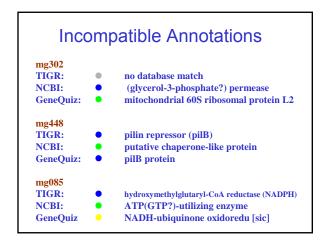
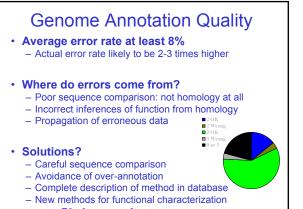


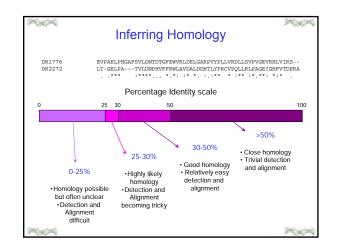
Genome Annotation Quality

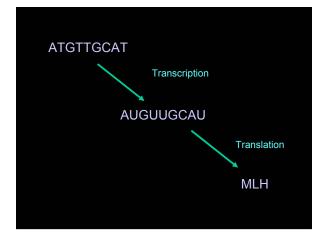

- What is the quality of genome annotation?
- Quality of sequence well known
- Quality of gene prediction at least roughly understood
- Functional accuracy of 99.5% claimed... ... but not tested experimentally
- We rely upon functional assignments for biological interpretation

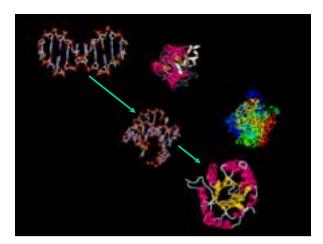
<u>TIGR</u> sequences genome and makes initial annotation <u>GeneQuiz consortium automatically annotates</u> Eugene Koonin et al (<u>NCBI</u>) manually make annotations

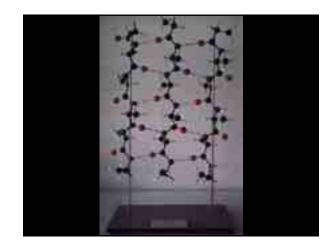

- Eugene Roomin et al (<u>NCBI</u>) manually make annotation
 <u>GeneQuiz</u> consortium automatically re-annotates
- . <u>Ochequiz</u> cons
- 5. Updates
 - Several groups make automated structural annotations
 TIGR makes undates to annotation, including new genefit
 - TIGR makes updates to annotation, including new genefinding

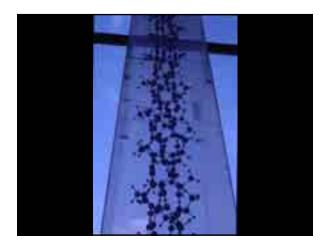
Different groups use similar methods and operated sequentially, reviewing each others' results

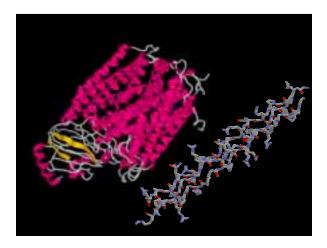

Compatible Annotations mg463 TIGR: high level kasgamycin resistance (ksgA) NCBI: rRNA (adenosine-N6, N6-)-dimethyltransferase (ksgA) GeneQuiz: • **Dimethyladenosine transfe** [sic] mg010 TIGR: **DNA primase (dnaE)** DNA primase (truncated version) (DnaGp) NCBI: GeneQuiz: • DNA primase (EC 2.7.7.-) mg225 TIGR: hypothetical protein amino acid permease NCBI: GeneQuiz: • histidine permease

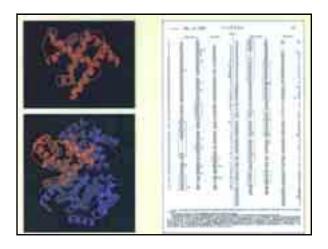


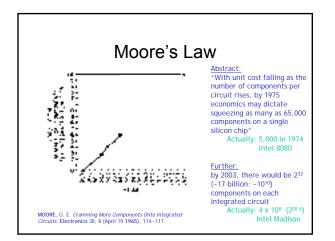

001	051	101	151	201	251	301	351	401	451
							800		
	888	000		000	888			:::	000
			•••	000					
000		0			000	000			
	ĕĕŎ	ĕĕĞ		000		ĕĕĞ	ĕĕĞ	800	
ĕĕĞ	000	000		ŏŏŏ		0	00	800	00
00		000			000		00		Ŏ
					00	000	000	000	000
888				888	200	õõ	888		•••
		000		800		000	800	800	
		0		0			00		
000		8	H		000		000	88	
ŏŏ		000	ĕĕĕ	000	000	000			
	••0	000	00		00	000	00	000	
		000		000	000				
		000	800	000	800			000	
	•••		***		808	888			
		8		0000			000	0000	
	000	000			8				
	ŏŏŏ	000	• ĕĕ	ğoo	000	88		000	
		000	000			000	000	000	
ěěč	0			Ŏ	ŏ	őő	N	Ŏ	

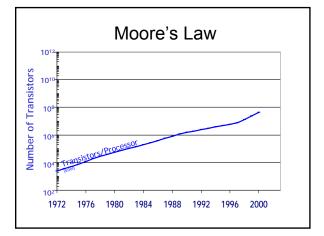


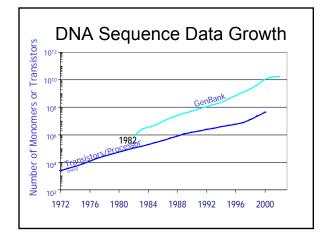


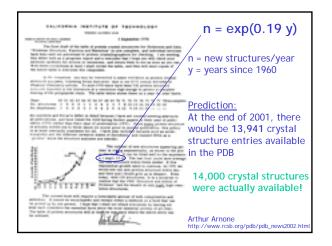


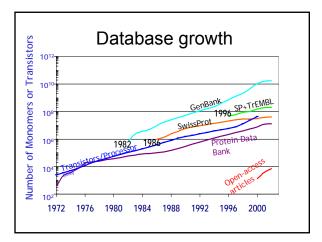


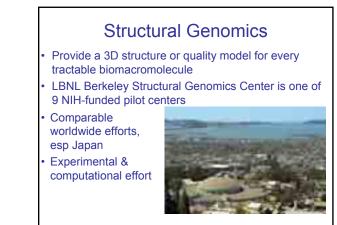


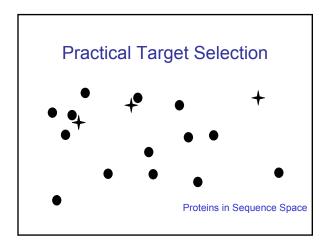


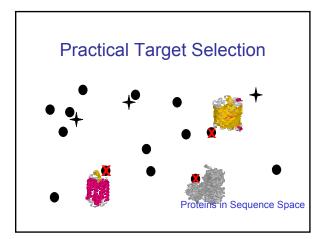


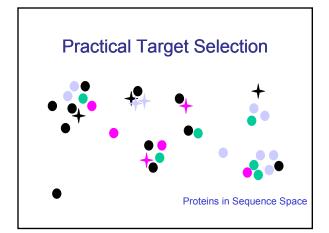


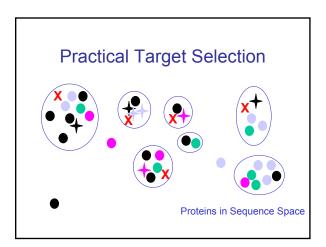


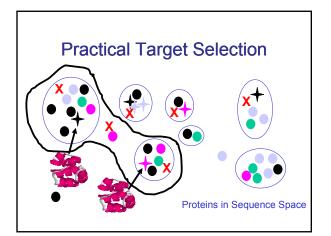


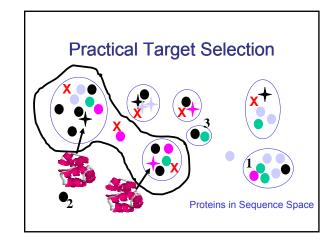


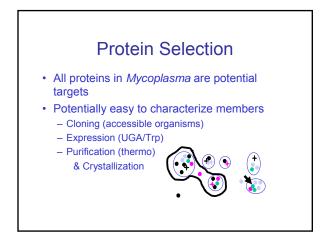


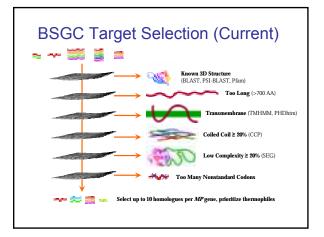


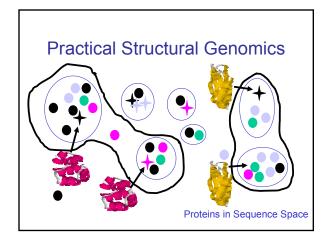


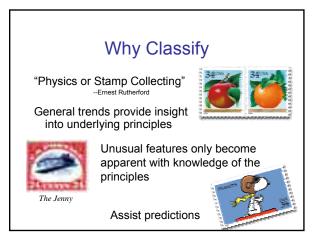


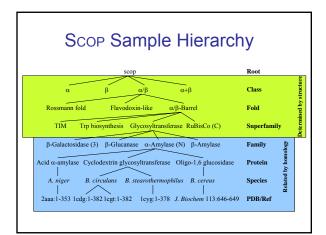


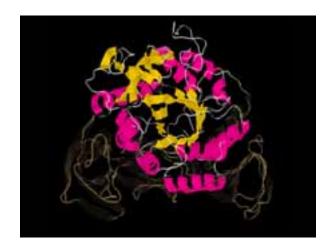


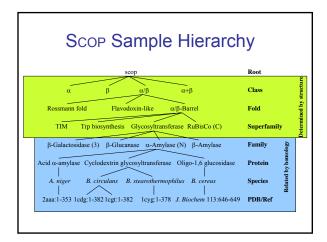


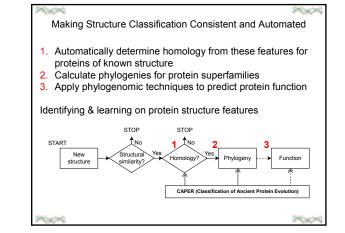


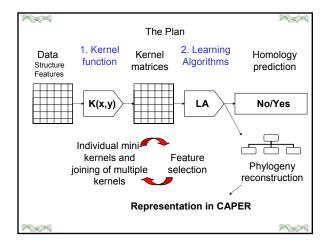


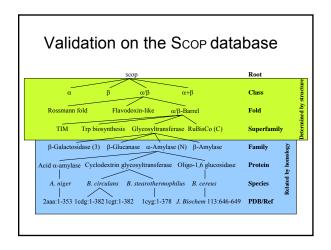


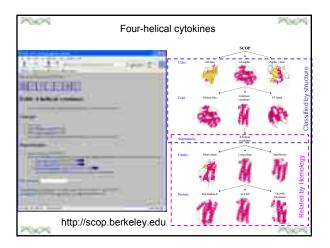


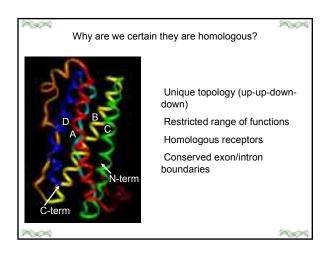


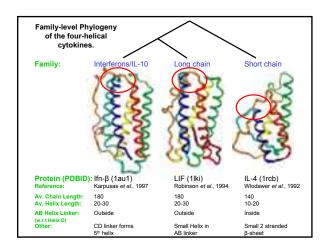


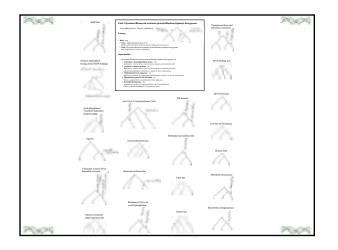


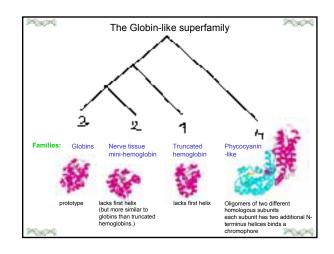


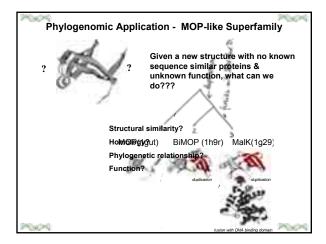


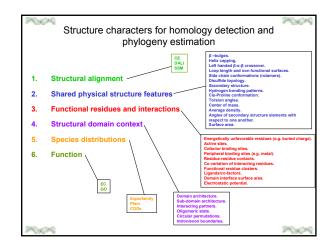


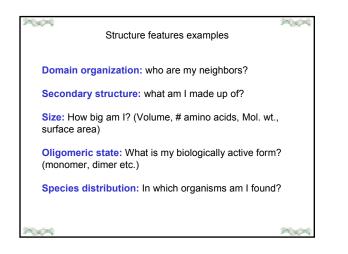


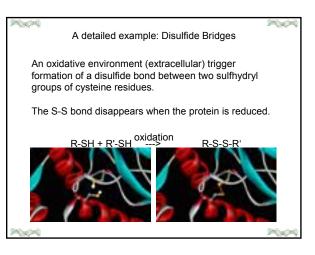


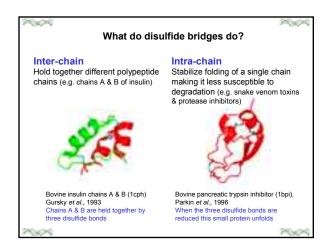


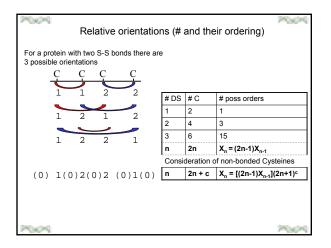

LUII	n Cha Short	Chair	diki	Somatotr	dicati	d1ax8				
seed d1rh		Erythropoletin d1eera_	GM-CSF d2gmfa_	IL-4 d1iara_	IL-5 d1hula_	M-CSF d1hmca_	Fit3 d1etea_	IL-2 d3inkc_	IL-3 d1jli	
	d1eera	2.1 2.80E-71	2.2 None	2.3 None	2.4 None	2.5 None	2.6 None	2.7 None	2.8 None	
d1al	2.1	166								
d1ll	d2gmfa_ 2.2	None	7.90E-65 121	None	None	None	None	None	None	
d1hg	d1iara_ 2.3	None	None	2.20E-54 129	None	None	None	None	None	
d1cr	d1hula_ 2.4	None	None	None	1.00E-51 108	None	None	None	None	
d1ax	d1hmca_ 2.5	None	None	None	None	7.40E-82 145	None	None	None	
		None	None	None	None	None	1.40E-80 134	None	None	
Ì	d3inkc_ 2.7	None	None	None	None	None	None	7.60E-64 128	E-Nalue Length of ma	dah
	d1jli	None	None	None	None	None	None	None	2.50E-43 111	iiG11

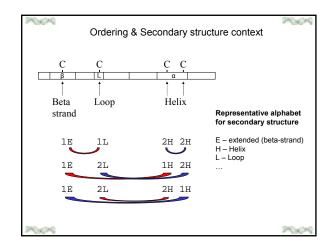


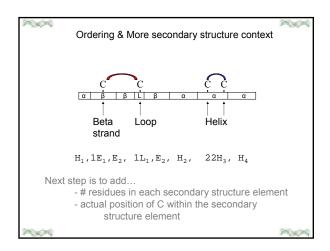


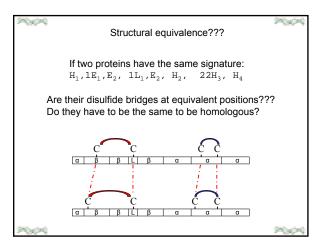




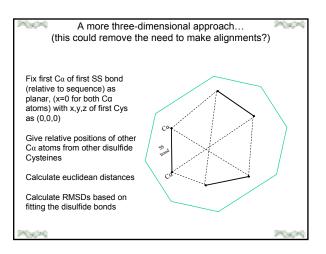


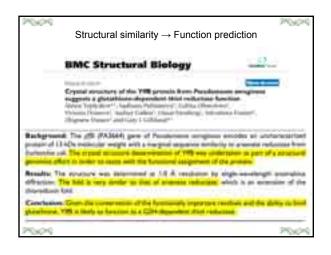

Structure Feature \rightarrow Feature vectors \rightarrow Kernels

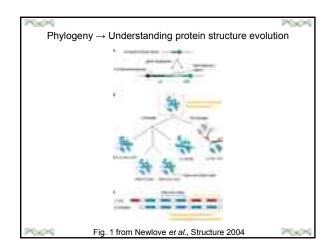

Piced.

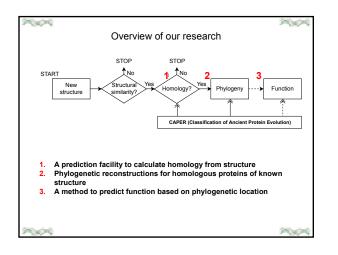

Disulfide bonds in any protein structure...

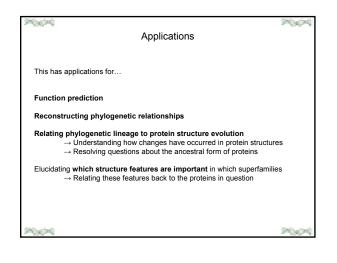
- 1. Presence/absence how many?
- If more than 1 what is their relative ordering on the chain? (which bonds with which)
- 3. What is their **secondary structural context** (where are the cysteines located)?
- 4. What is the secondary structure context for the entire domain?
- 5. Distances between cysteines, & lengths of secondary structure elements.
- 6. Are they exactly equivalent in position?
- 7. Distances & three-dimensional orientations from one another &/or from centre of mass of protein?










Min	i-kernels of increasing	g complexity			
Feature	Protein A	Protein B SCOP classification			
representation	SCOP classification				
# DS bonds	n	n			
# & orientation	11022	1212			
#, orientation & SSE	1H1E0L2H2H	1H2H1E2L			
#, orientation & all SSE	H ₁ 1E ₁ E ₂ 1L ₁ E ₂ H ₂ 22H ₃	$H_11E_1E_21L_1E_2H_222H_3$			
Above + specific lengths	(8)H ₁ (6)1E ₁ (9)E ₂ (3)1L ₁	(8)H ₁ (6)1E ₁ (9)E ₂ (3)1L ₁			
Alignment	Dynamic programming	Dynamic programming			
Will w	e need alignment info	ormation?	but		

