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Some questions

Should we allow continuum order parameters
(directors, Q-tensors etc) describing liquid
crystals to jump across surfaces?

Is there a useful theory of nematic and cholesteric
liguid crystals in which the order parameter is a
unit vector field and for which observed defects
have finite energy?

How do we choose an appropriate function space
for mathematical models of continuum physics?



Classical models of nematics and
cholesterics

Static models for liquid crystal at constant tem-
perature filling bounded domain Q c R3 de-
scribed in terms of corresponding free-energy
functionals.

1. Oseen-Frank theory. Order parameter unit
vector field n.

Iop(n) = fﬂ W(n, Vn) dx, 0

W(n,Vn) = K{(divn)? 4+ Ko(n - curln + t)? +
Ka(nxcurln)?24 (Ko+K4)(tr (Vn)2—(divn)?),

t = 0 for nematics, t #= 0 for cholesterics.




2. Ericksen theory. Order parameter (s,n),
n| =1,

Ip(s,n) = /Q W(s,Vs,n, Vn) dx.

3. Landau - de Gennes theory.
Matrix order parameter Q(x) = (Q;;(x)),

Qlx) = | ,(p®p - %1)p(x,p) dp,

where p(x,-) is probability distribution of
molecular orientations, so that

p(x,p) 2 0,p(x,p) = p(x,—p), | , P(X,p) dp = 1.

Thus, for each x, Q(x) € €, where
E={Q:Q=Q7,trQ =0,2\1in(Q) > —1}.



Free energy

ILac(Q) = [ ¥(Q,VQ)x,
where 1(Q, VQ) = ¥5(Q) + ¥&(Q, VQ).

Vp(Q) = atr (Q2) - 2t Q% + Str Q%

or the singular potential of Katriel et al, JB/Majumdar

which satisfies ¥5(Q) — oo as Apin(Q) — —%,
and, for example,

4or5
vp(Q,VQ) = ) LI,
i=1
where
I = Qi5,iQik ks 12 = Qi jQijk> 13 = Qi kQij k
Ia = QurQi1Qij k> 15 = €ijkQuQji k-

Uniaxial ansatz Q(x) = s (n(x) ®n(x) — %1)
where s > 0 is constant, gives Oseen-Frank,
and when s = s(x) we get Ericksen theory.



Models of smectics

1. Assuming each layer has constant thickness

Let a(x) be the normal to the layer through x.

Claim.
If a is sufficiently smooth then V Aa = 0.

Proof.
Assume that x = 0 and a(0) = e3, so that layer

surface through x has equation z3 = f(x1,x2)
with Vf(0,0) = 0. By the IFT the normals

at points on surface simply cover a neighbour-
hood of O.
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which is zero because a(0,0,z3) = (0,0,1).



For smectic A could take n = a, so that setting
K> 4+ K4 = 0 we have to minimize

I(n) = K4 /Q(div n)2dx

subject to V An = 0O,
Orsay group 1971).

n = 1 (Oseen 1933,

If €2 is simply-connected, n = V¢ and we have
to minimize I(n) = K1 [o(Ap)?dx subject to
the eikonal equation |V¢| = 1. For example, if
n minimizes [ |Vn|?dx and n = Vo then ¢ is
a minimizer (e.g. n(x) = %).



Compare the Aviles Giga functional (1987)

1(9) = [_[e(89)? + (|94 — 1)%dx

For the derivation ...

“Simple examples and physical considerations (Ericksen
[17] and Sethna [18]) suggest that the solution of the
following relaxition problem explain with acquiricy the
phenomena.”

and

[17] Ericksen, J.: private communication.
[1 8] Sethna, J.: private communication.



A more general model would be to minimize
an energy of the form

I(n,a) = /Q W(n,a, Vn, Va) dx.

For smectic C such a model was proposed by
Stewart, Leslie, Nakagawa 1993, who imposed
the constraint a-n = cosf, 0 constant, but
one could relax this and have a term such as
K((a.n)? — cos?0)? in the energy, and impose
boundary conditions just on n.



2. Models allowing variable layer thickness,
dislocations ... |

as a new macroscopic variable,
with the smectic layers being
seen as density waves.

In the de Gennes approach, and that ¢ zhang, A. M. Grubb, A. J. Seed, P.
of Chen/l_ubensky it is assumed that Sampson, A. Jakli, O. D. Lavrentovich, 2015

m(x) = pg + p(x) = po + r(x) cos ¢(x),

where pg > 0 is a constant average density and
W(x) = r(x)e!?X) is used as a complex order
parameter. Thus p(x) describes the fluctua-
tions in the density due to the smectic layers,
and V¢ gives the normals to the layers.



But how are we to define m(x) as a macro-
scopic variable, if it is to varty over distances
of the order of a molecular length?

This is related to the interpretation of the prob-
ablity distribution of molecular orientations, and
how this can be thought of as a macroscopic
variable.

n P
First, fix a time ¢, p/

a point x € €2,
and a coarse-graining
radius § > O.




We want § to be sufficiently small for B(x,d) to
be macroscopically close to a point x, yet large
enough to contain a large number of molecules
and allow a statistical description.

Take the molecule to be a circular cylinder of
length d and radius a, and assume the molecules
to fill a fraction 0 of B(x,6). Then the number
of molecules in B(x,§) is §3m63/ma?d.

Setting 0 = % a=d/4, d = 3nm, this number
: crr -6 I |

is 1 billion for 6 ~ 107°m = 1600MM, and 100
for 6 ~ 10nm.
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But if we average also over a macroscopically
small time interval we could reduce ¢, per-
naps to ~ 1Inm. (Issues: molecules overlap-
ning 0B(x,d), temperature, dynamics v. equi-
ibrium, ergodicity ...)

Remark concerning spatial averaging for
smectics.

If we average over cube with
centre x and side-length kL
then the average is constant. X
>

g(xq1) L—periodic X1




(Corrected slide added after lecture.)

The same can happen if we average over a ball.
Indeed

1
vol B(x, ) JB(x,5)

_ ac in ké—kd cos ké
= 3sin(kzq) (S'” (k5)§05 ) ,

which is zero for all x if kd is a root of the
equation sin A\ = A\ COS \.

sin(kzq) dz

This is related to the
Pompeiu problem.




An example of a free-energy functional defined
in terms of n, ¢ is that proposed by Kleman &
Parodi is given by

I(n, ¢) = /Q (W(n, vn) + ;B(n —Ve) - (n— qu)) dx,

where B = B |1 + (B” — BJ_)I’I ® n and BJ_,B”
are positive material constants.

E (1994) (and later Santangelo & Kamien 2005)
argued that a good approximation is given by

| (K1(divn)? 4 By(|99] - 1)) da,

together with the constraint n = % that

rigidly enforces that the director points parallel
to the normal.

Existence of a minimizer for the Kleman & Par-
odi model is easy, but for the reduced one un-
clear.
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Models using the density p rather than o.

(a) Han, Luo, Wang, Zhang model (2013).
Flc{x), Q=(x)]
-Lr“:[]l'lr.‘ + By : Qs — In £)dx + % L {_E-_Z,]r'-t 4 }-_.'.inﬁ.[;}ﬂ‘! | ff];;|{.{g¢iz
*“‘"-':1|1'-_“rf?52 t Eaa[V(cCQa)]* A 1"-'2:!-|":“'il'f-"?1}iE t By & 00Qei; )05(c)
+ Eas $i(0Qk )05 (el ) + Eag &{0Qgi0)0;(c0akt) + Eor 000 gikimm )05 (0Q 45ktm)
+ Ex|VZe]* + Eaz &ij{cQapg)8ij{c@Qepg) + Fas Hij(cQaii )0 (cQar)
t By O (cQp 105k (0Q25p) + Eas 85 (0Q2; 0kk(c) + Ess ;{00 k1 )8kl c)
+ Ear 0400 4ipg Okk (00 ape | + Eag G4 (00 sijip )0k { Qo)

t g (000 g3 pg 0k 00 akipg ) dx.

(b) Pevnyi, Selinger, Sluckin model

I(p,n) = /Q[KlIan2+B|D2p+q2n®nl2+f(p] dz.



Lessons from solid mechanics

Nonlinear elasticity has a similar variational struc-
ture to continuum models of liquid crystals,
with a free-energy functional of the form

1) = [ (Vy(x))dx,

where y(x) € R3 is the deformed position of a
material point having position x in a reference
configuration ¢ R3.

Minimizers can have singularities and the
predictions of the model depend on the
function space.



e.g. cavitation: given A > 0 the minimizer of h(i)

I(y) = fB(o,l)WY|2 +h(det Vy)ldx +k area Sy

among smooth y subject to y(x) = Ax for
x| =1 is y*"(x) = Ax. >0

But among radial deformations y(x) = =X

x| x ﬁ
in W12 the minimizer for large enough )\ sat-

isfies »(0) > 0.

(Lavrentiev phenomenon)

But is W12 the largest such function space?

No, because the body could develop fracture
surfaces across which y is discontinuous.
Francfort-Marigo theory of fracture.

y € SBV (special functions of bounded
variation), jump set Sy



There can also be planar discontinuities in Vy
representing phase boundaries.

Baele, van Tenderloo, Amelinckx

Macrotwins in NigsAlzs
single crystal (D. Schryvers) Sharp, and

diffuse
interfaces
And there are models similar to Landau - de
Gennes allowing both sharp and diffuse
interfaces, e.g.

I(y) = /Q[w(Vy) +£|VVy[?] dx + rarea Syy.
(Ball & Mora-Corral 2009)

ervsite. Slje.



The important conclusion to draw for liquid
crystals is that the function space is part of
the model. (Proof. Change the function space
and the predictions change.)

Indeed the Lavrentiev phenomenon (the
infimum of the total free energy is different in
different function spaces is different) occurs in
the Oseen-Frank theory. In fact we have that
for the unit ball B

- = oo if X =C1
inf / K|vn[2dx! =
nceX nlgp=x/B | | { < oo IfX= w2

(Hardt & Lin 1986 give an example with smooth
degree zero boundary data for which both
infima are finite but that in W12 is lower.)



Description of defects

We first consider the Oseen-Frank model for
nematics with ¢t = 0:

W(n,Vn) = K1(divn)? 4+ Ko(n - curln)? + Ksz(n x curin)?
+ (K2 + K4)(tr (Vn)? — (divn)?).

Then W(n,Vn) < C|Vn|? for some C > 0 when-
ever |[n| = 1, and under the Ericksen inequali-
ties

2K1 > Ko+ Ky, Ko > |Ky|l, K3>0

we also have that C’|Vn|? < W(n, Vn) for some
constant C’ > 0. Hence a natural function
space to use is W12(Q; 52).



The Euler-Lagrange equation for

Iop = /Q W(n, Vn) dx

has solutions representing point defects, e.g.

n(x) = |X—| (radial hedgehog)
X
and if Ky = Kp = K3 = K, Kg = 0 then n
is the unique minimizer of Ior = K [o |Vn|2dx
subject to its own boundary conditions (Brezis,
Coron, Lieb 1986).

In this case any minimizer is smooth except
for a finite number of point defects (Schoen
& Uhlenbeck 1982) at points x(z) such that

x — x(7)

n(x) ~ +R(3) as x — x(1),

x — x(4)]
for some R(i) € SO(3).

\’




Disclinations

n(x) = (&, %2 0) r=\/x%—|—az%

r? r?

Vi(x)[? = =

NnewlrPe 1<p<?2

Iop() = o0



Index 3 singularities.

Zhang/Kumar 2007
Carbon nano-tubes
as liquid crystals




That these defects have infinite energy arises
from the quadratic growth in Vn of W(n, Vn).

But there is no reason to suppose that W(n, Vn)
is quadratic for large |Vn| (such as near
defects).

S0 a possible remedy would be to assume that
W(n,Vn) has subquadratic growth, i.e.

W(n,Vn) < C(|Vnl’ + 1),

where 1 < p < 2, which would make disclina-
tions have finite energy.



For example, we can let

Wa(n,Vn) = ]% ((1 + aW (n, Vn))% — 1) :

where o« > 0 is small. Then Wg(n,Vn) —
W((n,Vn) as a — 0. Also, assuming the

Ericksen inequalities, W, satisfies the growth
conditions

Co(IVn[P — 1) < Wa(n, Vn) < Co|Vn/P,
for positive constants Cg, C/,. Setting
Io(n) = /Q Wa(n, Vn) dx,

we obtain that Io(n) < oo as desired. Also
Wa(n, -) is convex.



Boundary conditions:

If Q C R3 has smooth boundary and a
sufficiently smooth unit vector field N is given
on the boundary 902, then it is known (Hardt
& Lin 1987) that there is a unit vector field
nc Wh2(Q: 52) with n = N on 9%.

However, if, for example, Q2 = (0,1)3 is a cube
and N is the inward normal to the boundary,
then (Bedford) there is no such n. Thus the
Oseen-Frank theory does not apply to homeotropic
boundary conditions on a cube, although a
theory with subquadratic growth would be OK.



But the index 35 singularities cannot be
modelled this way because they are not
orientable; i.e. they can be described by
a line field n®n € WP but not by a

vector field n € Winp,

The same issue arises for
smooth line fields in non
simply-connected regions.

Y

Ball & Zarnescu 2011 show that any W12 line
field in a simply-connected region is orientable. ’ -

This can be handled by
allowing n to jump to
—1n across suitable
surfaces.




Theorem (Bedford). Assume €2 has Lipschitz
boundary and let n®n € W12(Q; M3%3), where
n(x) € S2 for a.e. x € Q. Then there exists a
vector field m € SBV(; S?) such that m®@m =
n®n, and m_ = —m_ acCross any jump.

T his applies to the second situation above but
not to index % defects, for which an extension
to WlP 1 < p< 2, would be required.

Bedford also has similar results for the Ericksen
model.



Landau - de Gennes theory. Minimizers Q of
the free-energy functional are expected to be
smooth (Gartland & Davis 1998) because the
Euler-Lagrange equation is elliptic (though there
IS an issue if the singular potential with

¥vp(Q) — 0o as Amin(Q) — —3+ is used,
because it is not then clear in general if the
Euler-Lagrange equation is satisfied).

T herefore defects are not described by singu-
larities of Q, but rather by regions where |VQ|
IS very high, in which a continuous choice of
eigenvectors for VQ may not possible.



T he situation might be different for free-energy
densities ¥ (Q,VQ) which are convex but not
quadratic in VQ. For such integrands there is
a counterexample of Sverak & Yan which has
a singular minimizer of the form

X X 1
Q(x) = [x]| (E(@m—gl) :



Planar defects

Let us explore whether it might be reason-
able to consider a free-energy functional for
nematic and cholesteric liquid crystals of free-
discontinuity type

I(n):/QW(n,Vn)dx—l— < f(ny,n_,v) dH?,

for n € SBV(2; S?), where v is the normal to
the jump set Sh. Here W(n, Vn) is assumed to
have the Oseen-Frank form or be modified so
as to have subquadratic growth as suggested
previously.



Admissible interfacial energies

Suppose that f: S2 x S2 x S2 — [0,00) is con-
tinuous and frame-indifferent, i.e.
f(Rn—I—a Rn_, RV) — f(n—|—7 n_, V)

for all R € SO(3),ny,n_,v € S?, and that

J Is invariant to reversing the signs of ny,n_,
reflecting the statistical head-to-tail symmetry
of nematic and cholesteric molecules, so that

f(—n_|_,ﬂ_,V) — f(n—|—a —Il_,l/) — f(ﬂ_l_,ﬂ_,l/).



T heorem. For these conditions to be satisfied
it is necessary and sufficient that

f(Il_|_,Il_,l/)
= g((ny -n)%, (ng - )%, (n- - v)?, (ng - n_)(ng - v)(n- - v))

for a continuous function g : D — [0,00), where

D = {(a,B,7,6) : o, 8,7 € [0,1],8% = aBy, a+B+v—25 < 1}.

An equivalent representation is in terms of the
matrices My =n, ®ny,M_=n_Q®n_,
N =v ® v, namely

f(n+, n_, 1/) = g(M+-M_, M_l_-N, M_-N, tr (M+M_N))

In fact the theorem, though without the char-
acterization of the domain of g, follows from a
representation theorem (Smith 1971) for isotropic
functions of symmetric matrices.



Possible candidates for planar defects.

1. Nematic elastomers

The energy functional for nematic elastomers
proposed by Bladon, Terentjev, Warner (1993)
is given by

_ M T -1
I(y,n) = fQ 5 (Dy(DY)T - Lis — 3) dx,
h Stripe domains in nematic elastomer
wnere Kundler & Finkelmann
2 1 Mathematical theory due to De Simone &
La,,n —a3n®n + a_€(1 —ng® 1’1) Dolzmann

and p > 0,a > 0 are material parameters.

T he material is assumed incompressible, so that
y IS subjected to the constraint detVy = 1.



By minimizing the integrand over n € S2 we
obtain the purely elastic energy

)= [[W(Vy)dx, (1)
where
W(A) =4 (a7 307(A) +a3(:3(A) +03(A)) ).

and v1(A) > v»(A) > v3(A) > 0 denote the
singular values of A, that is the eigenvalues of
ATA.



As discussed by De Simone & Dolzmann (2002)
the free-energy function (1) is not quasicon-
vex, and admits minimizers in which Vy jumps
across planar interfaces, so that the minimizing
n of the integrand also jumps. Of course the
functional ignores Frank elasticity, i.e. terms in
Vn, but the experimental observations might
suggest that even with such terms allowing
jumps in n € SBVY may be a useful approxi-
mation.



Order reconstruction
Qs = (0,11) x (0,1) x (0,5)
n = t+ejy 513‘3:5

Barbero & Barberi (1983) / 1
Palffy-Muhoray, Gartland / n=-+e; —>

& Kelly (1994), Ambrosio B r3 = 0
& Virga (1991)

(a) Analysis using Landau - de Gennes

Boundary conditions:

Q(z1,72,0) = Q9), Q(z1,22,0) = Q),

for a.e. (x1,22) € (0,17) x (0,15), where

Q(O) = S1 (el X e1 — %1) , Q(l) = S92 (83 X e3 — %1) ;
and Q periodic in x1,x>.



Assume that L, = 0 with the Longa inequali-
ties

3 1
L3 >0, —L3z <Ly <2L3, —gL3 — 1—0L2 < Ly,

which imply that
YpE(VQ) > a|VQ[?

for some a > 0.

Rescale, defining

P($1,LE2,CE3) — Q(ZL’]_,CUQ,5$3),
so that I;42(Q) = 6~ 1E°(P), where

B (P) = [ [6205(P) +vn(5P 1,6P 5, P 3)] dx
and D = (O,ll) X (O,lg) X (O, 1).



Theorem. Let P° be a minimizer of E°. Then
as o — 0

P’ - P, P% — P3, 6P% — 0, 6P% — 0 in L?(D;S),
where

P(x) = (1 — 23)Q® + z3QW),
and S={Q e M3%3:Q =Q',trQ = 0}.

So for sufficiently small §, Q is given approxi-
mately by

Q(x) = (1 — 6 123)Q) 4 57 123QY),

for which the director (the eigenvector of Q
corresponding to the largest eigenvalue)

e; IfO<axz <316
n(x) = L 51 3 = st
ez If 51+325 < zxz3 < 1.
. . . _ S1
has a discontinuity on the plane z3 = 81_|_825.
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surface anchoring: molecular organization across a thin film of 5CB

liguid crystal on silicon. Chem. Sci., 3:573-579, 2012.
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(b) Analysis using director model

Consider for simplicity the functional
I(n) = ]Q K’|Vn]2dx—|—l~c’/s (1-(nyn_)2)2) dH2,
) n

where k' > 0and 0 < r» < 1, with boundary con-
ditions n(xq,x2,0) = ey, n(xq,x2,6) = *es.

Formally this can be obtained from the Landau
- de Gennes functional

Q) = [ KIVQPdx+k [ Q4 - Q-|"dH?
Qs Sq
by making the uniaxial ansatz

Q) = s (n() ®n(x) ~ 51).

where |n(x)| = 1 and s € (0,1) is constant,
with K/ = 2K 32, k' = 225"k.



Some care is needed when interpreting the bound-
ary conditions and periodicity, since it is possi-
ble that Q might jump at the boundary 925 of
(25. This is handled by minimizing I(Q) among

Q € SBVjg(R? x (—1,8 + 1); M3*%3) satisfying

1
Q(x1,20,23) = 5 (el R eq — §1> for —1 < x3 <0,

1
Q(x1,x0,23) = 5 (63 X ez — §1> for 0 < x3 < 041,

and Q(z1 + l1,z2,23) = Q(z1,22 + lp,23) =
Q(ml,ﬂﬁg,x?,) for all (561,332,563) - RQ X (—1,(5—|—
1). With this interpretation Sq can be partly
on 0€2s.



Candidates for minimizers of I are the two
smooth Q given by

%—I—cos% 0 +sin®3 \

Q*(x) =~ o -2 o0
| tsinme O3 i — cos ™3 |
\ SN 3 5 )

which are the minimizers of [ [VQ|?dx among
uniaxial Q € W12(Qs; M3%3) satisfying the bound-
ary conditions, and which correspond to the
two Oseen-Frank solutions in which the line
field rotates anticlockwise (resp. clockwise) in
the (z1,x3) plane from horizontal to vertical.



Theorem. For any 0 > 0 there exists at least
one minimizer Q € SBV (s : M3%3) of I sub-
ject to the boundary conditions.

Conjecture. There is a small g > O such that
if § > 85 then QT are the only minimizers, while
if 0 <6 < dg then any minimizer Q has a single
jump with jump set Sq = {x : x3 = ~v(9)},
where 0 < ~(4§) < 4.



That QT are not minimisers for § sufficiently
small is easily seen. In fact, |[VQ*| = % for

some C > 0, so that I(Q*) = KSQ%Q. But if

~ r881@61—%1 if0<x3<%
Q(x) = 9 1 e §
\863@)63—?1 If§<:133<(5

then I(Q) = ks'23, so that I(Q) < I1(QY) if
ST_Q% < 27302



Related problems for cholesterics

Bedford (2014, 2015) considers related prob-
lems for cholesterics, for example to minimize

I(n) = /Q[|vﬂ|2 4 2tn -V An -+ 2n|?] dx
for Q = (0,17) x(0,1») x(0,6), where t > 0 and

Il(zvl,JCQ,O) = e, n(xl,x2,6) = e3, I periodic in x1,xo.

He proves that there is an explicit unique global
minimizer n* = n*(x3) among n depending only
on x3, and there exists 7 > 0 such that n* is
the unique global minimizer in W12 among all

admissible n for t € [0, 7].



Similarly, for the boundary conditions

n(wl,:CQ,O) = e3,n(w1,:c2,5) = e3, n periodic in x1,xo,

Bedford proves that n = e3 is for some 7 > 0
the unique minimizer in W12 for t € [0, 7], a
strong local minimizer if t € [0,7) and not a
weak local minimizer if t > .

Cholesteric fingering (courtesy f%{ W 0?7_ T
Hewlett-Packard) formed £1}|
between two plates with @

) —~

homeotropic boundary

conditions. In the lower half 74 ISR TN f 4 ‘:&_
of the figure the bottom e
surface is a grating, and the
effective boundary condition is
planar.




In an attempt to understand the mechanism
for the origin of such patterns via energy min-
imization, Bedford motivated the study of the
variational problem of minimizing

I(n) = /Q[|Vn|2—|—2tn-V/\n—|—t2|n|2] dx+KH2(Sn)

over n € SBV(£2; {0} U S2) satisfying
H(SC]_,.’JZQ, O) — elaﬂ($1,5’3275) = e3 and
n periodic in x1,xo.

He proves that there exist 7 > 0 and K such
that the unique minimizer for t € [0,7] and K >
K is n* = n*(x3), but that if ¢ is sufficiently
large then the minimizer cannot be a function
of 3 alone. The latter statement involves a
construction using a packing of double-twist
cylinders involving jumps in n.



3. Smectic thin films

AFM image
Michel, Lacaze
et al, 2004
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Zappone, Lacaze et al, 2010
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Modified Pevnyi, Selinger & Sluckin model (2014)

») 2
1(Q,p) = /Q (wE(Q, VQ) + B|D?%p + % (BQ+s1)p| + f(p)) dx
+k [ |Qp — Q- an?
5Q
Q(x) = s (n(x) @ n(x) — 31) Cemendence on v

Then under suitable hypotheses on ¥r and f
one can prove the existence of a minimizing

pair Q,p in
A:={Qe SBV (Q,R*3),pc W2 (Q,R) :

Q=s(non-21), b/=1, Qo =qQ|



a) t
z/-z -
2 : €;or =220nm
.'-lf;

R

- : i Nematic

r g ., 5 . L

Area

e, =20nm

P=630nm

Coursault, ... , Lacaze (2015)
Ongoing computations of A. Leon Baldelli. >3



