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Introduction
• Data Source: 

Matrix-assisted laser desorption ionization 
(MALDI) Mass spectrometry (MS)

• Technology background
MALDI-MS approach uses a nitrogen UV 

laser (337 nm) to generate ions from high 
mass, non-volatile samples such as 
peptides and proteins. 

Micromass' M@LDI™ and Q-Tof™ systems. 





MS Instruments from Micromass



Petricoin et al (2002) employed Genetic Algorithms and Self-Organizing 
Maps to analyze an MS dataset to distinguish ovarian cancer patients
from normal individuals. 

Baggerly et al. (2004): a careful reanalysis of Petricoin’s data

Coombes et al. (2003): 

Li et al (2002): LDA and bootstrap, breast cancer

Adam et al. (2003), Qu et al. (2002), Yasui et al. (2003):  Boosting, 
prostate cancer

Wu et al. (2003): Random Forest, ovarian cancer

Tibshirani et al. (2004): Peak probability contrast, nearest shrunken 
centroids, ovarian cancer

Many other studies



A typical plot for one serum sample
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Data Characteristics
• Simple Format

Paired intensity versus mass/charge datapoints, 
because MALDI-MS almost exclusively produces 
singly charged species, the mass/charge ratio is 
usually equal to the mass.

• Goal
Find potential peptide/protein markers to 

distinguish cases from controls and to enable 
classification of future samples.

• Difficulty
Huge number (~100,000) of features in a given 

dataset, comparatively small number (~100) of 
samples, and noisy background.



Petricoin et al Approach to Disease Biomarker Discovery 
in Serum

1From Petricoin et al, The Lancet 359, 572-577 (2002).

Self-organizing cluster analysis (by Correlogics Systems, Inc.) to identify 
5-20 datapoints/sample whose intensities best discriminate all 50 controls 

from all 50 ovarian cancer samples in the training set.

Spot each sample onto C-16 Ciphergen Chip, wash, subject to SELDI-MS 
to generate 15,000 m/z vs intensity datapoints/sample.

Utilize the intensities of 5 m/z markers (534, 989, 2111, 2251, 
2465) to classify 116 masked samples.

All 50 ovarian cancer and 63/66 (95%) of normal controls in 
the test set were classified correctly.

Serum from 50 ovarian cancer 
patients (90% Stage II-IV, 

median age 48)

Serum from 50 controls
(median age 49)



SELDI-MS Spectra for 4 Ovarian Cancer and Control Samples 
Around 5 Markers Identified by Petricoin (2002)

Ovarian Cancer 
# 1, 2, 3, 4

Controls #51, 
52, 53, 54

Spectra downloaded from NIH Clinical 
Proteomics Program Data Bank: 
http://clinicalproteomics.steem.com/

534

989

2111 2251

2465



MALDI-MS From Ovarian Cancer Patient Serum Samples Obtained 
on a Ciphergen Protein Systems 2 (Top) and Micromass M@LDI-R 

Instrument (Bottom)

Yale Ovarian Cancer Serum Sample r29a5_S4
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MALDI-MS Disease Biomarker Analysis of Serum

Automated MALDI-MS on Micromass MALDI-R 
instrument: 91,400 m/z vs intensity datapoints collected from 

800 to 3,500 daltons.

Automatically  desalt each sample in 96 well plate using a 
Micromass MassPrep robot and C-18 Zip-tips.

Serum from 48 disease 
patients

Serum from 48
control patients



Data Reproducibility
Technical
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Some Challenges in the Analyses

• Mass alignment

• Background subtraction

• Peak identification

• Normalization

• Classification



Challenges -- continued

• Visualization methods for this type of 
dataset
We need an effective visualization method 

for MS dataset. Also this can serve as a 
reference to compare results from our 
algorithms.

• Software implementation



Data Pre-Processing

• Mass alignment
Manually add Bradykinin to all samples so that its 

mass measurement serves as a common 
reference point for our mass alignment program.

• Variable transformation to reduce 
variation
Log transformation to reduce the magnitude and 

variation of the intensities. 



Why Take a log on the m/z Axis?
m/z:  a linear function of m/z index



• Background Subtraction
Chemical and electronic noise produces a 

background intensity which typically decreases 
with increasing mass. 

We can estimate a background intensity level to 
allow removal of  this trend. 

The basic technique we use now is local robust 
polynomial regression.

Data Pre-Processing





• Normalization

Micromass' M@LDI™ systems robotically take 40 
shots in the sample with the final reported 
intensity being the sum of these individual 
spectra. 

Due to variation in sample preparation and 
deposition on the target, matrix crystallization, 
and ion detection, samples are not directly 
comparable before normalization. 

Data Pre-Processing
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• Peak Identification

Yasui et al. Biostatistics 2003: 
local maximum search, broad neighborhood control, plus 

thresholding, binary indicator for peak and non-peak

Coombes et al. Clinical Chemistry 2003:
noise estimation plus thresholding

Data Pre-Processing







Peaks before Alignment: Example



Yasui et al. Biostatistics 2003

Wagner et al. Proteomics 2003

Coombes et al. Clinical Chemistry 2003

Tibshirani et al. Unpublished manuscript 2004



Problem Formulation

Given two sets of peak points, find out a 
unique correspondence between them which 
minimizes a distance function.

Not all peaks appear in every data set: 
One-to-one correspondence does not exist 

between every two data sets



•Basic fact: peak variation much smaller than 
distance of different peaks

•Construct a super set of all peaks and use it 
as the anchor of alignment --- every data set is 
aligned to this super set. 

•Computational cost ! down to M alignments



• Based on a distance threshold parameter
• Initialize the super set as the first data set
• For each point in the new candidate set, 

check its closest distance to the super set
--- over the threshold: 

new peak, add to the super set  
--- below the threshold: 

already in the super set, ignore 
• Continue till all data sets are processed



Does this distance threshold exist ?
Yes,   e.g.  0.5 x mean of the neighboring

peak distances 
the statistics of the histogram



Peak Distance v.s. Peak Variation:
mean of distance = 4 x mean of variation 



Super Set Based Alignment Using 
Closed Point Matching

• For each point in the candidate data set, 
align it to its counterpart in the super set 
by using the closest distance criterion

• The existence of the counterparts in the 
super set is guaranteed.

• The framework is non-rigid point matching



Classification

1. Traditional approaches

Dimension reduction, very hard to interpret the results.

2. Algorithm approaches

CART (classification and regression trees), too much 
variation.

Bagging, arcing (a.k.a. boosting), SVM, randomForest



LDA, QDA

NN-k

Support Vector Machine



Classification Trees

Intensity <0.7

100% Normal Spectra
(10 Controls)

m/z = 2500

100% Normal Spectra
(40 Controls)

100% Disease Spectra
(30 Disease)

100% Disease Spectra
(20 Disease)

Intensity > 0.2

Intensity >0.7

m/z = 1000

Intensity >0.6

Intensity < 0.2

50% Disease Spectra
(50 Normal/50 Disease)

m/z = 1500
Intensity <0.6 

33% Disease Spectra
(40 Normal/20 Disease)

75% Disease Spectra
(10 Normal/30 Disease)



Bagging:
Sample with replacement to form N bootstrap samples .
Use to construct tree classifier, and predict using this classifier.
Final prediction is majority vote.

Boosting:
Arc-fs: 

1) At first step, initialize npi /1)1( =   

2) At the k-th step, using the current probabilities )(k
ip , sample with replacement from sample 

S  to get the training set kS  and construct tree classifier kT  using kS . 
3) Run S  down kT  and let 1)( =id  if i-th case is classified incorrectly, otherwise zero. 

4) Define kkki
k

ik idp εεβε /)1(,)()( −== ∑ , and updated (k+1)st step probabilities by 
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5) After K steps, the },...,{ 1 KTT  are combined using weighted voting with kT  having weight 
)log( kβ . 

 



RandomForest 
(Leo Breiman)

Combines the following two ideas:

– Bagging pools of multiple classifiers from perturbed 
versions of the original dataset to increase predictive 
accuracy.

– Random feature selection from several best ones 
increases predictive accuracy. 



1) Sample with replacement to form N bootstrap samples.

2) Use each sample  to construct a Tree classifier to predict 
those samples that are not in the sample (called out-of-bag samples). 
When constructing each tree, at each node splitting, we first randomly 
select m variables and then we choose a best split from 
these m variables. These predictions are called out-of-bag 
estimators. 

3) Final prediction is the average of out-of-bag estimators 
over all Bootstrap samples.

4) Before using  each tree to predict out-of-bag samples, if we randomly
permute the value for one variable for these out-of-bag samples, 
intuitively the prediction error is going to increase. And the amount 
of increase will reflect the importance of this variable.







m/z Versus Intensity Distribution for 129 Samples Around 
the 1718 Ovarian Cancer Marker
(relative marker importance = 0.6) 

Median Cancer

Median Control

Marker
Position



m/z Versus Intensity Distribution for 129 Samples Around 
the 2659 Ovarian Cancer Marker
(relative marker importance = 6.0) 

Median Cancer

Median Control

Marker
Position





How to appropriately assess prediction errors?

(1) Features need to be selected based on each training
Sample, NOT pre-selected using all samples.

(2) Need to assess the impact of training set size.

(3) Need to examine the impact of feature selections.



Approach

• Estimate error rate (Err) as a function of 
sample size n and number of features m: 
Err(n,m).

• We have a total of N=170 samples (77 normal 
+ 93 ovarian cancer). Split 170 samples into 5 
similar groups, each with 34 samples.

• Use k group as test set and other 5-k groups 
as training set to estimate Err(136,m), there 
are a total of C(5,k) test sets.



Reflectron+Linear Data



From Reflectron to Linear
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• Visualization methods -- some plots









Software Implementation

• R software
All our current analyses are based on R software
(http://cran.r-project.org). 



Conclusions
• MS is a promising yet challenging technology for 

disease diagnosis and prognosis
• Many statistical problems need to be resolved to make 

the most and appropriate use of MS data
– Initial alignment
– Normalization
– Peak identification and alignment
– Classification 
– Visualization

• Data being collected can be of much higher dimension 
and complexity

• MS data need to be related to biology, and considered in 
combination with gene expression data as well as 
sequence and protein data to understand the results 
from such analyses
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