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Introduction

e Data Source:

Matrix-assisted laser desorption ionization
(MALDI) Mass spectrometry (MS)

 Technology background

MALDI-MS approach uses a nitrogen UV
laser (337 nm) to generate ions from high
mass, non-volatile samples such as
peptides and proteins.

Micromass' M@LDI™ and Q-Tof™ systems.
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MS Instruments from Micromass
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Petricoin et al (2002) employed Genetic Algorithms and Self-Organizing
Maps to analyze an MS dataset to distinguish ovarian cancer patients
from normal individuals.

Baggerly et al. (2004): a careful reanalysis of Petricoin’s data
Coombes et al. (2003):
Li et al (2002): LDA and bootstrap, breast cancer

Adam et al. (2003), Qu et al. (2002), Yasui et al. (2003): Boosting,
prostate cancer

Wu et al. (2003): Random Forest, ovarian cancer

Tibshirani et al. (2004): Peak probability contrast, nearest shrunken
centroids, ovarian cancer

Many other studies
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Data Characteristics

e Simple Format

Paired intensity versus mass/charge datapoints,
because MALDI-MS almost exclusively produces
singly charged species, the mass/charge ratio Is
usually equal to the mass.

e Goal

Find potential peptide/protein markers to
distinguish cases from controls and to enable
classification of future samples.

e Difficulty

Huge number (—100,000) of features in a given
dataset, comparatively small number (—~100) of
samples, and noisy background.



Petricoin et al Approach to Disease Biomarker Discovery
In Serum

Serum from 50 ovarian cancer
patients (90% Stage II-IV,
median age 48)

i i

Spot each sample onto C-16 Ciphergen Chip, wash, subject to SELDI-MS
to generate 15,000 m/z vs intensity datapoints/sample.

i

Self-organizing cluster analysis (by Correlogics Systems, Inc.) to identify
5-20 datapoints/sample whose intensities best discriminate all 50 controls
from all 50 ovarian cancer samples in the training set.

i

Utilize the intensities of 5 m/z markers (534, 989, 2111, 2251,
2465) to classify 116 masked samples.

i

All 50 ovarian cancer and 63/66 (95%) of normal controls in
the test set were classified correctly.

Serum from 50 controls
(median age 49)

'From Petricoin et al, The Lancet 359, 572-577 (2002).




SELDI-MS Spectrafor 4 Ovarian Cancer and Control Samples
Around 5 Markers|dentified by Petricoin (2002)
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Spectra downloaded from NIH Clinical
Proteomics Program Data Bank:
http://clinicalproteomics.steem.com/
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MALDI-MS From Ovarian Cancer Patient Serum Samples Obtained
on a Ciphergen Protein Systems 2 (Top) and Micromass M @L DI-R

Instrument (Bottom)
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MALDI-MS Disease Biomarker Analysis of Serum

Serum from 48 Serum from 48 disease
control patients patients

l l

Automatically desalt each samplein 96 well plate using a
Micromass M assPrep robot and C-18 Zip-tips.

l

Automated MALDI-MSon Micromass MALDI-R
Instrument: 91,400 m/z vsintensity datapoints collected from
800 to 3,500 daltons.




Data Reproducibility
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Some Challenges in the Analyses

e Mass alignment
e Background subtraction

e Peak identification
e Normalization

e Classification



Challenges -- continued

e Visualization methods for this type of

dataset
We need an effective visualization method
for MS dataset. Also this can serve as a

reference to compare results from our
algorithmes.

e Software implementation



Data Pre-Processing

e Mass alignment

Manually add Bradykinin to all samples so that its
mass measurement serves as a common
reference point for our mass alignment program

e Variable transformation to reduce
variation

Log transformation to reduce the magnitude and
variation of the intensities.



Why Takealog on the m/z Axis?
A m/z: alinear function of m/z index
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Data Pre-Processing

e Background Subtraction

Chemical and electronic noise produces a
background intensity which typically decreases
with Increasing mass.

We can estimate a background intensity level to
allow removal of this trend.

The basic technigue we use now is local robust
polynomial regression.
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Data Pre-Processing

e Normalization

Micromass' M@LDI™ systems robotically take 40
shots in the sample with the final reported
Intensity being the sum of these individual
spectra.

Due to variation in sample preparation and
deposition on the target, matrix crystallization,
and ion detection, samples are not directly
comparable before normalization.
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A2 A3 A4 AS A6
Al 0.443 |0.431 |0.539 |0.415 |0.458
A2 0.445 |0.615 [0.481 |0.541
A3 0.668 |0.544 |0.628
A4 0.668 |0.690
AS 0.629
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Data Pre-Processing

e Peak Identification

Yasul et al. Biostatistics 2003:

local maximum search, broad neighborhood control, plus
thresholding, binary indicator for peak and non-peak

Coombes et al. Clinical Chemistry 2003:
noise estimation plus thresholding



Effect of Noise Filtering
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Peaks before Alignment: Example
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Yasul et al. Biostatistics 2003

Wagner et al. Proteomics 2003

Coombes et al. Clinical Chemistry 2003

Tibshirani et al. Unpublished manuscript 2004



Problem Formulation

Given two sets of peak points, find out a
unigue correspondence between them which
minimizes a distance function.

Not all peaks appear in every data set:

One-to-one correspondence does not exist
between every two data sets



*Basic fact: peak variation much smaller than
distance of different peaks

eConstruct a super set of all peaks and use it
as the anchor of alignment --- every data set Is
aligned to this super set.

Computational cost = down to M alignments



Based on a distance threshold parameter
Initialize the super set as the first data set

For each point in the new candidate set,
check its closest distance to the super set

--- over the threshold:

new peak, add to the super set
--- below the threshold:

already In the super set, ignore
Continue till all data sets are processed




Does this distance threshold exist ?
Yes, e.g. 0.5 x mean of the neighboring
peak distances
==) the statistics of the histogram



300

250

200

150]

100

50

0

0

Peak Distance v.s. Peak Variation:
mean of distance =4 x mean of variation

2

. - . .
4 6
A log(m/z)

8

10
x10

-3

300

290/

200

150

100/

o0

0

0

E- .

4 6
A log(m/z)

:

10
x 10

-3



Super Set Based Alignment Using
Closed Point Matching

* For each point in the candidate data set,

align it to its counterpart in the super set
by using the closest distance criterion

* The existence of the counterparts in the
super set Is guaranteed.

 The framework Is non-rigid point matching



Classification
1. Traditional approaches

Dimension reduction, very hard to interpret the results.

2. Algorithm approaches

CART (classification and regression trees), too much
variation.

Bagging, arcing (a.k.a. boosting), SVM, randomForest



LDA, QDA
NIN-k

Support Vector Machine



Classification Trees

50% Disease Spectra
(50 Nor mal/50 Disease)

Intensity <0.6 | ntensity >0.6
m/z = 1500
75% Disease Spectra 33% Disease Spectra
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Bagging:

Sample with replacement to form N bootstrap samples .
Use to construct tree classifier, and predict using this classifier.
Final prediction is majority vote.

Boosting:
Arc-fs:

1) Atfirst step, initidize p,¥’ =1/n

2) At thek-th step, using the current probabilities p. w0 sample with replacement from sample
S to get thetraining set S, and construct tree classifier T, using S, .

3) Run S down T, andlet d(i) =1 if i-th caseis classified incorrectly, otherwise zero.

4) Defineg, = p.d(i), B, =(1—¢€,)/&,, and updated (k+1)st step probabilities by
p ™ =p By P BN If g =0, Zé,wereinitializeall p“? =1/n.

5) After K steps, the {T,,..., T, } are combined using weighted voting with T, having weight
log(By) -




RandomForest
(Leo Breiman)

Combines the following two ideas:

— Bagging pools of multiple classifiers from perturbed
versions of the original dataset to increase predictive
accuracy.

— Random feature selection from several best ones
Increases predictive accuracy.



1) Sample with replacement to form N bootstrap samples.

2) Use each sample to construct a Tree classifier to predict

those samples that are not in the sample (called out-of-bag samples).
When constructing each tree, at each node splitting, we first randomly
select m variables and then we choose a best split from

these m variables. These predictions are called out-of-bag

estimators.

3) Final prediction is the average of out-of-bag estimators
over all Bootstrap samples.

4) Before using each tree to predict out-of-bag samples, if we randoml
permute the value for one variable for these out-of-bag samples,
intuitively the prediction error is going to increase. And the amount

of increase will reflect the importance of this variable.
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m/z Versus Intensity Distribution for 129 Samples Around
the 1718 Ovarian Cancer Marker
(relative marker importance = 0.6)
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m/z Versus Intensity Distribution for 129 Samples Around
the 2659 Ovarian Cancer Marker
(relative marker importance = 6.0)
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How to appropriately assess prediction errors?

(1) Features need to be selected based on each training
Sample, NOT pre-selected using all samples.

(2) Need to assess the impact of training set size.

(3) Need to examine the impact of feature selections.



Approach

o Estimate error rate (Err) as a function of
sample size n and number of features m:
Err(n,m).

 We have a total of N=170 samples (77 normal
+ 93 ovarian cancer). Split 170 samples into 5
similar groups, each with 34 samples.

 Use k group as test set and other 5-k groups
as training set to estimate Err(136,m), there
are a total of C(5,k) test sets.



Prediction rate
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Prediction rate
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e Visualization methods -- some plots

no back, no normal, log scale
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Software Implementation

e R software
All our current analyses are based on R software

( )-



Conclusions

MS is a promising yet challenging technology for
disease diagnosis and prognosis

Many statistical problems need to be resolved to make
the most and appropriate use of MS data

— Initial alignment

— Normalization

— Peak identification and alignment
— Classification

— Visualization

Data being collected can be of much higher dimension
and complexity

MS data need to be related to biology, and considered in
combination with gene expression data as well as
sequence and protein data to understand the results
from such analyses
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