dy,dw)w5w51+(1_w)5o (360)
while for B < v2In2, Kg is the Dirac mass on the Dirac mass concentrated at 0.

Proof: We will write for any I C [—1,1]
fan(I) = Zg 3By By Z BVN(Xo+X,1)

tel
Ry (o,0')=t

(3.61)

First of all, the denominator is bounded from below by [Zg,N(c)]z, and by (3.18), with
probability of order §~2 exp(—Ng(c, 8)), this in turn is larger than (1 — 6)2[EZg n (c)]2. Now
let first 8 < v21n2. Assume first that I C (0,1) U[—1,0). We conclude that

1
E I < E, E, 1+ § 2 9(AN
fo.n(I) < a=0)y ; +46 %
Ry (oreh)=¢ (3.62)
e~ No(t)

+ 52— 9(e:BN

1 1 22
V2rN (1 —9)2 1—¢2

tel
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for any 8 < ¢ < v2In2, where ¢ : [—1,1] — R denotes the Crameér entropy function

B(t) = @ in(1+ ) + & - D (1 — ) (3.63)

Here we used of course that, firstly, if (1 —¢)N =24, £=0,..., N, then

N
Eo Eqr ]IRN(G',G"):t =27V ( e) (364)

and, secondly, Stirling’s approximation which implies that

N 1 N NN
<€> ~ Var\ ey =) ZK(N_g)N—e(1+0(1)) (3.65)

valid if £ ~ N with z € (0,1). Under our assumptions on I, we see immediately from this
representation that the right hand side of (3.62) is clearly exponentially small in N. If 1 € I,
the additional term coming from ¢ = 1 is precisely the term that we have estimated in (3.16),
so that again this gives an exponentially small contribution. This shows that the measure

fa,n concentrates asymptotically on the point 0. This proves (3.58).

Now let 8 > v/21In2. Here we use the sharper truncations introduced in 3.2.2. Note first
that for any interval I
275 n

fan(I) — ZEjanEa' Z ]IXU,XGIZuN(z)eﬂ\/N(XU+X”’) < (3.66)

tel Z'@’N

Ry (o,0')=t
The proof of Theorem 3.2 shows that the right hand side of (3.66) tends zero in probability
as first N 1 oo and then = | —oo. On the other hand, for ¢ # 1

P [30',0',:RN(0',0")=t XU' > U’N(:E) A X(,r > UN("‘C)]

2 3.67
S IEa' ]IRN(G',G")Zt 2_2N]P) [Xa' > UN(.'L')]z e—(],’)(t)NeZa: ( )

~ VarNy/1- 22
by the definition of un(z) (see (3.27)). This implies again that any interval I C (0,1)U[—1,0)

will have zero mass. To conclude the proof it will be enough to compute fz n(1). Clearly

2_NZ2 N
fon(1) = =525 (3.68)
B8,N
By Theorem 3.2, (v), one sees easily that
2az
P(d
fan(1) D e Pldz) (3.69)

(f ex=P(d2))®
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Expressing the left hand side of (3.69) in terms of the point process W, defined in (3.44)
yields the expression for the mass of the atom at 1; since the only other atom is at zero the

full results follows from the fact that fg n is a probability measure.

The assertions on the measure Kg n are essentially a corollary of the preceeding results.
The fact that fg is a sum of Jp and §; implies immediately that the probability that m, is

not such a sum tends to zero. The explicit formula (3.60) is then quite straightforward. ¢

3.2.5. Multi-overlaps and Ghirlanda—Guerra identities.

It will be interesting to see that the random measures Kz can be controlled with the help
of some remarkable algebraic identities that in fact allow us to avoid the detailed analysis of

fluctuations performed in Section 3.2.2.

Let us first note that the convergence of the measures g n can be controlled through

their moments, which can be written als follows:

([ Kawtamm®.. [ Ka(mm )
=Eu§ly (mEr (). omb ()

I+ky +e+k 1 _I+1 1 _I+k
:]Euﬂ”LNlJr +’(RN(J,0+)E-,...,RN(0,0+1)E-,...,

(3.70)

I _Dtky+thki_1+1 I _Dtky+tk
.., By (o, ot thtdhiatly e Ry (ot ot TRt +’)E-)

The right hand side is a (marginal of) the distribution of the m(m — 1) replica overlaps under
the averaged product Gibbs measure on m =1+ k; +--- 4+ k;_; + 1 independent replicas of
the spin variables. Thus, if we can show that these multi-replica distributions converge, as
N 1 oo, then the convergence of the measures g n will be proven. This is a general fact,
which has notheing to do with the particular model we look at. In the REM, of course,
considerable simplification will take place since we know that the overlap takes only the
values 0 and one in the limit, and thus instead of looking at the entore distributions, it will

be enough to look at the atoms when overlaps equal to 1. That is to say it will be enough in
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our case to consider the numbers

]Eulﬁfll\elw...w, (RN(01,01+1) —1,...,Ry(ot,0"**F) = 1,...,
oo Ry(of, oltRtthioitly Ryl gl 1)
— ]E”EJI\CII . (01 S R R
ol =gltthitethiatl Gl 0'l+k1+"'+kl) (3.71)
e (of ottt
Lol =glthitbethatl 0-l+k1+"'+kz)

As we will show now, the multi-overlaps are not independent, but satisfy recursion relations
that are due to rather general principles. It will be instructive to look at them in this simple
context. These identities have been known in the physics literature and a more rigorous
analysis is given in a paper by Girlanda and Guerra [GG]. Equivalent relations were in fact
derived somewhat earlier by Aizenman and Contucci [AC].The importance of these relations
has been underlined by Talagrand [T4,T7]. Let us begin with the simplest instance of these

relations.

Proposition 3.8:For any value of 3,

E% Fox = —B(1 - Efs.n (1)) (3.72)

Proof: Obviously,
E,vVNX,efVNXo

N (3.73)

d
E—Fzny =—-N"1E
dIB ,BvN

Now if X is standard normal variable, and g any function of at most polynomial growth,

then
E[Xg(X)] = Eg' (X) (3.74)

Using this identity in the right hand side of (3.73) with respect to the average over X,, we
get immediately that

o VN X, efVNXo
E, efVNX,

—-N 28V NX,
— NGE (1 _ 2 Eee )

(Ey e VNXo)2 (3.75)

= NBE (1 - u§3 (151-,2))
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which is obviously the claim of the lemma.{
In exactly the same way one can prove the following generalisation:

Lemma 3.9: Let h: S} — R be any bounded function of n spins. Then
L pen |
\/N B8,N

i (3.76)
= BEuS (h(ol, oy a™) <Z Tpe—pt — nﬂak=an+1>>

=1

X, ch(oh,. .. ,0"))

Proof: Left as an exercise.

The strength of Lemma 3.9 comes out when combined with a factorization result that in

turn is a consequence of self-averaging.

Lemma 3.10: Let h be as in the previous lemma. For all but possibly a countable number
of values of G,

Jim T ‘]Euggv (Xpeh(a",...,0™)) — Eugn (Xpe) EnSy (h(0h,...,0™)) ‘ —0 (3.77)

Proof: Let us write
(Eu?’?v (Xo.rc h(ct, ... ,0")) — Eug v (X,x) ]Eu?f;v (h(al, . ,0")))2
_ (EuﬁN ((X . Eu?’?vXak)h(al,...,a")))2 (3.78)
< B (Koo — Buh Xor) Euf (h(o*,.., o)’

where the last inequality is the Cauchy—Schwarz inequality applied to the joint expectation
with respect to the Gibbs measure and the disorder. Obviously the first factor in the last
line is equal to
E (ps,n(X2) =[5 (Xo)]?) +E(p,n(Xo) — Bug v (X,))”

d? d d 2 (3.79)
2
= —0*E—F NB2E F E— F
g e NG (dﬂ oV~ e M)
We know that Fjg y converges as N 1 oo and that the limit is infinitely differentiable for all
B > 0, except at 8 = v2In2; moreover, —Fp y is convex in 8. Then standard results of

convex analysis imply that

2 2

d
i —E—F, l EF, 3.80
I?Tsogp( TR B,N) = ~ 3 wi EFeN (3.80)
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which is finite for all 8 # v/2In2. Thus, the first term in (3.79) will vanish when divided
by N. To see that the coefficient of V of the second term gives a vanishing contribution, we
use the general fact that if the variance of family of a convex (or concave) functions tends
to zero, then the same is true for its derivative, except possibly on a countable set of values
of their argument. In Theorem 3.2 we have more than established that the variance of Fg n

tends to zero, and hence the result of the Lemma is proven.
If we combine Proposition 3.8, Lemma 3.9, and Lemma 3.10 we arrive immediately at

Proposition 3.11:For all but a countable set of values 3, for any bounded function h :
Sy — R,

: ®n+1 1 n
J\IIITIBO Eug'y (h(ot,...,0™) Mk —gnr1)

(3.81)

1 n n .
— ;]Eu?’]\}H h(ct,...,0") Z]I,,z:,,k —l—IEu?’ZN(]I,ﬂ:,,z) =
1£k

Together with the fact that the product Gibbs measures are concentrated only on the sets
where the overlaps take values 0 and 1, (3.81) permits to compute the distribution of all

higher overlaps in terms of the two-replica overlap. E.g., if we put

A, = JlilTrgo Eu?’?v(ﬁgl:gzz...:,,n) (3.82)

then (3.81) with h = I 1_,2_...,» provides the recursion

—1 1 1—-A
AnH:”n An+ﬁAnA2=An(1— - 2)

= ﬁ (1 ! _kA2> Ay (3.83)

Note that we can use alternatively Theorem 3.4 to compute, for the non-trivial case 8 >

v2In2,
[N A / K g (dm) [m(1)]" (3.84)

so that (3.83) implies a formula for the mean of the n-th moments of W,

]E/ W(dy, dw)w™ = T(n + )0 (A3) (3.85)
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where Ay = E [ W(dy,dw)w?. This result has been obtained by a direct computation by
Ruelle ([Ru], Corollary 2.2), but its derivation via the Ghirlanda—Guerra identities shows a
way to approach this problem in a different manner that has the potential to give results in

more complicated situations.®

4. The Derrida models.

The reader of the previous chapter may think that that was ‘much ado about nothing’.
First, it was all about independent random variables, second, we used heavy tools to describe
structure that is in fact very simple. We will now move towards a class of models that have
been introduced 17 years ago by Derrida as “simplified” spin glass models. It turns out that
while these models exhibit structure that is as complex as (and in fact almost identical to
) in the Sherrington-Kirkpatrick type spin glasses, they can now be analysed with full rigor
whith the help of the tools I have explained in the previous section. The results of these
Section cover recent work with Irina Kurkova [BK1,BK2]. The purpose of this section is
to explain how the remarkable universal structures predicted by Parisi’s replica symmetry
breaking scheme arise as a limiting object in a spin glass model. For further analysis of the

limting object itself we refer to a paper by Bolthausen and Sznitman [BoSz].

4.1. Definitions and basics.

As we have already pointed out in the introduction, from a mathematial point of view it is
natural to embed the SK models in the general stting of models based on Gaussian processes
on the hypercubes Sy. The special feature of the SK models in that context is than that

their covariance depends only on the “overlap”, Ry(o,0') = %(0, a').

Derrida introduced annother class of models that he called Generalized Random Energy
models (GREM) that can be constructed in full analogy to the SK class by introducing

annother function charcterizing distance that is to replace the overlap Ry, namely
1
dn(o,0') = N (min(i : 0; # 0l) — 1) (4.1)

To be precise, d is an ultrametric valueation on the set Sy. An ultrametric distance would
be given e.g. by a function D(c,0') = exp(—dn(0,0’)). We will now consider centered

Gaussian processes X, on Sy those covariance is given as

cov (X,, X —0') =EX, X, = A(dn(0,0")) (4.2)

6More generally, one may dervive recursion formulas for more general moments of Ruelle’s process that
show that the identies (3.81) determine completely the process of Ruelle in terms of the two-overlap distri-
bution function.
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where A is a probability distribution function on the interval [0, 1].

In fact, the original models of Derrida correspond to the special case when A is the distri-
bution function of a random variable that takes only finitely many values, i.e. when A is a
monotone increasing step function with finitely many steps. However, Derrida also considered

limits when the number of these steps tend to infinty.

The choice of the distance §y has a number of remarkable effect that help to make these
models truely solvable. In particular, it allows to introduce a continuous time martingale
X, (t) those marginal at ¢ = 1 coincides with X,. This process is simply a Gaussian process

on Sy x [0, 1] with covariance

cov (Xq(t), X —a'(t')) =t At' N A(On(a,0")) (4.3)
In particular, this gives rise to the integral representation of X, as

1
X, = / dX,(t) (4.4)
0

where the increments satisfy

Fd X, (t)dXq (t") = dtdsé(t — ") L4 (s (0,00))>¢ (4.5)

If A is a step function, this gives rise to a representation in the form

Xa- E\/alX,,l —i—,/azXﬁaz —i—---—l—,/anX(,I(,z___,,n, ifO':O'10'2...O'n, (46)
where a; is the increment of A at the step point ¢; = ijl ililn—o;", and 0 = o — loy...0,

with o; € {—1, 1}V,

Note that in the SK class, neither is it possible to construct such a represntation, nor are

step functions allowed as covariances.

The representation (4.7) allows explicit computations of the partition function. This was
done first by Derrida and Gardner [DG1], and in full generality (and with full rigor) by
Cappocaccia, Cassandro, and Picco [CaCaPi]. While we will not reproduce this calculations
(they are in spirit not very different from those in the REM and make use of (4.6) to set up

a recursive scheme), we will state their result in a particularly useful form.

Let us denote the convex hull of the function A(z) by A(z). We will also need the left-
derivative of this function, a(z) = lim. o e *(A(z) — A(z — €)) which exists for all values of
z € (0,1].



34 Section 4

Theorem 4.1: Whenever A is a step function with finitely many steps, the free energy

Fg.n = % In Zg n converges almost surely to the non-random limit Fg given by

z(B8) 2
Fs=+v2In 2ﬁ/0 Vva(z)dz + 7(1 — A(z(B))) (4.7)

where

2(9) = sup (elata) > 257 (48)

It is also very easy to derive from (4.7) an explicit fromula for the distance-distribution

function
fo.n(@) = p§ N (6n(0,0") < z) (4.9)

This just makes use of the fact that

Proposition 4.2:For any value of 3, and anyi=1,...,n,
ELF = —B2a;Efgn(qg < @) (4.10)
d\/Ei B,N = ilLJB,N\q < ¢; .

with the convention that qo = 0 and q,, = 1.
This implies in fact immediately that

Theorem 4.3: Whenever A is a step function with finitely many steps, the fg N converges

in mean to the limiting function

1_1\/m/\/m, ifr < zg (4.11)

, ifx > xp

o) = {

It is obvious that if A, is a sequence of step functions that converges to a limiting function
A, then the sequences of free energies and distance distributions converge. It in not very
difficult to show ([BK2]) that these limits then are in fact the free energies and distribution

functions for the corresponding models with arbirtrary A.
4.2. Gibbs measures and point processes.
As in the case of the REM, Ruelle [Ru]| had proposed an effective model for the thermo-

dynamic limit of the GREM in terms of Poisson processes, or rather “Poisson cascades”, i.e.

nested sequences of Poisson processes, without establishing a rigorous relation between the
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two models. Ruelle also constructed limiting objects of his processes when the number of
“levels” (i.e. m) tends to infinity. The connection between Ruelle’s models and the GREMs
with finitely many levels have been made rigorous in [BK1]. While again in spirit the proofs

are similar to those in the REM, they require considerably more computations.

However, it is quite remarkable that via the Ghirlanda-Guerra relations, one can construct
(at least in principle) the thermodynamic limit on the level of the measures on the mass

distribution without much explicit computation even in the case of arbitrary A.

It will be convenient to introduce here the analogues of the random measures K defined

above where the overlap Ry is replaced by the distance dn. L.e. we set now

mq(z) = pg,n(o: dn(0',0) > x) (4.12)
and
’Cg’N = Z ,u,ﬂ’N(O')(smU(_) (4.13)
ocESN

In the case when A is a step function with finitely many steps, one can control the convergence
of Kg,n to a limit rather explicitely. We will present the corresponding results, without proof,

below.

In the general case, this will no longer be possible. However, the Ghirlanda-Guerra iden-
tities will allow again to prove the existence of the limit and to decribe its properties. The
key point to notice is that to prove convergence, it is enough to prove convergence of all

expressions of the form
q1
E (/ Kg,n(dm)m(A)™ ...m(Aljl)ﬁn)

. ( / Kg.n(dm)m(Ag)™ .. .m(A,j,)”n>ql>

where A;; C [0,1] and g;,;; are integers.

(4.14)

The key point will be to establish again the Ghirlanda-Guerra identities. In this the

process X, (t) plays a crucial role.

In this context, it will be convenient to use the process

Y, (t) = X, (A(t) (4.15)
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Theorem 4.4: For any n € N and any z € [0, 1]\zg,

Jlim [Bug (h(o" -, 0™ Laoy ok om1))2a)

1 n n -
- EE/L?,N+1 h(ala -y 0 ) Z ]IA(JN(U"“,U’))ZE + Eﬂ?,ZN(]IA(tsN(Ul,Uz))ZE) =0
1%k
(4.16)

Proof: As a first step we need the following lemma.
Lemma 4.5: For any t € (0,1] , and let h: S — R be any bounded function of n spins

1
—Eu?’?v (dY e (t)R(a",...,0™))

VN
n (4.17)
= IBE}],?’T]L\?{ <h(0’1, . ,O'n) <Z ]IéN(ak,a'l)Zt — nl[tsN(a"“,a'"‘*'l)Zt)) dA(t)

=1

Proof: The proof makes use of the Gaussian integration by parts formula

EdX, (t)f ( / dX(,f(s)> _Ef ( / dX,,:(s)) / EdX, (t)dX,(s)
= Bf' (Xo) La(sy (o0 >edlt

(4.18)

where f is any differentiable function. Applying this to the left hand side Note that the left
hand side of (4.17) can be written as

N7Y2EEp1  guh(c",...,0™)dX e (t) [] £ (Xo) (4.19)
=1

with
eﬁ\/NXa.l (1)
[ Xo) = — @ (4.20)

Using (4.18) gives readily

1 n n
WE,U,?,N (dY, e (t)h(a",...,0™))

n (4.21)
= BEM?,TILV_‘_I (h(o'l, .. ,o'n) (Z ]IA((;N((,k’(,l))Zt — n]IA((;N((,k’(,n+1))Zt>> dt
=1
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Realizing that A(dn (0, 0")) < A(t) is equivalent to dn (o, 0’) < ¢t whenever A(t) is not constant
then yields the claim of the lemma. {

The more important step is the proof is contained in the next lemma.

Lemma 4.6: Let h be as in the previous lemma. Ezcept possibly when t = xg,

lim \/Lﬁ Eu8"y ((Yor () = Yor(t — (o™, .., 0™))
(4.22)

— Bug,n (Yor(t) — You(t —€)) Eu?fjv (h(c?, ... ,a"))‘ =0

Proof: Let us write

= (Bag (Vs (0)  You(t = ) ~ By (Vos () ~ Yot = D) (o, 0™) )

< EuZy ((Yor (8) — You(t — ) — By (Vou () — You (¢ — ©))) B (h(",-..,0™)
(4.23)

where the last inequality is the Cauchy—Schwarz inequality applied to the joint expectation

2

with respect to the Gibbs measure and the disorder. Obviously the first factor in the last

line is equal to

Eup,n (Yor (t) = Yor(t =€) = mp,n (Yor () = You(t —€)))’

(4.24)
+E(pp,n (Yor (£) = Yo (t = €)) — Bpug n (Vo () — Yor (£ — €)))
Now let us introduce the deformed process
X=X, +u(Y,(t) = Y,(t—¢)) (4.25)

If we denote by Fg y the free energy corresponding to this deformed process, the last line of
(4.24) can be represented as

2

d d d 2
-2 u -2 u u
I] E—du2 Fﬂ,N + NG™°E <_du Fﬁ’N — E_du Fﬁ’N> (4.26)

At this point we need a concentration result on the free energy. which we state here

without proof.
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Lemma 4.7: For any 3, and any covariance distribution A, for any € > 0

r’N
IPHF[;,N —EFQ,N| > r] < 2exp _W (427)

We know that Fg y converges as N 1 oo and that the limit is infinitely differentiable as
a function of u, except possibly when zg = t; moreover, —Fg y is convex in the variable .
This can be seen by explicit computation using the expression (4.7) for the free energy. Then

a standard result of convex analysis (see [Ro], Theorem 25.7) imply that

2 2

d d
lim —E—F5yN)=— lim EFg 4.28
INTigp( du? 5.N) du? Ntoo - BN (4.28)

which is finite at zero except possibly if g = t. Thus, the first term in (3.79) will vanish
when divided by N. To see that the coefficient of N of the second term gives a vanishing
contribution, we use the general fact that if the variance of family of a convex (or concave)
functions tends to zero, then the same is true for its derivative, provided the second derivative

of the expectation is bounded (see e.g. Lemma 8.9 in [BG], or Proposition 4.3 in [TaHopf]).

But by Lemma 4.7 the variance of Fjg y tends to zero, and (4.28) implies that Edd—;Fg’N
is bounded for large enough N whenever - 2IEF is finite. Hence the result of the lemma is

proven.

To prove the theorem we use integrate (4.17) and then use (4.22) on the left hand side.
This gives

1 n . .
——Eu8 (Yo (t) — Yar (t — €) EuS% (h(o,...,0™))

t n
—ﬂ <E/1,§3V+1 (h(o‘l,...,dn) <Z ]IéN(zrk,a")Zs _n]ItsN(ak,a'"‘*'l)Zs))) dA(s)) =0
t—e =1

(4.29)
Finally, we use once more (4.17) with n = 1 to express Eu?f}v (Yo (t) — Yy (t —€)) in terms
of the two replica distribution. The final result follows by trivial algebraic manipulations and
the fact that € is arbitrary. $<¢

Following [GG], we now define the family of measures (@g\?) on the space [0,1](»=1)/2,

Q'k (On € A) = Eu®, [on € A] (4.30)
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where dn denotes the vector of replica distances whose components are Sn(at,of), 1 <1<
k < n. Denote by By the sigma-algebra generated by the first k(k — 1)/2 coordinates, and
let A be a Borel set in [0, 1].

Theorem 4.8: The family of measures Q(ﬂnj)v converge to limiting measures Q(ﬂ") for all
finite n, as N T oo. Moreover, these measures are uniquely determined by the distance

distribution functions fg. They satisfy the identities

(n+1) (g AlB,) = 10® (4 1y (") (4, , € AIB 4.31

for any Borel set A.

Proof: Choosing h as the indicator function of any desired event in By, one sees that (4.16)
implies (4.31). This actually implies that in the limit N 1 oo, the family of measures Q(ﬁnl)\,
is entirely determined by the two-replica distribution function. While this may not appear
obvious, it follows when taking into account the ultrametric property of the function dy.
This is most easily seen by realising that the prescription of the mutual distances between k
spin configurations amounts to prescribing a tree (start all k£ configurations at the origin and
continue on top of each other as long as the coordinates coincide, then branch of). To deter-
mine the full tree of k£ + 1 configurations, it is sufficient to know the overlap of configuration
o(k+1) with the configuration it has maximal overlap with, since then all overlaps with all
other configurations are determined. But the corresponding probabilities can be computed

recursively via (4.31).
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d(1,2)=d(1,3)=d(1,k)=d(1,k+1)

d(2,k)=d(3 k) =d(2,k+1)=d(3k+1)

__d(kk+1)

Thedistance d(k,k+1) determinesall other distances
d(j.k+1)

Now we have already seen that (@(ﬂz)N — Efs n converges. Therefore the relation (4.31)
implies the convergence of all distributions @gjz)v; and proves the relation (4.31) hold for the

limiting measures. <

Now it is clear that all expressions of the form (3.54) (with Ry replaced by dx) can be
expressed in terms of the measures @(ﬂkgv for k sufficiently large (we leave this as an exercise
for the reader to write down). Thus, Theorem 4.8 implies in turn the convergence of the

process Kg n to a limit Kg.

A remarkable feature takes place again if we are only interested in the marginal process
Kpg(t) for fixed ¢. This process is a simple point process on [0, 1] and is fully determined in

terms of the moments

E(/KI@,N(t)(d.’ﬂ)mTl"-/Kg,N(t)(d:l)).’,Urj>
= Ey?’z\lﬁmw"ﬂ ((5N(0'1, oIty >t 6n(ot, 00T > ¢, (4.32)

0N (o gdtrite ity s S (of, gd Ty > t)

This restricted family of moments satisfies via the Ghirlanda-Guerra identities exactly the

same recursion as in the case of the REM. This implies:

Theorem 4.9: Assume that t is such that Eu?z(é(a, ') > t) > 0. Then the random
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measure Kg(t) is a pure point measure obtained from a normalized Poisson process (i.e.

from Poisson-Dirichlet process).

In fact much more is true. We can consider the processes on arbitrary finite dimensional
marginals, i.e.

Kg’N(tl,...,tm) = Z Nﬁ,N(a)gmg(t1),---,ma(tm) (4.33)
ocESN

for 0 < t; < -+ < ty, < 1. The point is that this process is entirely determined by the
expressions (4.14) with the A;; all of the form (¢;, 1] for ¢; in the fixed set of values t1, ..., t,.
This in turn implies that the process is determined by the multi-replica distribution functions
Q(ﬂnj)v restricted to the discrete set of events {dn(c*,07) > t;}. Since these numbers are
totally determined through the Ghirlanda-Guerra identities, they depend only on the values
of the two-replica distribution function on those values. In particular, they are the same
for processes with different correlation functions A, provided they give the same replica
distribution function at these values! This allows us to construct, given A, and the set
t1,...,t,, a new function A, that is a step function with n steps for which Kg(t1,...,ty)

will be perfectly identical.

But the model with covariance A, is a GREM with finitely many levels, for which the
process g can be constructed explicitely in terms of Poisson cascades (this is shown in [BK1],

and will be explained below).
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In this sense we obtain an astonishingly explicit description of the limiting mass distribu-

tion function Cg.
Probability cascades in the GREM with finitely many levels.

Let us now briefly explain the structure of the process Kz in the case when A, is a step

In a,

function with steps of hight a; at the values ¢; = 7-5-. To avoid complications, we will assume

that the linear interpolation of this function is convex, and that all points ¢; belong to the

extremal set of the convex hull.

Remark: I will not give the proofs here, that are somewhat involved, in particular when the
general case is considered. They can be found in [BK1]. The following summary of results is
in fact just a cooked down version of the complete analysis of the GREM with finitely many

hierarchies given there.

Note that in this setting the Gaussian process X, can be represented as a sum

Xa' == \/a—lya'l + -+ \/aya'l...,a'n (434)
where o; € {—1,1}¥!"i and all Y,, . ,, are i.i.d. standard normal r.v.’s.
We introduce the function ui o, n(z), € R, such that P(X > ujy o n(z)) ~ aNe * as

N 1 0o, where X is a standard Gaussian random variable. It can be written explicitly as (see
g. [LLR], page 127)

T InN +Inlna + Indn
UnaN(T) = V2InalN + — . 4.35
tn ¥ (2) vV2IlnaN 2v2IlnaN ( )

Note that then for all ¢,
Zslm Tonorson) ™ Pi (4.36)

where P; are all independent Poisson point processes on R with intensity measure e~ *dz.

Then under the assumptions on A, the following result holds:

Theorem 4.10: Then the following point processes on RF
(’“) = (k)
25 N(Yol)z gy (Vo) 25 oy (Vorogem) 7 7

converge weakly to point process P¥) on R¥ | which is characterised by the following generating

functions:

i, i,
FAlX--.XAk(z) EEzZml {z1€21} Zwk {ep€aigp} (4.37)

= fl,Al (f2,A2 (f3,A3 e (fk—l,Ak—l(fk7Ak(z))) Tt ))a |Z| <1
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where f;a,(z) = eKi(z=1)(e™ % —e™) A, = (ai,b;] with a;,b; € R orb; =00,i=1,2,... k.

Moreover, the following independence properties of the counting random variables of the pro-
cess Pk, D e H{zleA{}"'sz ]I{EkEAi:}’ corresponding to the intervals Al x --- X A7,
Ag—[l,bf) ,2,...,k, k> 1, hold true:

(i) If the first components of these intervals are disjoint, i.e. al < b} < a2 <b2 <...aF < bk,

then these r.v. are independent.

(1) If the first [—1 components of these intervals coincide and the lth components are disjoint,
ie. Al=---=AFfori=1,...,1—1anda} <b <a? <b? <---af < bF, then these
r.v. are conditionally independent under condition that ZZI Tizen,y - Zzl,l | PPN
is fized.

Remark: This theorem was proven for £ = 2 in [GMP)].

We would like to clarify an intuitive construction of the process P. If k = 1, this is just a
Poisson point process on R with intensity measure K;e~*dz. To construct P on R? for k = 2
we place the process P for k£ = 1 on the axis of the first coordinate and through each of its
points draw a straight line parallel to the axis of the second coordinate. Then we put on each
of these lines independently a Poisson point process with intensity measure Koe *dx. These
points on R? form the process P with k = 2. Whenever P is constructed for k£ — 1, we place it
on the plane of the first £ — 1 coordinates and through each of its points draw a straight line
parallel to the axis of the nth coordinate. On each of these lines we put after independently
a Poisson point process with intensity measure Ke~®dz. These points constitute P on RF.
Indeed, the projection of P(¥) in R¥ to the plane of the first £ coordinates is distributed as
the process P in R¢.

We are now also in the position to formulate a result on the extreme order statistics of the

random variables X,.

Y =vai/v2lna, 1 =1,2,... ,n. By our assumption on A, y; > y2 > -+ > v,. Define
the function U; n by

Uy (o Z(m NV y(In(N(ina)) + Indm)/2) + N~V (4.38)

=1

and the point process

EN= Y duiix,) (4.39)
ce{-1,1}¥
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Then the following holds true:

Theorem 4.11: (i) The point process £ converges weakly, as N 1 0o, to the point process
on R

£= / HP(")(dwl,...,dwn)JZszl (4.40)
where P™) is the Poisson cascade introduced in Theorem (1.3).

Next we state a convergence result for the partition function that is analogous to the

low-temperature result Theorem 3.2, (v), in the REM.

One would be tempted to believe that the process that is relevant for the extremal process
will again be the right one to choose. However, this will be the case only for large enough 5.

However, only the first [(3) levels of the process participate, where
1(8) = max{l > 1: 5%y, > 1} (4.41)
and [(B) = 0 if B2y, < 1.

The following theorem yields the fluctuations of the partition function and connects the
GREM to Ruelle’s processes.

Theorem 4.12: With the definitions above, under our hypothesis on A,

L(B) - - ) ) N n 2
er:l (—ﬂN«/Za] In oj+Bv;[In(NInaj)+In4xr]/2+NIn a]) NZi:l(ﬁ)+1 B a1/2Zﬂ N

)

(4.42)
z C(ﬂ)/ efreithrzzttfn eie pUB) (dy, . .. dzy(5))-
RI®)

This integral is over the process PUP)) on RB) constructed in Theorem (1.2) . The constant
C(B) satisfies
CB) =1, if Bwnep+1 <1 (4.43)

c(8) = P( N (Vg iy + o+ @iz < 0))

#1(8)+1<i<L(B)+1
(ar(g)+1t-Faid/aygypr=tnleygypr- i)/ Inaq(g) 41

(4.44)
if Brgy+1 =1
where Zjg)+1,--- > Z1(3)+1 are independent standard Gaussian r.v. Moreover
In ZN’ﬂ —Eln ZNﬁ 2) In C(,B) eﬁ’ylm1+ﬂ7222+"'+ﬂ71(5)ml(ﬁ)P(d-’l?l ce dCL‘l(ﬂ))

RUB)
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Let us introduce the sets
Bi(o) ={0o' € Sy : dn(0,0") > qi} (4.45)
We define point processes Wg'y on (0, 1]™ given by

pp,n (o)

TN = ) —_— 4.46
We.N Eﬂ_: (3, (Ba () (B D)) " 5B () (4.46)
as well as their projection on the last coordinate,
m pp.N (o)
RN = E 0us n ) 4.47
B,N . pe,~N (Bm( ))Nﬁ,N (B (0)) ( )

It is easy to see that the processes Wi’y satisfy

1
Wg?N(dwl,...,dwm) :/ ngﬁl(dwl,...,dwm,dwm+1)wm+1 (4.48)
0

m

where the integration is of course over the last coordinate w,,+1. Note that these processes
will in general not all converge, but will do so only when for some o, pg(Bn,(0)) is strictly
positive. From our experience with the partition function, it is clear that this will be the case

precisely when m < [(8). In fact, we will prove that

Theorem 4.13: If m < (B), the point process Wg'y on (0,1]™ converges weakly to the
point process Wi* whose atoms w(i) are given in terms of the atoms (z1(i),...,zm (i) of the

point process P(™) by

(w1(2), ..., wn(7))
_ (fP‘m)(dy)é(yl — ()P [P dy)sy — 21(0)) . Dy — (i)Y

f ’P(m) (dy)eﬂ(%y) T f ’P(m) (dy)e:@("/ay)
(4.49)
and the point processes R(ﬂmj\), converge to the point process Rg") whose atoms are the last

component of the atoms in (4.49).

Of course the most complete object we can reasonably study is the process W\ﬁ = Wé(ﬂ ),

Analogously, we will set ﬁﬂ = Rlﬁ(ﬂ ),

The point processes W\ém) takes values on vectors whose components form increasing
sequences in (0,1]. Moreover, these atoms are naturally clustered in a hierarchical way.

These processes were introduced by Ruelle [Ru] and called probability cascades.
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