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Twist-Bend Nematics

A new liquid crystal phase, Ntb for short, has recently been discovered

that had already been predicted some decades ago.
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Twist-Bend Nematics

A new liquid crystal phase, Ntb for short, has recently been discovered

that had already been predicted some decades ago.

typical material: CB7CB

The simplest molecular structure having core flexibility is a dimer

structure in which two semirigid mesogenic groups are connected by a

flexible chain.

A CB7CB molecule can be viewed as having three parts, each ≈ 1 nm

in length: two rigid end groups connected by a flexible spacer.
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transition temperatures

First transition, on cooling, at TNI = 116 ± 1 ◦C, with transitional

entropy ∆SNI/R = 0.34, where R ≈ 8.31 J(molK)−1 is the ideal gas

constant.
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transition temperatures

First transition, on cooling, at TNI = 116 ± 1 ◦C, with transitional

entropy ∆SNI/R = 0.34, where R ≈ 8.31 J(molK)−1 is the ideal gas

constant.

Second transition, on further cooling, at TNNtb
= 103 ± 1 ◦C, with

∆SNNtb
/R = 0.31.

Both transitions are weakly first-order, with at two-phase coexis-

tence at each transition of approximately 0.1 ◦C.
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heliconical ground states

The Ntb ground states are conical twists, in which the long molecular

axis performs uniform precessions, making the angle ϑ with the twist

axis t.
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heliconical ground states

The Ntb ground states are conical twists, in which the long molecular

axis performs uniform precessions, making the angle ϑ with the twist

axis t.

Letting t = e3 in a Cartesian frame,

m± = sinϑ cos(±qz) e1 + sinϑ sin(±qz) e2 + cosϑ t,

helicity

m molecular director

η := curlm± ·m± = ∓q sin2 ϑ

q > 0 twist parameter

p := 2π
q

pitch ϑ cone angle
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heliconical ground states

The Ntb ground states are conical twists, in which the long molecular

axis performs uniform precessions, making the angle ϑ with the twist

axis t.

Letting t = e3 in a Cartesian frame,

m± = sinϑ cos(±qz) e1 + sinϑ sin(±qz) e2 + cosϑ t,

m

p

helicity

m molecular director

η := curlm± ·m± = ∓q sin2 ϑ

q > 0 twist parameter

p := 2π
q

pitch ϑ cone angle

m

t

p
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Recent Experimental Evidence

A visual direct evidence for the Ntb phase in CB7CB (and allied

mixtures) has been recently provided with accurate measurements of

both p and ϑ.
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A visual direct evidence for the Ntb phase in CB7CB (and allied

mixtures) has been recently provided with accurate measurements of

both p and ϑ.

• D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y.

Shen, M. R. Tuchband, E. Korblova, D. Bedrov, D. M.
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(2013)

• V. Borshch, Y.-K. Kim, J. Xiang, M. Gao, A. Jakli, V.

P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H.

Mehl, & O. D. Lavrentovich (2013)
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Recent Experimental Evidence

A visual direct evidence for the Ntb phase in CB7CB (and allied

mixtures) has been recently provided with accurate measurements of

both p and ϑ.

• D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y.

Shen, M. R. Tuchband, E. Korblova, D. Bedrov, D. M.

Walba, M. A. Glaser, J. E. Maclennana & N. A. Clark

(2013)

• V. Borshch, Y.-K. Kim, J. Xiang, M. Gao, A. Jakli, V.

P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H.

Mehl, & O. D. Lavrentovich (2013)

measured pitch and cone angle

p ≈ 10 nm ϑ ≈ 20◦
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Surface Energy Functional

Recently, K.S. Krishnamurthy has observed Ntb drops in their ne-

matic companion phase, with the director n = 〈m〉 uniformly aligned

outside the drop.
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Surface Energy Functional

Recently, K.S. Krishnamurthy has observed Ntb drops in their ne-

matic companion phase, with the director n = 〈m〉 uniformly aligned

outside the drop.

interfacial energy density

Ws = W0

[

1 + w(m · ν)2
]

ν outer unit normal

W0 isotropic surface tension

w ≧ −1 anisotropy dimensionless parameter

w > 0 degenerate tangential alignment

w < 0 homeotropic alignment
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outside the drop

The molecular director m must to be continuous across the Ntb /ne-

matic interface and agree with the uniform n outside the drop.
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inside the drop

Inside the drop m is expected to comply, at least locally, with the

heliconical ground state

m = cosϑ t+ sinϑ (cosϕ e1 + cosϕ e2)

ϕ phase varying over a nanoscopic length-scale

ϑ cone angle
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outside the drop

The molecular director m must to be continuous across the Ntb /ne-

matic interface and agree with the uniform n outside the drop.

inside the drop

Inside the drop m is expected to comply, at least locally, with the

heliconical ground state

m = cosϑ t+ sinϑ (cosϕ e1 + cosϕ e2)

ϕ phase varying over a nanoscopic length-scale

ϑ cone angle

coarse-graining Ws

〈Ws〉 = W0

{

1 +
1

2
w sin2 ϑ−

1

2
w
(

1− 3 cos2 ϑ
)

(t · ν)2
}
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degenerate tangential anchoring

Assuming w > 0 and cosϑ > 1√
3
, 〈Ws〉 is minimized by letting t be

tangent to the interface, however oriented upon it.
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degenerate tangential anchoring

Assuming w > 0 and cosϑ > 1√
3
, 〈Ws〉 is minimized by letting t be

tangent to the interface, however oriented upon it.

geometric compatibility

In view of the uniform alignment of the nematic director n outside the

drop and the continuity of the molecular alignment across the interface,

the degenerate tangential anchoring of t becomes geometrically com-

patible only if the cone angle is allowed to vary along the interface.
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degenerate tangential anchoring

Assuming w > 0 and cosϑ > 1√
3
, 〈Ws〉 is minimized by letting t be

tangent to the interface, however oriented upon it.

geometric compatibility

In view of the uniform alignment of the nematic director n outside the

drop and the continuity of the molecular alignment across the interface,

the degenerate tangential anchoring of t becomes geometrically com-

patible only if the cone angle is allowed to vary along the interface.

elastic mismatch energy

fa =
1

2
Wa

[

(t · n)2 − c2
]2

Wa > 0 elastic constant

ϑ = arccos c ideal cone angle
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surface energy functional

Fs = W0

∫

S

{

1 +
1

2
ω
[

(t · n)2 − c2
]2
}

da

a area measure

ω := Wa

W0

> 0 anisotropy dimensionless parameter

S surface separating the phases
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surface energy functional

Fs = W0

∫

S

{

1 +
1

2
ω
[

(t · n)2 − c2
]2
}

da

a area measure

ω := Wa

W0

> 0 anisotropy dimensionless parameter

S surface separating the phases

boundary condition

t · ν = 0 over S

ν surface normal

isoperimetric constraint

As the Ntb phase, like the classical nematic phase, can be regarded

as incompressible, Fs is subject to the constraint that the volume

enclosed by S be fixed.
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neglecting distortion energy

Clearly, the t field will also be distorted in the interior of the drop.

We shall hereafter neglect the elastic energy associated with such

a distortion, as we believe that it plays a little role in determining

the equilibrium shape of a Ntb drop, which is mainly driven by the

interfacial energy.
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Two-Dimensional Drops

K.S. Krishnamurthy has shown that the equilibrium shape of Ntb

drops surrounded by their oriented nematic phase are tactoids with

their pointed corners aligned with the outside director.
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Two-Dimensional Drops

K.S. Krishnamurthy has shown that the equilibrium shape of Ntb

drops surrounded by their oriented nematic phase are tactoids with

their pointed corners aligned with the outside director.

Two-dimensional drop, 2mm long in a gap 20µm wide
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disintegration of large drops

Under heating, the millimeter-size drop breaks into small, tactoid-

shaped drops with corners now on the y axis
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each scale division 10µm
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Mathematical Model

In two space dimension, the drop is bounded by a curve C described

by s 7→ r(s)

F [r] :=

∫ L

0

{

1 +
1

2
ω
[

(t · n)2 − c2
]2
}

ds

x

y nN

t
Ntb

C
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Mathematical Model

In two space dimension, the drop is bounded by a curve C described

by s 7→ r(s)

F [r] :=

∫ L

0

{

1 +
1

2
ω
[

(t · n)2 − c2
]2
}

ds

s arc-length co-ordinate along C

L (undetermined) length of C

t = r′ ′ denotes s differentiation

x

y nN

t
Ntb

C
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area functional

A[r] := −
1

2

∫ L

0

r × t · ezds

ez := ex × ey
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area functional
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1
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∫ L

0
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constrained equilibrium

δF = λδA

λ Lagrange multiplier
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area functional

A[r] := −
1

2

∫ L

0

r × t · ezds

ez := ex × ey

constrained equilibrium

δF = λδA

λ Lagrange multiplier

equilibrium regular arcs

f ′ + λν = 0

f := 2ω[(t · ex)
2 − c2](t · ex)(I− t⊗ t)ex +

(

1 +
1

2
ω[(t · ex)

2 − c2]2
)

t

f line stress
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equilibrium corners

JfK = 0
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equilibrium corners

JfK = 0

We assume that in equilibrium corners may occur only on the symme-

try axes x or y of C .

x

y

α

β
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corner on y

ω ≧ ω(1)
c (c) :=

2

(1− c2)(3 + c2)

β = 2arcsin

√

√

√

√

1

3

(

c2 +

√

4c4 +
6

ω

)
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corner on y

ω ≧ ω(1)
c (c) :=

2

(1− c2)(3 + c2)

β = 2arcsin

√

√

√

√

1

3

(

c2 +

√

4c4 +
6

ω

)

corner on x

ω ≧ ω(2)
c (c) :=

2

c2(4− c2)

α = 2arccos

√

√

√

√

1

3

(

c2 + 2−

√

4(1− c2)2 +
6

ω

)
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symmetry properties

ω(2)
c (c) = ω(1)

c

(

√

1− c2
)

β(c, ω) = α
(

√

1− c2, ω
)
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phase diagram
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α plot
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β plot
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equilibrium regular arcs

F ∗[y] :=

∫ a

0

{[

1 +
1

2
ω

(

1

1 + y′2
− c2

)2
]

√

1 + y′2 + λy

}

dx

y = y(x) Cartesian representation of a quarter of C

y(a) = 0 with a to be determined

x

y nN

t
Ntb

C
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exact solution

Equilibrium regular arcs are represented explicitly in the following

parametric form
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exact solution

Equilibrium regular arcs are represented explicitly in the following

parametric form

x = X(u; c, ω) :=
1

2

1
√

(1 + u2)5
[2−3ω+2ωc2+ωc4+2(2+ωc2+ωc4)u2

+ (2 + ωc4)u4]u

y = Y (u; c, ω) := −
1

2

1
√

(1 + u2)5
[2+ω−2ωc2+ωc4+2(2+2ω−3ωc2+ωc4)u2

+ (2− 4ωc2 + ωc4)u4]
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exact solution

Equilibrium regular arcs are represented explicitly in the following

parametric form

x = X(u; c, ω) :=
1

2

1
√

(1 + u2)5
[2−3ω+2ωc2+ωc4+2(2+ωc2+ωc4)u2

+ (2 + ωc4)u4]u

y = Y (u; c, ω) := −
1

2

1
√

(1 + u2)5
[2+ω−2ωc2+ωc4+2(2+2ω−3ωc2+ωc4)u2

+ (2− 4ωc2 + ωc4)u4]

x to y aspect ratio

ρ :=
X

Y
ρ
(

√

1− c2, ω
)

=
1

ρ(c, ω)
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ρ plot
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shape gallery

(a) (b)

(c)

(a) I: c =
√
3
2 , ω = 3

2 (b) II: c =
√
3
2 , ω = 5 (c) III: c =

√
3
2 , ω = 4

7
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on the symmetry separatix c = 1√
2

(d) (e) (f)

(g)

(d) ω = 4
7 (e) ω = 8

7 (f) ω = 2 (g) ω = 3
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comparison with experiment
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