Geometry and topology of turbulence in active nematics

Luca Giomi

Instituut-Lorentz
Universiteit Leiden
Defects dynamics

Courtesy of Z. Dogic
Cytoskeletal fluids

Dense mixtures of microtubules and kinesin behaves as fluids of mutually propelled rods: *active liquid crystals.*
Cytoskeletal fluids

Dense mixtures of microtubules and kinesin behaves as fluids of mutually propelled rods: *active liquid crystals.*
Dense mixtures of microtubules and kinesin behaves as fluids of mutually propelled rods: *active liquid crystals*.
Defects dynamics

 Courtesy of Z. Dogic
Reynolds number = $10^{-5} - 10^{-4}$
Richardson cascade

Big whorls have little whorls
That feed on their velocity;
And little whorls have lesser whorls
And so on to viscosity.

energy injection

energy dissipation
Modeling active LCs

In nematics, a material element is characterized by four physical quantities:

\[Q = S \left(nn^T - \frac{1}{2} I \right) \]
Modeling active LCs

In nematics, a material element is characterized by four physical quantities:

- **Density** \(\rho \)

\[
Q = S \left(nn^T - \frac{1}{2} I \right)
\]
Modeling active LCs

In nematics, a material element is characterized by four physical quantities:

- Density \(\rho \)
- Nematic director \(n \)

\[
Q = S \left(nn^T - \frac{1}{2} I \right)
\]
In nematics, a material element is characterized by four physical quantities:

- Density ρ
- Nematic director \mathbf{n}
- Nematic order parameter S

$Q = S (\mathbf{n} \mathbf{n}^T - \frac{1}{2} I)$
Modeling active LCs

In nematics, a material element is characterized by four physical quantities:

- Density \(\rho \)
- Nematic director \(n \)
- Nematic order parameter \(S \)
- Flow velocity \(v \)

\[
Q = S\, (nn^T - \frac{1}{2}I)
\]
Active and passive stresses

The flow velocity obeys to the Navier-Stokes equation:

\[
\rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot (\mathbf{\sigma}^p + \mathbf{\sigma}^a)
\]
Active and passive stresses

The flow velocity obeys to the Navier-Stokes equation:

\[\rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot (\sigma^p + \sigma^a) \]

\begin{align*}
\text{passive stress (viscous + elastic)}
\end{align*}
Active and passive stresses

The flow velocity obeys to the Navier-Stokes equation:

$$\rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot (\sigma^p + \sigma^a)$$

Active stress:

$$\mathbf{F}^a \sim \mathbf{n}$$

Passive stress (viscous + elastic):

$$\sigma^a = \alpha Q$$

Pedley & Kessler (1992), Simha & Ramaswamy (2002)
Active and passive stresses

The flow velocity obeys to the Navier-Stokes equation:

$$\rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot (\sigma^p + \sigma^a)$$

Active stress:

$F^a \sim n$

Passive stress (viscous + elastic)

$$\sigma^a = \alpha Q$$

Pedley & Kessler (1992), Simha & Ramaswamy (2002)
Contractile vs extensile active stress

Contractile
\[\alpha > 0 \]

Extensile
\[\alpha < 0 \]
An hydrodynamic equation for the nematic tensor Q is obtained phenomenologically (Olmsted & Goldbart ’92):

$$\frac{DQ}{Dt} = \lambda S\mathbf{u} + [Q, \omega] + \gamma^{-1} \frac{\delta F_{LdG}}{\delta Q}$$
An hydrodynamic equation for the nematic tensor Q is obtained phenomenologically (Olmsted & Goldbart ’92):

$$\frac{DQ}{Dt} = \lambda Su + [Q, \omega] + \gamma^{-1} \frac{\delta F_{LdG}}{\delta Q}$$

relaxational dynamics
An hydrodynamic equation for the nematic tensor Q is obtained phenomenologically (Olmsted & Goldbart '92):

$$\frac{DQ}{Dt} = \lambda Su + [Q, \omega] + \gamma^{-1} \frac{\delta F_{LdG}}{\delta Q}$$

coupling with the flow

relaxational dynamics
An hydrodynamic equation for the nematic tensor Q is obtained phenomenologically (Olmsted & Goldbart '92):

\[\frac{DQ}{Dt} = \lambda Su + [Q, \omega] + \gamma^{-1} \frac{\delta F_{LdG}}{\delta Q} \]

\[u = \frac{1}{2} (\nabla v + \nabla v^T) \quad \text{strain-rate} \]

\[\omega = \frac{1}{2} (\nabla v - \nabla v^T) \quad \text{vorticity} \]
An hydrodynamic equation for the nematic tensor Q is obtained phenomenologically (Olmsted & Goldbart '92):

$$\frac{DQ}{Dt} = \lambda Su + [Q, \omega] + \gamma^{-1} \frac{\delta F_{\text{LdG}}}{\delta Q}$$

Coupling with the flow

$$u = \frac{1}{2} (\nabla v + \nabla v^T)$$ strain-rate

$$\omega = \frac{1}{2} (\nabla v - \nabla v^T)$$ vorticity

Relaxational dynamics

$$\theta \propto 1/\lambda$$
Active nematic hydrodynamics

\[
\frac{DQ}{Dt} = \lambda Su + [Q, \omega] + \gamma^{-1} \frac{\delta F_{\text{LdG}}}{\delta Q}
\]

\[
\rho \frac{Dv}{Dt} = \eta \nabla^2 v - \nabla p + \nabla \cdot (\sigma^e + \alpha Q), \quad \nabla \cdot v = 0
\]
Active nematic hydrodynamics

\[
\frac{DQ}{Dt} = \lambda Su + [Q, \omega] + \gamma^{-1}\frac{\delta F_{LdG}}{\delta Q}
\]

\[
\rho \frac{Dv}{Dt} = \eta \nabla^2 v - \nabla p + \nabla \cdot (\sigma^e \alpha Q), \quad \nabla \cdot v = 0
\]
Active nematic hydrodynamics

Active nematic hydrodynamics

\[
\frac{DQ}{Dt} = \lambda Su + [Q, \omega] + \gamma^1 \frac{\delta F_{LdG}}{\delta Q}
\]

Defects core radius

\[
\rho \frac{Dv}{Dt} = \eta \nabla^2 v - \nabla p + \nabla \cdot (\sigma^e + \alpha Q), \quad \nabla \cdot v = 0
\]

Active length scale

\[
\ell_a = \sqrt{\frac{K}{|\alpha|}}
\]

where active and elastic stresses balance
Dynamics of active nematics

\[\ell_a \gg L \quad \ell_a \sim L \quad \ell_a \ll L \]

- Stationary Flow
- Laminar Flow
- Periodic Flow
- Turbulence

Activity
Extensile: $\gamma = 10, \alpha = -3$
Curtesy of Zvonimir Dogic
Topological defects play a pivotal role! (Thampi, Golestanian & Yeomans 2013)
Vortex areal density: $n(a)$

$$da \, n(a) = \# \text{ of vortices whose area is in } [a, a+da]$$
Vortex statistics

![Graph showing vortex statistics](image)

- Number of vortices $n(a) \Delta a$
- Vortex area a/L^2
- $|\alpha|/\Sigma \times 10^3$

Lines for different values:
- Black: 4
- Red: 6
- Blue: 8
Vortex statistics

\[a_{\text{min}} \quad \text{active range} \quad \frac{\pi}{16} L^2 \]

![Graph showing the distribution of vortex statistics](image-url)

- Number of vortices vs. Vortex area \(a/L^2 \)
- Plot with different values of \(|\alpha|/\Sigma \times 10^3 \) for \(4, 6, \) and \(8 \)
Vortex statistics

\[a_{\text{min}} \quad \text{active range} \quad \frac{\pi}{16} L^2 \]

\[n(a) = \frac{N}{Z} e^{-a/a^*} \]

Number of vortices \(n(a) \Delta a \)

|\[|\alpha|/\Sigma \times 10^3\]|
|---|
| 4 |
| 6 |
| 8 |

Vortex area \(a/L^2 \)
Vortex statistics

\[a_{\text{min}} = a^* \sim \ell_a^2 \]

\[\times 10^{-3} \]

\[\frac{a^*}{L^2}, \frac{a_{\text{min}}}{L^2} \]

\[(\ell_a/L)^2 \times 10^{-3} \]
Average vorticity

Average vorticity of a individual vortices: \(\omega_v \approx \alpha / \eta \)
Velocity and vorticity PDF

![Graphs showing PDF distributions for velocity and vorticity](image-url)
Energy and enstrophy

Notice that for active laminar flows: \(\nu \sim \alpha \)
Using the vortex areal density:
Energy and enstrophy

Using the vortex areal density:

\[\frac{1}{2} \langle \omega^2 \rangle \approx \frac{1}{2L^2} \int da \, n(a) \, a \, \omega_v^2 \]
Energy and enstrophy

Using the vortex areal density:

\[\frac{1}{2} \langle \omega^2 \rangle \approx \frac{1}{2L^2} \int da n(a) a \omega_v^2 = \frac{A}{2L^2} \omega_v^2 \]
Energy and enstrophy

Using the vortex areal density:

$$\frac{1}{2} \langle \omega^2 \rangle \approx \frac{1}{2L^2} \int da \, n(a) \, a \omega_v^2 = \frac{A}{2L^2} \omega_v^2 \sim \omega_v^2$$

(total area occupied by the vortices)
Energy and enstrophy

Using the vortex areal density:

\[
\frac{1}{2} \langle \omega^2 \rangle \approx \frac{1}{2L^2} \int da n(a) a \omega_v^2 = \frac{A}{2L^2} \omega_v^2 \sim \omega_v^2 \sim \alpha^2
\]
Energy and enstrophy

Using the vortex areal density:

\[
\frac{1}{2} \langle \omega^2 \rangle \approx \frac{1}{2L^2} \int da \ n(a) a \omega_v^2 = \frac{A}{2L^2} \omega_v^2 \sim \omega_v^2 \sim \alpha^2
\]

\[
\frac{1}{2} \langle v^2 \rangle \approx \frac{1}{2L^2} \int da \ n(a) a^2 \omega_v^2
\]
Using the vortex areal density:

$$\frac{1}{2} \langle \omega^2 \rangle \approx \frac{1}{2L^2} \int da \, n(a) \, a \omega_v^2 = \frac{A}{2L^2} \omega_v^2 \sim \omega_v^2 \sim \alpha^2$$

$$\frac{1}{2} \langle v^2 \rangle \approx \frac{1}{2L^2} \int da \, n(a) \, a^2 \omega_v^2 \approx \omega_v^2 \frac{a^2}{\bar{a}}$$
Energy and enstrophy

Using the vortex areal density:

\[
\frac{1}{2} \langle \omega^2 \rangle \approx \frac{1}{2L^2} \int da \, n(a) \, a \, \omega_v^2 = \frac{A}{2L^2} \omega_v^2 \sim \omega_v^2 \sim \alpha^2
\]

total area occupied by the vortices

\[
\frac{1}{2} \langle v^2 \rangle \approx \frac{1}{2L^2} \int da \, n(a) \, a^2 \omega_v^2 \approx \omega_v^2 \frac{\bar{a}^2}{\bar{a}} \sim \alpha
\]
Energy and enstrophy

Using the vortex areal density:

\[
\frac{1}{2} \langle \omega^2 \rangle \approx \frac{1}{2L^2} \int da \, n(a) \, a \, \omega_v^2 = \frac{A}{2L^2} \, \omega_v^2 \sim \omega_v^2 \sim \alpha^2
\]

\[
\frac{1}{2} \langle v^2 \rangle \approx \frac{1}{2L^2} \int da \, n(a) \, a^2 \omega_v^2 \approx \omega_v^2 \, \frac{a^2}{\bar{a}} \sim \alpha
\]

Upon increasing the activity, the vortices becomes faster but smaller.
Energy and enstrophy spectra

For 2D inertial turbulence \(\Omega(k) \sim k^{-1}, \quad E(k) \sim k^{-3} \)
Following Benzi *et al.* (1988), one can parametrize:
Following Benzi et al. (1988), one can parametrize:

\[
\omega(r) = \sum_{i=1}^{N} \omega_{v,i} f \left(\frac{|r - r_i|}{R_i} \right)
\]
Following Benzi et al. (1988), one can parametrize:

\[
\omega(r) = \sum_{i=1}^{N} \omega_{v,i} f \left(\frac{|r - r_i|}{R_i} \right)
\]

Then, neglecting the spatial correlation between vortices (i.e. mean-field approximation) and using \(n(a) \):
Mean-field theory

Following Benzi et al. (1988), one can parametrize:

\[
\omega(\mathbf{r}) = \sum_{i=1}^{N} \omega_{v,i} f \left(\frac{|\mathbf{r} - \mathbf{r}_i|}{R_i} \right)
\]

Then, neglecting the spatial correlation between vortices (i.e. mean-field approximation) and using \(n(a) \):

\[
\Omega(\kappa) = C\kappa e^{-\frac{\kappa^2}{2}} \left[I_0 \left(\frac{\kappa^2}{2} \right) - I_1 \left(\frac{\kappa^2}{2} \right) \right]
\]
Mean-field theory

Following Benzi et al. (1988), one can parametrize:

\[\omega(r) = \sum_{i=1}^{N} \omega_{v,i} f \left(\frac{|r - r_i|}{R_i} \right) \]

Then, neglecting the spatial correlation between vortices (i.e. mean-field approximation) and using \(n(a) \):

\[\Omega(\kappa) = C \kappa e^{-\frac{\kappa^2}{2}} \left[I_0 \left(\frac{\kappa^2}{2} \right) - I_1 \left(\frac{\kappa^2}{2} \right) \right] \xrightarrow{\kappa \gg 1} \kappa^{-2} \]
Following Benzi et al. (1988), one can parametrize:

$$\omega(\mathbf{r}) = \sum_{i=1}^{N} \omega_{v,i} f \left(\frac{\mathbf{r} - \mathbf{r}_i}{R_i} \right)$$

Then, neglecting the spatial correlation between vortices (i.e. mean-field approximation) and using $n(a)$:

$$\Omega(\kappa) = C \kappa e^{-\frac{\kappa^2}{2}} \left[I_0 \left(\frac{\kappa^2}{2} \right) - I_1 \left(\frac{\kappa^2}{2} \right) \right] \xrightarrow{\kappa \gg 1} \kappa^{-2}$$

$$E(\kappa) = \kappa^{-2} \Omega(\kappa) \sim \kappa^{-4}$$
Correlation function

\[C_{\omega \omega}(r) \quad \text{Numerics} \]
\[C_{\nu \nu}(r) \quad \text{MFT} \]
The local vortex geometry is intrinsically coupled with the topological structure of the director. Thus, topological defects have the same statistics of active vortices.

\[\eta \nabla^2 \mathbf{v} - \nabla p + \alpha \nabla \cdot \mathbf{Q} = 0 \]
Defects statistics

![Graphs showing MSD, number of defects, mean free path, and rate vs. activity. The graphs illustrate the relationship between various defect statistics and time and activity.](image)
Defects density

\[N_{\text{defects}} \sim N_{\text{vortices}} \sim \ell_a^{-2} \sim \alpha \]
Where $n(a)$ comes form?

Let’s think about the active flow as an “ensemble” of vortices:
Where $n(a)$ comes form?

Let’s think about the active flow as an “ensemble” of vortices:

$$\{n_i\}_{i=1}^{\infty} \quad \text{vortices of area} \quad \{a_i\}_{i=1}^{\infty}$$
Where \(n(a) \) comes from?

Let’s think about the active flow as an “ensemble” of vortices:

\[
\{ n_i \}_{i=1}^{\infty} \quad \text{vortices of area} \quad \{ a_i \}_{i=1}^{\infty}
\]

so that:

\[
\sum_{i=1}^{\infty} n_i = N \quad \sum_{i=1}^{\infty} n_i a_i = A
\]
Where $n(a)$ comes from?

Let’s think about the active flow as an “ensemble” of vortices:

$$\{n_i\}_{i=1}^{\infty} \quad \text{vortices of area} \quad \{a_i\}_{i=1}^{\infty}$$

so that:

$$\sum_{i=1}^{\infty} n_i = N \quad \sum_{i=1}^{\infty} n_i a_i = A$$

As the vortices are indistinguishable:

$$W = \frac{N!}{\prod_{i=1}^{\infty} n_i!}$$
Where $n(a)$ comes form?

Let’s think about the active flow as an “ensemble” of vortices:

$$\{n_i\}_{i=1}^\infty \text{ vortices of area } \{a_i\}_{i=1}^\infty$$

so that:

$$\sum_{i=1}^\infty n_i = N \quad \sum_{i=1}^\infty n_i a_i = A$$

As the vortices are indistinguishable:

$$W = \frac{N!}{\prod_{i=1}^\infty n_i!} \approx \exp \left[- \int da \ n(a) \log n(a) \right]$$
Let’s think about the active flow as an “ensemble” of vortices:

\[
\{ n_i \}_{i=1}^{\infty} \quad \text{vortices of area} \quad \{ a_i \}_{i=1}^{\infty}
\]

so that:

\[
\sum_{i=1}^{\infty} n_i = N \quad \sum_{i=1}^{\infty} n_i a_i = A
\]

As the vortices are indistinguishable:

\[
W = \frac{N!}{\prod_{i=1}^{\infty} n_i !} \approx \exp \left[- \int da \ n(a) \log n(a) \right]
\]
Where \(n(a) \) comes from?

Maximizing \(W \) yields the original exponential distribution:

\[
n(a) = \frac{N}{\bar{a}} e^{-a/\bar{a}}
\]

where: \(\bar{a} = \mathcal{A}/N \sim \ell_a^2 \)
Where \(n(a) \) comes from?

Maximizing \(W \) yields the original exponential distribution:

\[
 n(a) = \frac{N}{\bar{a}} e^{-a/\bar{a}}
\]

where:

\[
 \bar{a} = \frac{\mathcal{A}}{N} \sim \ell_a^2
\]

Very naive argument and yet very fascinating and it suggests a connection between the simplest and the most complex form of matter.
Where \(n(a) \) comes from?

Maximizing \(W \) yields the original exponential distribution:

\[
n(a) = \frac{N}{\bar{a}} e^{-a/\bar{a}}
\]

where: \(\bar{a} = \mathcal{A}/N \sim \ell^2_a \)

Very naive argument and yet very fascinating and it suggests a connection between the simplest and the most complex form of matter.

http://wwwhome.lorentz.leidenuniv.nl/~giomi

Thanks!