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ABSTRACT:

The development of thermodynamics and sta-

tistical mechanics has been strongly influenced

and steered by questions on the working and

the efficiency of heat engines. When machines

get smaller, as is the case for molecular mo-

tors, new challenges appear that ask for in-

vestigating fluctuations of entropy and its pro-

duction. Last decade has witnessed serious

progress in that direction with establishing gen-

eralized fluctuation-dissipation relations and sym-

metries under time-reversal. I will review some

of these results and give a unified approach

enabling to make connections with a variety of

experimental situations. Special emphasis will

be put on the case of kinesin and its motility.
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GENERAL CONTEXT
(Possible) Intersections between (non)equilibrium
statistical physics and biology include
- microscopic foundation of chemical thermo-
dynamics
- appearance of order and self-organization
- models of large amounts of locally interact-
ing particles
- treatment of open systems, maintained cur-
rents, entropy production, energy balances,...

WHAT IS NEW?

concentrate on one aspect:

FLUCTUATIONS OF
ENTROPY PRODUCTION

having relevance to
- efficiency calculations
- randomness calculations
- equilibrium free energy measurements
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WHAT IS ENTROPY?

1. Thermodynamic entropy: Carnot → Kelvin

→ Clausius ⇒ operational definition of entropy

for interconnected equilibrium states.

dS =
1

T
(dE + p dV −

∑
µidNi)

SECOND LAW:

S(final) − S(initial) ≥ 0

2. Microscopic entropy: Boltzmann → Planck

→ Einstein ⇒ nonequilibrium entropy.

S = kB logW

H-THEOREM:

S(xt) ≥ S(xs), t ≥ s
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TO REMEMBER

- scales: micro → macro.

An entropy difference S′ − S of about 0.1 mil-

licalorie at room temperature corresponds to a

phase volume ratio of

W

W ′ = exp−(S′ − S)/kB = e−1020

Any visible change in the entropy per particle

(as measured in units of kB) corresponds to a

ratio of phase volumes that is exponential in

the number of particles.

At the other extreme: total heat exchanges

of the order of kBT are subject to important

fluctuations.

- determining factors.

∼ conservation laws, addition rules, symme-

tries.

∼ autonomous equations.

∼ reservoirs with specified intensive variables.
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WHAT IS ENTROPY PRODUCTION?

For open driven system: entropy production =
the total change of entropy in the “universe”
BUT we can view it...

FROM THE SUBSYSTEM

work, heat, entropy production become path-
dependent functions
depending on the whole history of the subsys-
tem.

TOTAL ENTROPY CHANGE = CHANGE OF
ENTROPY IN THE SUBSYSTEM

PLUS

CHANGE OF ENTROPY IN THE ENVIRON-
MENT/RESERVOIRS
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BASIC RESULT:

RELATION WITH TIME-REVERSAL

that the ENTROPY PRODUCTION (both for

closed and for open systems be it in the tran-

sient regime or in the steady state regime) can

be usefully given as the SOURCE TERM of

TIME-SYMMETRY BREAKING in the action

of the space-time distribution for reduced vari-

ables.
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For theoretical and mathematical description,

see e.g.

references:

C. Maes: Fluctuation relations and positivity

of the entropy production in irreversible dy-

namical systems, Nonlinearity 17, 1305 - 1316

(2004).

C. Maes and E. Verbitskiy: Large Deviations

and a Fluctuation Symmetry for Chaotic Home-

omorphisms, Commun. Math. Phys. 233,

137-151 (2003).

C. Maes and K. Netocny: Time-reversal and

Entropy, J. Stat. Phys. 110, 269-310 (2003).

C. Maes: On the origin and the use of fluctua-

tion relations for the entropy, Séminaire Poincaré,

6 décembre 2003.

For examples, see next.
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EXAMPLE 1: Channel for ion transport driven

by concentration difference at the ends;

mesoscopic model.

Suppose that ions enter from the left reservoir

with intensity λ1
i and leave to the left reservoir

with intensity λ1
o. Similarly at the right with

intensities λ1
i , respectively λ1

o.

9



We calculate the ratio between probabilities for

a trajectory ω and its time-reversed trajectory

Θω:

whenever in ω a particle enters the channel

(from the left), in Θω a particle leaves the

channel (to the left). With J1 the ion-current

into the left reservoir and J2 the ion-current

into the right reservoir,

log
Prob[ω]

Prob[Θω]
= −J1 log

λ1
i

λ1
o
− J2 log

λ2
i

λ2
o

In terms of chemical potential µ1, respectively

µ2 at ambient temperature T ,

kB log
Prob[ω]

Prob[Θω]
= −J1

µ1

T
− J2

µ2

T

which is the total change of entropy in the

reservoirs.
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EXAMPLE 2: Particle in optical trap

Ht(p, q) =
p2

2m
+

κ

2
(q − a(t))2

with a(t) the time-dependent position of a trap.

Force exerted on the particle is

Ft(q) = −κ(q − a(t))

in isothermal medium at inverse temperature

β.

For example, theoretically described by

q̇t = vt

mv̇t = −κ(qt−a(t))−γvt+ζt, 〈ζtζs〉 = 2kBTγδ(t−s)
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Compute again

log
P(ω)

P(Θω)

to find it equal to

= −κ
∫ τ

0
dt ȧ(t)(qt − a(t))

the total work done on the system:

= κ
(a(τ) − qτ)2 − (a(0) − q0)

2

2

−κ
∫ τ

0
dt vt (qt − a(t))

which equals the entropy production up to a

total time-difference.
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BASIC CONSEQUENCE:

SYMMETRY OF ENTROPY PRODUCTION

Argument: with Θω the time-reversed trajec-

tory,

〈fΘ〉 =
∑

ω
f(Θω)P(ω)

〈fΘ〉 =
∑

ω
f(ω)

P(Θω)

P(ω)
P(ω)

〈fΘ〉 =
∑

ω
f(ω)e−R(ω) P(ω)

and in particular

〈f(−R)〉 = 〈f(R)e−R〉

which is the so called steady state fluctuation

symmetry, asymptotically valid for the entropy

production averaged over large times.
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Specific consequences:

1. irreversible work — equilibrium free energy

relations, so called Jarzynski relation:

〈e−βW 〉 = e−β∆F

is obtained by taking f ≡ 1.

2. symmetry in fluctuations:

P(R = r)

P(R = −r)
= er
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EXAMPLE 3: A Markov Model for Kinesin

C. Maes and M.H. van Wieren, J. Stat. Phys.
112, 329–355 (2003).

Abstract:
We investigate the validity of a Markov ap-
proach for the motility of kinesin. We show in
detail how the various mechanochemical states
and reaction rates that were explored exper-
imentally, may be used to create a Markov-
chain model. We compare the performance of
this model to motility data and we find global
similarities in the load and ATP-concentration
dependency of speed and average distance trav-
elled. We also discuss the relation between
the experimentally found stalling behavior and
thermodynamic expectations. Finally, the Markov
chain modelling provides a way to calculate the
mean entropy production and the (power) ef-
ficiency.
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THERMODYNAMIC SCHEME OF CHEMICAL
MOTOR:

First law (per particle):

W + Q + e2 − e1 = 0

For the (total) entropy production in the steady
state, we must add the changes of entropy in
all the reservoirs:
Second law

Q + (µ1 − e1) − (µ2 − e2) ≥ 0

⇒ maximal work per particle that can be done
by our molecular motor is always bounded as

W ≤ µ1 − µ2

If Q ≥ 0 (heat released to the environment),
then also

W ≤ e1 − e2
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STATISTICAL MECHANICAL SCHEME OF

CHEMICAL MOTOR:

via CONSTRUCTION of Markov process on

mechano-chemical states....

allowing the calculation of the variable entropy

current and entropy production.

The mean entropy production rate is

J[
∆µ

T
− F

λ

T
]

where J is the mean current, F is load, λ is

mean distance travelled per power stroke, ∆µ

is difference in chemical potential (↪→ ATP-

concentration).

BUT THERE ARE FLUCTUATIONS...
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