Evolution of Globins

- family of proteins
- best known haemoglobin, myoglobin also bind other ligands (CO) involved in oxygen transport
- first crystal structures of proteins
- many studies of evolution sequence, structure, function
- allosteric change of haemoglobin
- links with clinical practice sickle-cell anaemia = first 'molecular disease'

Evolution of globin structure

- mammals, insects, worms, plants
- Chironomus erythrocruorin
- lupin leghaemoglobin
- what is conserved?
- how do structural changes reflect sequence changes?

Investigations 'finished' years ago

- divergence of sequences
- divergence of structures
- effects of mutations
- But new set of homologues found

Evolution of globins – highlights

- 1909 Reichert and Brown
- 1949 sickle-cell anaemia is a molecular disease
- 1956 HbS mutation
- 1959 myoglobin structure
- 1961 haemoglobin sequences
- 1970 nonmammalian structures
- 1985 phycocyanin structure
- ▶ 1989 truncated structure

Haemoglobin crystals

- first discovered in 1840
- Steno's law (1669):

constancy of interfacial angles

- Reichert and Brown compared angles of Hb crystals from different fishes
- Divergence of interfacial angles consistent with evolutionary tree

Sperm whale myoglobin

- 'classical' globin structure
- about 153 residues
- 8 or 9 α-helices
- standard folding pattern

Conservation of secondary structure

• globins contain 8/9 helices:

A, B, C, (D), E, F, G, H

- C helix is a 3₁₀ helix
- lengths of helices vary somewhat
- in mammalian globins F helix broken (F'-F)
- create a pocket for haem
- iron linked to residues in F, G helices

Conservation of tertiary structure

- common folding pattern
- globins stabilized by packings at helix-helix interfaces
- five helix packings common: A/E, B/E, B/G, F/H, G/H
- other packings in some but not all

Structure of helix interfaces

- ridges-into-grooves model
- sidechains on helices create ridges on helix surfaces
- grooves between parallel ridges
- ridges from one helix packs into grooves between ridges on another
- ridge structure: i+4/i+4 most common
- globins rich in exceptions: 'crossed-ridge' structure

Helix interface structures conserved

- Same ridge/groove pattern
- 59 residues involved in helix interfaces, conserved hydrophobic
- template based on these residues does good job of discriminating globins
- Mutations cause shifts and rotations of packed helices – up to 7 Å / 30 $^{\rm o}$
- Shifts coupled to preserve binding site
- Reticulation of residues conserved

Phycocyanin

- Antenna pigment in photosynthesis
- No sequence similarity to globins
- When structure solved globin fold
- Why is this:

distant relationship or convergence?

sea hare myoglobin

Phycocyanin

Are globins and phycocyanins related?

How to answer?

not required for structure or function look for similarities in details (But, how would you prove that?)

Analysis of structural details: including exceptional crossed-ridge pattern ridge/groove packing patterns similar C helix in phycocyanin a 3₁₀ helix

myoglobin B/E contact

phycocyanin B/E contact

Everything looked good

- Then truncated globins discovered
- Prokaryotes, also eukaryotes (Paramecium)
- as few as 109 residues

Truncated globins

- as few as 109 residues
- deletions not only at termini
- reopens a lot of questions

change in 'conserved' structural details

Unusual features of truncated globins

- Short
- F-helix unfolded
- crossed-ridge B/E interface shows normal i+4/i+4 packing

truncated globin (P. caudatum) [1dlw]

Sperm whale myoglobin [1mbo]

superposition

truncated globin (P. caudatum) [1dlw]

Sperm whale myoglobin [1mbo]

Possible to align sequences

Based on structural superposition

Truncated globins largely similar

- Chain termini differ
- E-F turn varies

Topics not treated

- In full-length globins, binding site blocked
- Molecule must 'breathe' to let oxygen in and out
- Truncated globins seem to have a tunnel connecting binding site to outside

Conclusion

- To understand protein structure, watch evolution
- To understand protein structure better, look for very distant relatives

Colleagues

- Cyrus Chothia (Cambridge)
- Martino Bolognesi (Genova)
- Annalisa Pastore (London)