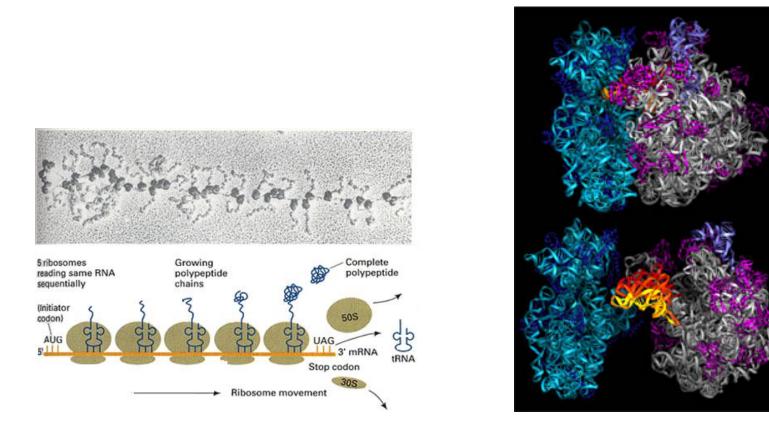
Clustered bottlenecks in mRNA translation and protein synthesis

Tom Chou and Greg Lakatos Department of Biomathematics, UCLA Department of Physics & Astronomy, UBC

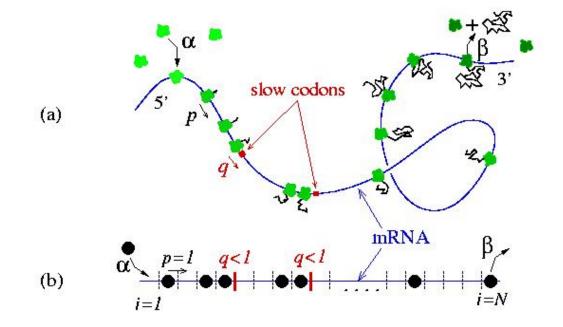
NSF DMS-0206733

Translation machinery



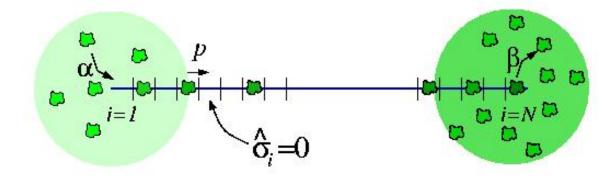
Ribosome machinery assembles on initiation sites on mRNA and docks tRNA that off-load and amino acids on a growing polypeptide chain

Totally Asymmetric Exclusion (TASEP)



Totally asymmetric exclusion process on N lattice sites \Leftrightarrow mRNA translation

Totally Asymmetric Exclusion (TASEP)

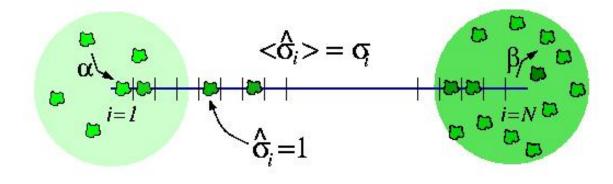


Uniform chain:

$$J_N = p \frac{S_{N-1}(p/\beta) - S_{N-1}(p/\alpha)}{S_N(p/\beta) - S_N(p/\alpha)}, \quad \text{where}$$

$$S_N(x) = \sum_{k=0}^{N-1} \frac{(N-k)(N+k-1)!}{N!k!} x^{N-k+1}$$

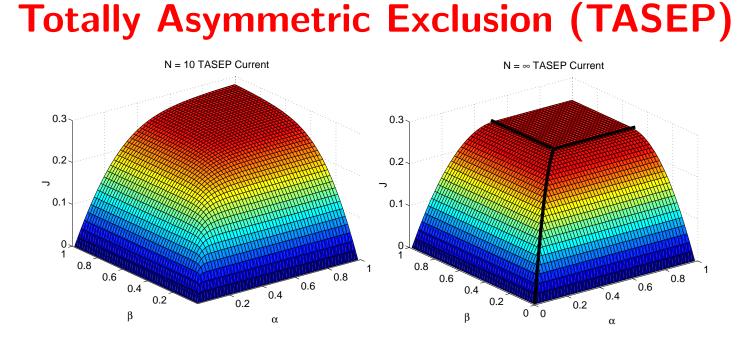
Totally Asymmetric Exclusion (TASEP)



Uniform chain:

$$J_N = p \frac{S_{N-1}(p/\beta) - S_{N-1}(p/\alpha)}{S_N(p/\beta) - S_N(p/\alpha)}, \quad \text{where}$$

$$S_N(x) = \sum_{k=0}^{N-1} \frac{(N-k)(N+k-1)!}{N!k!} x^{N-k+1}$$

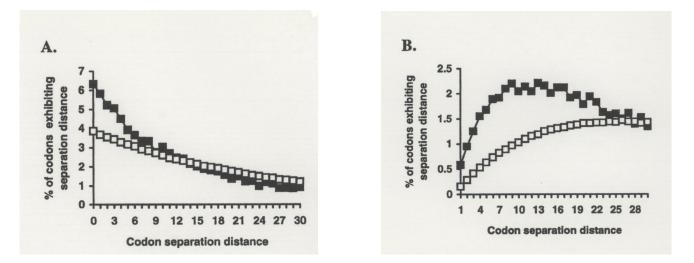


For $N \to \infty$, $p_i \equiv 1$,

 $J(\alpha \le 1/2, \beta \ge \alpha) \to \alpha(1 - \alpha)$ $J(\beta \le 1/2, \alpha \ge \beta) \to \beta(1 - \beta)$ $J(\alpha, \beta \ge 1/2) \to 1/4$

Clustered Defects

- Rare codons identified: CTA (Leu), ATA (Ile), ACA (Thr), CCT and CCC (Pro), CGG, AGA, and AGG (Arg)
- Statistically small (2-5) clusters of rare codons occur in *E. coli*, *Drosophilia*, yeast, and primates



Korotkov & Phoenix, FEMS *Microbiol. Letts.* **155**, 63-66, (1997).

Solution of general TASEP

To solve inhomogeneous TASEP, solve $2^N \times 2^N$ master eqn:

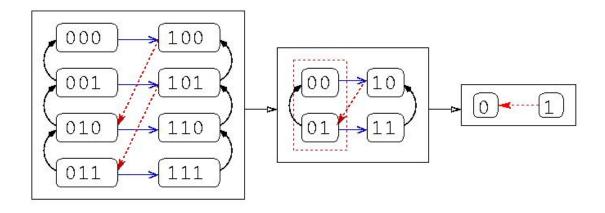
$$\frac{dP_i}{dt} = M_{ij}P_j, \quad \sum_{i=1}^{2^N} P_i = 1.$$

 M_{ij} is sparse, but has transition rates scattered throughout

 \Rightarrow generate M_{ij} and find eigenvectors to the zero-eigenvalue

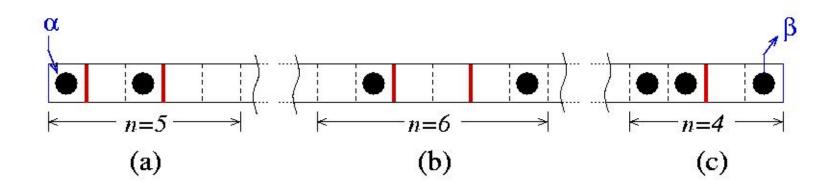
Algorithm to generate band-diagonal matrix

Enumerate states to allow generation of transition matrix:



Algorithm for 3-site model. Each configuration is associated with a bit pattern, and the state is enumerated with the corresponding decimal value. *I. e.*, since 011 is the binary representation of 3, we label the state with particles occupying the second and third lattice sites as *state 3*.

Finite Segment MFT



(a) Two defects near the initiation site straddled by an n = 5 lattice segment.
(b) Two defects in the chain interior, away from the boundaries, n = 6.
(c) A single slow defect near the termination end of the chain, n = 4.
For n sites, there are 2ⁿ distinct states. Choose n ≪ N, but large enough to give accurate results.

Finite Segment MFT

• Flux out of rightmost site of segment:

$$J(\sigma_{-}, \sigma_{+}, \{p_i\}) = (1 - \sigma_{+}) \sum_{j = odd} P_j(\sigma_{-}, \sigma_{+}, \{p_i\}),$$

where σ_{-} and σ_{+} are densities far to the left and right of defects.

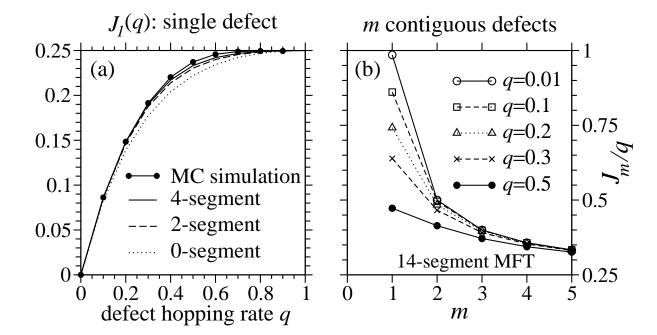
• Current conservation: $J_{-} = \sigma_{-}(1 - \sigma_{-}) = J_{+} = \sigma_{+}(1 - \sigma_{+})$ $\Rightarrow \sigma_{+} = 1 - \sigma_{-}$ and

$$\sigma_{-}(1 - \sigma_{-}) = J(\sigma_{-}, 1 - \sigma_{-}, \{p_i\})$$

• Solve σ_{-} numerically $\Rightarrow J = \sigma_{-}(1 - \sigma_{-})$.

Finite Segment MFT

For bottlenecks $p_i = q$, all other rates $p_i \equiv 1, \alpha = \beta = 10$



(a) For $n \ge 4$, the FSMFT results are within 2% of those from MC simulations. (b) Addition of successive, identical defects. The first few defects cause most of the reduction in current.

Asymptotic results

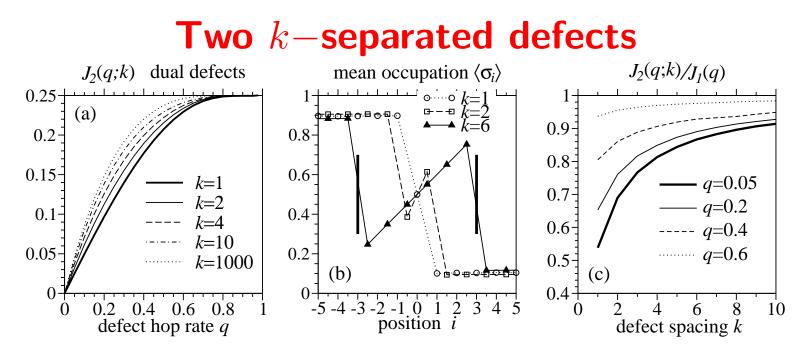
• For strong bottlenecks, $q \ll 1$, a single defect gives

$$J \sim q - 3q^2/2 + \mathcal{O}(q^3)$$

• For *m* contiguous defects,

$$J_m(q \to 0) \sim \left(\frac{m+1}{4m-2}\right)q + \mathcal{O}(q^2).$$

• For $q \leq 0.3$, largest reduction in $J_m(q)$ occurs as $m = 1 \rightarrow 2$.



(a) Currents maximally suppressed when defects are close.

(b) Densities about the midpoint between two defects (q = 0.15) of various spacings k.

(c) Normalized current $J_2(q;k)/J_1(q)$ as a function of separation k.

$$J_2(q;k) \sim \left(\frac{k}{k+1}\right)q + \mathcal{O}(q^2).$$

Randomly spaced defects

The total number of ways m defects can be placed on N-1 interior sites, with minimum pair spacing k is

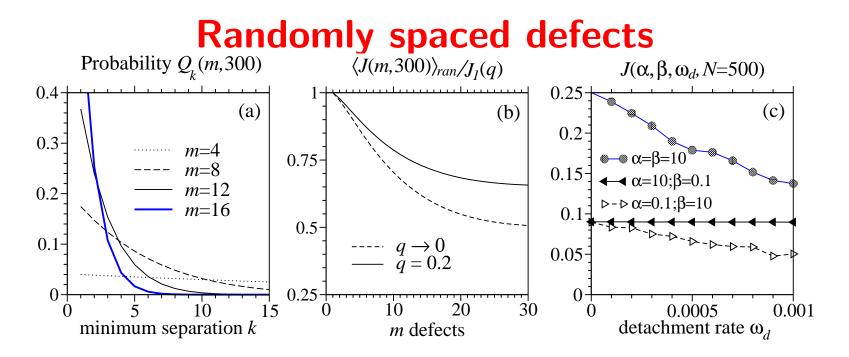
$$Z_{k}(m,N) = \binom{N-1 - (m-1)(k-1)}{m}.$$

The probability density that the minimum inter-defect spacing equals k is thus

$$Q_k(m, N) = \frac{(Z_k(m, N) - Z_{k+1}(m, N))}{Z_1(m, N)}.$$

Maximum current for any configuration with a minimum defect spacing k is $J_2(q;k)$. Upper bound for the randomness-averaged current is

$$\langle J \rangle_{ran} \leq \sum_{k=1}^{\left(N-1\right)/(m-1)} Q_k(m,N) J_2(q;k).$$



(a) The probability m defects on N-site lattice has a minimum spacing = k.

(b) Upper bound for the current. Only pairwise suppression considered. Lower bound for $m \to N$ is $\langle J(m \to N-1) \rangle_{ran} \to q/4$.

(c) Weak detachments ω_d suppress ribosome throughput only in the entry-limited $(\alpha = 0.1, \beta = 10)$ and maximal current $(\alpha = \beta = 10)$ regimes.

Summary and Conclusions

- Modified TASEP to allow inhomogeneous hopping rates
- Formulated systematic numerical approach for clustered bottlenecks
- Clustering of defects further suppress throughput
- Cooperative effect arises from exclusion interactions

Summary and Future Avenues

- Extensions to particles that occupy d lattice sites (ribosomes $d \sim 10$) e.g., $J = 1/4 \rightarrow 1/(\sqrt{d} + 1)^2$
- Distribution (unequal) bottleneck strengths
- \bullet Multiple-scales asymptotics for TASEP with random p_i and detachments