Drops of Twist-Bend Nematic Liquid Crystals

Epifanio G. Virga

SMMM

Soft Matter Mathematical Modelling Department of Mathematics University of Pavia, Italy

Summary

Twist-Bend Nematics Surface Energy Functional Two-Dimensional Drops Mathematical Model

Twist-Bend Nematics

A new liquid crystal phase, N_{tb} for short, has recently been discovered that had already been predicted some decades ago.

Twist-Bend Nematics

A new liquid crystal phase, N_{tb} for short, has recently been discovered that had already been predicted some decades ago.

typical material: CB7CB

The simplest molecular structure having core flexibility is a dimer structure in which two semirigid mesogenic groups are connected by a flexible chain.

(CH₂)7 CN

Twist-Bend Nematics

A new liquid crystal phase, N_{tb} for short, has recently been discovered that had already been predicted some decades ago.

typical material: CB7CB

The simplest molecular structure having core flexibility is a dimer structure in which two semirigid mesogenic groups are connected by a flexible chain.

(CH₂)7

A CB7CB molecule can be viewed as having three parts, each $\approx 1 \text{ nm}$ in length: two rigid end groups connected by a flexible spacer.

transition temperatures

First transition, on cooling, at $T_{\rm NI} = 116 \pm 1 \,^{\circ}{\rm C}$, with *transitional* entropy $\Delta S_{\rm NI}/R = 0.34$, where $R \approx 8.31 \, {\rm J} ({\rm mol \, K})^{-1}$ is the ideal gas constant.

transition temperatures

First transition, on cooling, at $T_{\rm NI} = 116 \pm 1 \,^{\circ}{\rm C}$, with *transitional* entropy $\Delta S_{\rm NI}/R = 0.34$, where $R \approx 8.31 \, {\rm J}({\rm mol}\,{\rm K})^{-1}$ is the ideal gas constant.

Second transition, on further cooling, at $T_{\rm NN_{tb}} = 103 \pm 1 \,^{\circ}\text{C}$, with $\Delta S_{\rm NN_{tb}}/R = 0.31$.

transition temperatures

First transition, on cooling, at $T_{\rm NI} = 116 \pm 1 \,^{\circ}{\rm C}$, with *transitional* entropy $\Delta S_{\rm NI}/R = 0.34$, where $R \approx 8.31 \, {\rm J}({\rm mol}\,{\rm K})^{-1}$ is the ideal gas constant.

Second transition, on further cooling, at $T_{\rm NN_{tb}} = 103 \pm 1 \,^{\circ}\text{C}$, with $\Delta S_{\rm NN_{tb}}/R = 0.31$.

Both transitions are *weakly first-order*, with at *two-phase coexistence* at each transition of approximately 0.1 °C.

The N_{tb} ground states are *conical* twists, in which the long molecular axis performs uniform precessions, making the angle ϑ with the *twist* axis t.

The N_{tb} ground states are *conical* twists, in which the long molecular axis performs uniform precessions, making the angle ϑ with the *twist* axis t.

Letting $\mathbf{t} = \mathbf{e}_3$ in a Cartesian frame,

 $\boldsymbol{m}^{\pm} = \sin\vartheta\cos(\pm qz)\,\boldsymbol{e}_1 + \sin\vartheta\sin(\pm qz)\,\boldsymbol{e}_2 + \cos\vartheta\,\boldsymbol{t},$

The N_{tb} ground states are *conical* twists, in which the long molecular axis performs uniform precessions, making the angle ϑ with the *twist* axis t.

Letting $\mathbf{t} = \mathbf{e}_3$ in a Cartesian frame,

 $\boldsymbol{m}^{\pm} = \sin\vartheta\cos(\pm qz)\,\boldsymbol{e}_1 + \sin\vartheta\sin(\pm qz)\,\boldsymbol{e}_2 + \cos\vartheta\,\boldsymbol{t},$

helicity

 $\begin{array}{ll} \boldsymbol{m} & \text{molecular director} \\ \eta := \operatorname{curl} \boldsymbol{m}^{\pm} \cdot \boldsymbol{m}^{\pm} = \mp q \sin^2 \vartheta \\ q > 0 & \text{twist parameter} \\ p := \frac{2\pi}{q} & \text{pitch} \quad \vartheta & \text{cone angle} \end{array}$

The N_{tb} ground states are *conical* twists, in which the long molecular axis performs uniform precessions, making the angle ϑ with the *twist* axis t.

Letting $t = e_3$ in a Cartesian frame,

 $\boldsymbol{m}^{\pm} = \sin\vartheta\cos(\pm qz)\,\boldsymbol{e}_1 + \sin\vartheta\sin(\pm qz)\,\boldsymbol{e}_2 + \cos\vartheta\,\boldsymbol{t},$

helicity

 $\begin{array}{ll} \boldsymbol{m} & \text{molecular director} \\ \eta := \operatorname{curl} \boldsymbol{m}^{\pm} \cdot \boldsymbol{m}^{\pm} = \mp q \sin^2 \vartheta \\ q > 0 & \text{twist parameter} \\ p := \frac{2\pi}{q} & \text{pitch} \quad \vartheta & \text{cone angle} \end{array}$

Recent Experimental Evidence

A *visual* direct evidence for the N_{tb} phase in *CB7CB* (and allied mixtures) has been recently provided with accurate measurements of both p and ϑ .

Recent Experimental Evidence

A *visual* direct evidence for the N_{tb} phase in *CB7CB* (and allied mixtures) has been recently provided with accurate measurements of both p and ϑ .

- D. CHEN, J. H. PORADA, J. B. HOOPER, A. KLITTNICK, Y. SHEN, M. R. TUCHBAND, E. KORBLOVA, D. BEDROV, D. M. WALBA, M. A. GLASER, J. E. MACLENNANA & N. A. CLARK (2013)
- V. BORSHCH, Y.-K. KIM, J. XIANG, M. GAO, A. JAKLI, V. P. PANOV, J. K. VIJ, C. T. IMRIE, M. G. TAMBA, G. H. MEHL, & O. D. LAVRENTOVICH (2013)

Recent Experimental Evidence

A *visual* direct evidence for the N_{tb} phase in *CB7CB* (and allied mixtures) has been recently provided with accurate measurements of both p and ϑ .

- D. CHEN, J. H. PORADA, J. B. HOOPER, A. KLITTNICK, Y. SHEN, M. R. TUCHBAND, E. KORBLOVA, D. BEDROV, D. M. WALBA, M. A. GLASER, J. E. MACLENNANA & N. A. CLARK (2013)
- V. BORSHCH, Y.-K. KIM, J. XIANG, M. GAO, A. JAKLI, V. P. PANOV, J. K. VIJ, C. T. IMRIE, M. G. TAMBA, G. H. MEHL, & O. D. LAVRENTOVICH (2013)

measured pitch and cone angle

 $p \approx 10 \,\mathrm{nm}$ $\vartheta \approx 20^{\circ}$

5

Surface Energy Functional

Recently, K.S. KRISHNAMURTHY has observed N_{tb} drops in their *nematic* companion phase, with the director $n = \langle m \rangle$ uniformly aligned outside the drop.

Surface Energy Functional

Recently, K.S. KRISHNAMURTHY has observed N_{tb} drops in their *ne*matic companion phase, with the director $n = \langle m \rangle$ uniformly aligned outside the drop.

interfacial energy density

 $W_{\rm s} = W_0 \left[1 + w (\boldsymbol{m} \cdot \boldsymbol{\nu})^2 \right]$

u outer unit normal W_0 isotropic surface tension $w \ge -1$ anisotropy dimensionless parameter w > 0 degenerate tangential alignment w < 0 homeotropic alignment

outside the drop

The molecular director m must to be *continuous* across the N_{tb} /nematic interface and agree with the uniform n outside the drop.

outside the drop

The molecular director m must to be *continuous* across the N_{tb} /nematic interface and agree with the uniform n outside the drop. *inside the drop*

Inside the drop m is expected to comply, at least locally, with the heliconical ground state

$$\boldsymbol{m} = \cos\vartheta\,\boldsymbol{t} + \sin\vartheta\,(\cos\varphi\,\boldsymbol{e}_1 + \cos\varphi\,\boldsymbol{e}_2)$$

 $\begin{array}{lll} \varphi & \mbox{phase varying over a nanoscopic length-scale} \\ & \vartheta & \mbox{cone angle} \end{array}$

outside the drop

The molecular director \boldsymbol{m} must to be **continuous** across the N_{tb} /nematic interface and agree with the uniform \boldsymbol{n} outside the drop. **inside the drop**

Inside the drop m is expected to comply, at least locally, with the heliconical ground state

$$oldsymbol{m} = \cosartheta \, oldsymbol{t} + \sinartheta \, (\cosarphi \, oldsymbol{e}_1 + \cosarphi \, oldsymbol{e}_2)$$

 φ phase varying over a nanoscopic length-scale ϑ cone angle *coarse-graining* $W_{\rm s}$

$$\langle W_{\rm s} \rangle = W_0 \left\{ 1 + \frac{1}{2} w \sin^2 \vartheta - \frac{1}{2} w \left(1 - 3 \cos^2 \vartheta \right) (\boldsymbol{t} \cdot \boldsymbol{\nu})^2 \right\}$$

degenerate tangential anchoring

Assuming w > 0 and $\cos \vartheta > \frac{1}{\sqrt{3}}$, $\langle W_s \rangle$ is *minimized* by letting t be tangent to the interface, however oriented upon it.

degenerate tangential anchoring

Assuming w > 0 and $\cos \vartheta > \frac{1}{\sqrt{3}}$, $\langle W_s \rangle$ is *minimized* by letting t be tangent to the interface, however oriented upon it.

geometric compatibility

In view of the uniform alignment of the nematic director n outside the drop and the continuity of the molecular alignment across the interface, the degenerate tangential anchoring of t becomes geometrically compatible only if the cone angle is allowed to *vary* along the *interface*.

degenerate tangential anchoring

Assuming w > 0 and $\cos \vartheta > \frac{1}{\sqrt{3}}$, $\langle W_s \rangle$ is *minimized* by letting t be tangent to the interface, however oriented upon it.

geometric compatibility

In view of the uniform alignment of the nematic director n outside the drop and the continuity of the molecular alignment across the interface, the degenerate tangential anchoring of t becomes geometrically compatible only if the cone angle is allowed to *vary* along the *interface*.

elastic mismatch energy

$$f_{\rm a} = \frac{1}{2} W_{\rm a} \left[(\boldsymbol{t} \cdot \boldsymbol{n})^2 - c^2 \right]^2$$
$$W_{\rm a} > 0 \quad \text{elastic constant}$$
$$\vartheta = \arccos \boldsymbol{c} \quad \boldsymbol{ideal} \text{ cone angle}$$

surface energy functional

$$\mathscr{F}_{\mathbf{s}} = W_0 \int_{\mathscr{S}} \left\{ 1 + \frac{1}{2} \omega \left[(\mathbf{t} \cdot \mathbf{n})^2 - c^2 \right]^2 \right\} da$$

a area measure

$$\omega := \frac{W_a}{W_0} > 0 \quad \text{anisotropy dimensionless parameter}$$

$$\mathscr{S} \quad \text{surface separating the phases}$$

surface energy functional

$$\begin{split} \mathscr{F}_{\mathbf{s}} &= W_0 \int_{\mathscr{S}} \left\{ 1 + \frac{1}{2} \omega \left[(t \cdot n)^2 - c^2 \right]^2 \right\} da \\ \mathbf{a} \quad \text{area measure} \\ \mathbf{\omega} &:= \frac{W_{\mathbf{a}}}{W_0} > 0 \quad \text{anisotropy dimensionless parameter} \\ \mathscr{S} \quad \text{surface separating the phases} \end{split}$$

boundary condition

 $t \cdot \boldsymbol{\nu} = 0 \quad \text{over } \mathscr{S}$ $\boldsymbol{\nu} \quad \text{surface normal}$

surface energy functional

$$\begin{aligned} \mathscr{F}_{\mathbf{s}} &= W_0 \int_{\mathscr{S}} \left\{ 1 + \frac{1}{2} \omega \left[(\boldsymbol{t} \cdot \boldsymbol{n})^2 - c^2 \right]^2 \right\} da \\ \boldsymbol{a} \quad \text{area measure} \\ \boldsymbol{\omega} &:= \frac{W_{\mathbf{a}}}{W_0} > 0 \quad \text{anisotropy dimensionless parameter} \\ \mathscr{S} \quad \text{surface separating the phases} \end{aligned}$$

boundary condition

 $t \cdot \boldsymbol{\nu} = 0 \quad \text{over } \mathscr{S}$ $\boldsymbol{\nu} \quad \text{surface normal}$

isoperimetric constraint

As the N_{tb} phase, like the classical nematic phase, can be regarded as incompressible, \mathscr{F}_s is subject to the constraint that the *volume enclosed* by \mathscr{S} be *fixed*.

neglecting distortion energy

Clearly, the t field will also be **distorted** in the interior of the drop. We shall hereafter **neglect** the **elastic energy** associated with such a distortion, as we believe that it plays a little role in determining the **equilibrium shape** of a N_{tb} drop, which is mainly driven by the **interfacial energy**.

Two-Dimensional Drops

K.S. KRISHNAMURTHY has shown that the equilibrium shape of N_{tb} drops surrounded by their *oriented* nematic phase are *tactoids* with their pointed corners *aligned* with the *outside director*.

Two-Dimensional Drops

K.S. KRISHNAMURTHY has shown that the equilibrium shape of N_{tb} drops surrounded by their *oriented* nematic phase are *tactoids* with their pointed corners *aligned* with the *outside director*.

Two-dimensional drop, $2\,\mathrm{mm}$ long in a gap $20\,\mu\mathrm{m}$ wide

disintegration of large drops

Under heating, the millimeter-size drop breaks into small, tactoid-shaped drops with corners now on the y axis

each scale division $10\,\mu\mathrm{m}$

Mathematical Model

In two space dimension, the drop is bounded by a curve \mathscr{C} described by $s\mapsto \boldsymbol{r}(s)$

$$F[\mathbf{r}] := \int_0^L \left\{ 1 + \frac{1}{2}\omega \left[(\mathbf{t} \cdot \mathbf{n})^2 - c^2 \right]^2 \right\} ds$$

Mathematical Model

In two space dimension, the drop is bounded by a curve \mathscr{C} described by $s\mapsto \boldsymbol{r}(s)$

$$F[\boldsymbol{r}] := \int_0^L \left\{ 1 + \frac{1}{2}\omega \left[(\boldsymbol{t} \cdot \boldsymbol{n})^2 - c^2 \right]^2 \right\} ds$$

area functional

$$A[\mathbf{r}] := -\frac{1}{2} \int_0^L \mathbf{r} \times \mathbf{t} \cdot \mathbf{e}_z ds$$
$$\mathbf{e}_z := \mathbf{e}_x \times \mathbf{e}_y$$

area functional

$$A[\mathbf{r}] := -\frac{1}{2} \int_0^L \mathbf{r} \times \mathbf{t} \cdot \mathbf{e}_z ds$$
$$\mathbf{e}_z := \mathbf{e}_x \times \mathbf{e}_y$$

constrained equilibrium

 $\delta F = \lambda \delta A$ $\lambda \quad \text{Lagrange multiplier}$

area functional

$$A[\mathbf{r}] := -\frac{1}{2} \int_0^L \mathbf{r} \times \mathbf{t} \cdot \mathbf{e}_z ds$$
$$\mathbf{e}_z := \mathbf{e}_x \times \mathbf{e}_y$$

constrained equilibrium

 $\delta F = \lambda \delta A$

 λ Lagrange multiplier

equilibrium regular arcs

$$f' + \lambda \nu = 0$$

$$\begin{aligned} \mathbf{f} &:= 2\omega[(\mathbf{t} \cdot \mathbf{e}_x)^2 - c^2](\mathbf{t} \cdot \mathbf{e}_x)(\mathbf{I} - \mathbf{t} \otimes \mathbf{t})\mathbf{e}_x + \left(1 + \frac{1}{2}\omega[(\mathbf{t} \cdot \mathbf{e}_x)^2 - c^2]^2\right)\mathbf{t} \\ \mathbf{f} & \text{line stress} \end{aligned}$$

equilibrium corners

 $\llbracket \boldsymbol{f}
rbracket = \boldsymbol{0}$

equilibrium corners

$\llbracket \boldsymbol{f} \rrbracket = \boldsymbol{0}$

We assume that in equilibrium corners may occur only on the symmetry axes x or y of \mathscr{C} .

corner on y

$$\omega \geqq \omega_{\mathbf{c}}^{(1)}(\mathbf{c}) := \frac{2}{(1-c^2)(3+c^2)}$$
$$\beta = 2 \arcsin \sqrt{\frac{1}{3} \left(c^2 + \sqrt{4c^4 + \frac{6}{\omega}}\right)}$$

corner on y

$$\omega \ge \omega_{\mathbf{c}}^{(1)}(\mathbf{c}) := \frac{2}{(1-c^2)(3+c^2)}$$
$$\beta = 2 \arcsin \sqrt{\frac{1}{3}\left(c^2 + \sqrt{4c^4 + \frac{6}{\omega}}\right)}$$

$$\omega \ge \omega_{c}^{(2)}(c) := \frac{2}{c^{2}(4-c^{2})}$$

$$\alpha = 2 \arccos \sqrt{\frac{1}{3} \left(c^2 + 2 - \sqrt{4(1 - c^2)^2 + \frac{6}{\omega}} \right)}$$

symmetry properties

$$\omega_{\rm c}^{(2)}(c) = \omega_{\rm c}^{(1)}\left(\sqrt{1-c^2}\right) \qquad \beta(c,\omega) = \alpha\left(\sqrt{1-c^2},\omega\right)$$

 α plot

equilibrium regular arcs

exact solution

Equilibrium regular arcs are represented explicitly in the following parametric form

exact solution

Equilibrium regular arcs are represented explicitly in the following parametric form

$$x = X(u; c, \omega) := \frac{1}{2} \frac{1}{\sqrt{(1+u^2)^5}} [2 - 3\omega + 2\omega c^2 + \omega c^4 + 2(2 + \omega c^2 + \omega c^4)u^2 + (2 + \omega c^4)u^4]u$$

$$y = Y(u; c, \omega) := -\frac{1}{2} \frac{1}{\sqrt{(1+u^2)^5}} [2 + \omega - 2\omega c^2 + \omega c^4 + 2(2 + 2\omega - 3\omega c^2 + \omega c^4)u^2 + (2 - 4\omega c^2 + \omega c^4)u^4]$$

exact solution

Equilibrium regular arcs are represented explicitly in the following parametric form

$$x = X(u; c, \omega) := \frac{1}{2} \frac{1}{\sqrt{(1+u^2)^5}} [2 - 3\omega + 2\omega c^2 + \omega c^4 + 2(2 + \omega c^2 + \omega c^4)u^2 + (2 + \omega c^4)u^4]u$$

$$y = Y(u; c, \omega) := -\frac{1}{2} \frac{1}{\sqrt{(1+u^2)^5}} [2 + \omega - 2\omega c^2 + \omega c^4 + 2(2 + 2\omega - 3\omega c^2 + \omega c^4)u^2 + (2 - 4\omega c^2 + \omega c^4)u^4]$$

x to y aspect ratio

$$\rho := \frac{X}{Y}$$
 $\rho\left(\sqrt{1-c^2},\omega\right) = \frac{1}{\rho(c,\omega)}$

on the symmetry separatix $c = \frac{1}{\sqrt{2}}$

comparison with experiment

27

Acknowledgements

Collaboration

K.S. KRISHNAMURTHY

Discussion

O.D. LAVRENTOVICH G.R. LUCKHURST

Soft Matter Mathematical Modelling

Department of Mathematics University of Pavia, Italy