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Translation machinery

Ribosome machinery assembles on initiation sites on mRNA and docks tRNA that

off-load and amino acids on a growing polypeptide chain
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Totally Asymmetric Exclusion (TASEP)

Totally asymmetric exclusion process on N lattice sites ⇔ mRNA

translation
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Totally Asymmetric Exclusion (TASEP)

Uniform chain:

JN = p
SN−1(p/β)− SN−1(p/α)

SN(p/β)− SN(p/α)
, where

SN(x) =
N−1∑
k=0

(N − k)(N + k − 1)!
N !k!

xN−k+1
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Totally Asymmetric Exclusion (TASEP)
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For N →∞, pi ≡ 1,

J(α ≤ 1/2, β ≥ α) → α(1− α)

J(β ≤ 1/2, α ≥ β) → β(1− β)

J(α, β ≥ 1/2) → 1/4



7

Clustered Defects
• Rare codons identified: CTA (Leu), ATA (Ile), ACA (Thr), CCT

and CCC (Pro), CGG, AGA, and AGG (Arg)

• Statistically small (2-5) clusters of rare codons occur in E. coli,
Drosophilia, yeast, and primates

Korotkov & Phoenix, FEMS Microbiol. Letts. 155, 63-66, (1997).
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Solution of general TASEP

To solve inhomogeneous TASEP, solve 2N × 2N master eqn:

dPi

dt
= MijPj,

2N∑
i=1

Pi = 1.

Mij is sparse, but has transition rates scattered throughout

⇒ generate Mij and find eigenvectors to the zero-eigenvalue
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Algorithm to generate band-diagonal matrix

Enumerate states to allow generation of transition matrix:

Algorithm for 3−site model. Each configuration is associated with a bit pattern,

and the state is enumerated with the corresponding decimal value. I. e., since 011

is the binary representation of 3, we label the state with particles occupying the

second and third lattice sites as state 3.
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Finite Segment MFT

(a) Two defects near the initiation site straddled by an n = 5 lattice segment.

(b) Two defects in the chain interior, away from the boundaries, n = 6.

(c) A single slow defect near the termination end of the chain, n = 4.

For n sites, there are 2n distinct states. Choose n � N , but large

enough to give accurate results.



11

Finite Segment MFT
• Flux out of rightmost site of segment:

J(σ−, σ+, {pi}) = (1− σ+)
∑

j=odd

Pj(σ−, σ+, {pi}),

where σ− and σ+ are densities far to the left and right of defects.

• Current conservation: J− = σ−(1− σ−) = J+ = σ+(1− σ+)
⇒ σ+ = 1− σ− and

σ−(1− σ−) = J(σ−, 1− σ−, {pi})

• Solve σ− numerically ⇒ J = σ−(1− σ−).
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Finite Segment MFT

For bottlenecks pi = q, all other rates pi ≡ 1, α = β = 10
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(a) For n ≥ 4, the FSMFT results are within 2% of those from MC simulations.

(b) Addition of successive, identical defects. The first few defects cause most of
the reduction in current.
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Asymptotic results

• For strong bottlenecks, q � 1, a single defect gives

J ∼ q − 3q2/2 +O(q3)

• For m contiguous defects,

Jm(q → 0) ∼
(

m + 1
4m− 2

)
q +O(q2).

• For q . 0.3, largest reduction in Jm(q) occurs as m = 1 → 2.
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Two k−separated defects
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(a) Currents maximally suppressed when defects are close.

(b) Densities about the midpoint between two defects (q = 0.15) of various
spacings k.

(c) Normalized current J2(q; k)/J1(q) as a function of separation k.

J2(q; k) ∼
(

k

k + 1

)
q +O(q2).
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Randomly spaced defects
The total number of ways m defects can be placed on N − 1 interior sites, with
minimum pair spacing k is

Zk(m,N) =
(

N − 1− (m− 1)(k − 1)
m

)
.

The probability density that the minimum inter-defect spacing equals k is thus

Qk(m,N) =
(Zk(m,N)− Zk+1(m,N))

Z1(m,N)
.

Maximum current for any configuration with a minimum defect spacing k is
J2(q; k). Upper bound for the randomness-averaged current is

〈J〉ran ≤
int{(N−1)/(m−1)}∑

k=1

Qk(m,N)J2(q; k).
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Randomly spaced defects
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(a) The probability m defects on N−site lattice has a mimimum spacing = k.

(b) Upper bound for the current. Only pairwise suppression considered. Lower
bound for m → N is 〈J(m → N − 1)〉ran → q/4.

(c) Weak detachments ωd suppress ribosome throughput only in the entry-limited

(α = 0.1, β = 10) and maximal current (α = β = 10) regimes.
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Summary and Conclusions

• Modified TASEP to allow inhomogeneous hopping rates

• Formulated systematic numerical approach for clustered

bottlenecks

• Clustering of defects further suppress throughput

• Cooperative effect arises from exclusion interactions
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Summary and Future Avenues

• Extensions to particles that occupy d lattice sites (ribosomes d ∼
10) e.g., J = 1/4 → 1/(

√
d + 1)2

• Distribution (unequal) bottleneck strengths

• Multiple-scales asymptotics for TASEP with random pi and

detachments


