Topological Colloids & Dispersed Liquid Crystals: From Theorems to Self-Assembly

I. Smalyukh, A. Martinez, B. Senyuk, Q. Liu, & M. Campbell

Dept. of Physics, MSE, ECEE, Renewable & Sustainable Energy Institute, & Soft Materials Research Center

University of Colorado, Boulder

Collaborators

- M. Tasinkevych, MPI, Germany
- R. Kamien & T. Lubensky, UPenn
- R. Kusner, Umass
- S. Zumer & M. Ravnik, Ljubljana, Slovenia

Knot theory motivated by early models of atom

William Thomson, Lord Kelvin Peter Tait

2

Mathematical Theory of Knots & Physics

Edward Witten

- Applications of knot theory in physics;
- Insights into the knot theory from quantum physics & field theories;
- 1990 Fields medal (the only physicist to receive);
- Knotted fields: from elementary particles to cosmology

Knotting in nematic director "flow" lines

- I. Smalyukh et al. Nature Materials 9, 139-145 (2010)
- P. J. Ackerman, J. van de Lagemaat, and I. I. Smalyukh. *Nature Comm.* **6**, 6012 (2015)
- Q. Zhang, P. J. Ackerman, Q. Liu, & I. I. Smalyukh, *Phys Rev Lett* **115**, 097802 (2015)

Links/knots for every possible orientation

orientation field

B. Chen, P. Ackerman, G. Alexander, R. Kamien, & I. Smalyukh. *Phys. Rev. Lett.* **110**, 237801 (2013)

Topology and Soft Matter

Approach: Experiments vs. LdG modeling Intro: Imaging, manipulation, fabrication

- Interplay of topologies of surfaces, fields & defects
- topological colloids
- topologically nontrivial confinement of LC
- knotted defects
- Implications of non-polar nature of LC director

6

Energy-minimizing subset of topologically allowed states

Label-free study of the director fields in 3D?

Multimodal nonlinear optical imaging of LCs

\rightarrow 3D linear/nonlinear optical imaging

→Label-free chemically-specific orientationally-sensitive 3D imaging →Simultaneous with non-contact optical manipulation in 3D \rightarrow Many imaging modalities with complementary capabilities

Multiphoton self-fluorescence imaging: no dyes

Absorption/emission transition dipole

- Strong orientational sensitivity!
- No dyes needed!!!

T. Lee, R.P. Trivedi, & I.I. Smalyukh, Opt. Lett. 35, 3447-3449 (2010).

Coherent anti-Stokes Raman Scattering (CARS)

- \rightarrow 3rd order nonlinear process
- → Beat frequency matches that of a Raman vibration -> signal at ω_{as} =2 ω_p ω_s

→ Broadband Stokes excitation & CARS detection with Spectral shaping;

Integrated holographic optical tweezers & multimodal 3D imaging: setup schematic

R.P. Trivedi, T. Lee, K. Bertness, & I.I. Smalyukh, Opt. Express 18, 27658-27669 (2010).

Magnetic & optical holonomic control

→Control all degrees of freedom: rotational & translational

Simultaneous 3D "drawing" & imaging of defects

Micro-fabrication of non-spherical colloids

B. Senyuk, Q. Liu, S. He, R. Kamien, R. Kusner, T. Lubensky, & I.I. Smalyukh, Nature 493, 200-205 (2013)

14

3D complex-shaped colloidal particles

• two-photon photopolymerization

A. Martinez, T. Lee, T. Asavei, H. Rubinsztein-Dunlop, & I.I. Smalyukh, Soft Matter 7, 11154-11159 (2012).

Aqueous Graphene Oxide Colloidal Liquid Crystals

Aqueous GO flakes – 0.3-0.5 vol%, lateral size ~ 0.4 μ m on average

→Electrostatic stabilization due to the charged groups!

Textures of a GO nematic liquid crystal at concentration 0.7 wt. %

Defining complex-shaped colloidal microparticles

B. Senyuk, N. Behabtu, A. Martinez, T. Lee, D. E. Tsentalovich, G. Ceriotti, J. M. Tour, M. Pasquali, and I. I. Smalyukh. *NATURE COMMUNICATIONS* **6**, 7157 (2015)

Inclusions/colloids in liquid crystals

Topologically distinct colloidal surfaces?

• Homeomorphic

• Topologically distinct!

Topology of Surfaces: beyond spheres

- Every surface can be assigned an Euler characteristic.
- For a geometry with F faces, V vertices, and E edges, the Euler characteristic is given by $\chi = V - E + F$.
- For an *n*-torus, the Euler characteristic is given by $\chi = 2-2n$.

Hairy Ball & Poincare-Hopf theorems

Hairy Ball Theorem: no continuous tangent vector field on even-dimensional Sⁿ-spheres (e.g. S²)

 discussed previously in relation to spherical droplets & particles

Poincare-Hopf theorem: winding numbers of defects in the vector field add to the Euler characteristic: $\chi = 2 - 2g$

$$g = 0 \qquad g = 1 \qquad g = 2 \qquad g = 3$$

$$(1) \qquad (2) \qquad (2$$

Defects in 2D: Winding Number

- Director rotates by 2πs on going around it (s is the winding number)
 Recall this is different in 3D (integer unstable)
- Recall this is different in 3D (integer unstable...)

Boojums on colloidal rings

Liu, Senyuk, Tasinkevych, Smalyukh. Proc. Natl. Acad. Sci. U.S.A. 110, 9231 (2013)

Structural stability

→Defects are not required but appear to reduce free energy!
 →Still satisfy topological constraints (winding numbers add to zero)

Boojums on g=2 handlebodies

- Different orientations, but the same net 2D winding numbers of boojums
- Satisfy predictions of topological theorems:

$$\sum_{i} s_i = \chi = 2 - 2g$$

• To induce boojums of net winding numbers *s* use a particle of right *g*

Boojums on colloidal handlebodies

g=3,4,5 handlebodies

Theorems & charge conservation:

$$\sum_{i} s_i = \chi = 2 - 2g$$

g	$\chi = \Sigma_i \mathbf{s}_i$	Number of defects	
		s = +1	s = -1
1	0	2	2
		0	0
2	-2	2	4
		4	6
3	-4	2	6
		4	8
4	-6	2	8
		4	10
5	-8	2	10
		3	11

Boojums form handles on colloidal handlebodies

Q. Liu, B. Senyuk, M. Tasinkevych, and I. I. Smalyukh, Proc. Natl. Acad. Sci. U.S.A. 110, 9231 (2013)

Drops of LCs with g>0?

Torus-shaped droplet confinement

 No topological defects induced;

$$\sum_{i} s_i = \chi = 2 - 2g$$

• Director field reconstructed from 3D 3PEF-PM images

M. Campbell, M. Tasinkevych, I. Smalyukh. Phys. Rev. Lett. 112, 197801 (2014).

g=2 Torus

Defect Structure

- Rather than boojums, we observe line defects of winding number -1/2.
- These structures are topologically equivalent.
- The line defect is lower energy than the boojum in small drops.

M. Campbell, M. Tasinkevych, I. Smalyukh. Phys. Rev. Lett. 112, 197801 (2014).

g=3 torus

- The defects are -1/2 line defects spanning across the pore thickness
- They are located at the intersection of the three tori
- The strength at surfaces adds to satisfy topology

$$\sum_{i} s_i = \chi = 2 - 2g$$

M. Campbell, M. Tasinkevych, I. Smalyukh. Phys. Rev. Lett. 112, 197801 (2014).

g=4 and g=5 tori

minimum 8 defects

Handlebody-shaped colloids, perpendicular BCs

Reconstructed director structures and defects around colloidal hanlebodies

Senyuk, Liu, He, Kamien, Kusner, Lubensky, & Smalyukh, Nature 493, 200-205 (2013)

Switching director & rotating colloidal tori

- **Transformation of defects in applied electric field;** •
- **Bistable particle orientations & fields at no field;** •

& I.I. Smalyukh, "Nature 493, 200-205 (2013)

Transforming LC defects around colloidal tori

Alignment parallel to the far-field director

Nature 493, 200 (2013)

- In all configurations bulk defects compensate the charge of particle;
- Satisfy predictions of the Poincare-Hopf index theorem:

$$\sum_{i} m_i = \pm \chi / 2 \qquad \chi = 2 - 2g$$

• Induce net topological charge m (mod 2) by a particle of right g

Perpendicular BCs: g=1 torus

- Escape in 3D dimension:
 - in cylindrical capillary;
 - under torus confinement;

Tasinkevych, Campbell, Smalyukh, PNAS. 111, 16268-16273 (2014)

g=1 confinement with knotted/linked defect lines

Equilibrium structures in g=2 drops

Imaging and Elastic Energy

Free energy comparison:

g=4,5 handlebody confinement with "escaped" director field

↓ ↓ 5 um

Nonlinear optical images:

 $\sum_{i} m_i = \pm \chi / 2$

Knot-shaped topological colloids (SEM)

T(P,Q) knot winds Q times around a circle in interior of a torus & P times around its axis

Euler characteristic of a torus knot

 \rightarrow Euler characteristic of torus knots is χ =0

A. Martinez, M. Ravnik, B. Lucero, R. Vishvanathan, S. Zumer, & I.I. Smalyukh, Nature Mater (2014)

→10 s=1 & 10 s=-1 boojums compensate each other → consistent with χ =0 →The total number of boojums is 4q again

47

Multi-component particles lacking surface connectivity: colloidal links

A. Martinez, L. Hermosillo, M. Tasinkevych, and I. I. Smalyukh. PROC. NATL. ACAD. SCI. U.S.A. 112, 4546-4551 (2015)

Hopf Links

Colloidal Hopf Links with tangential BCs

Polarizing optical microscopy

Rotational & translational elastic coupling:

Nonlinear depth-resolved optical microscopy

Colloidal Hopf Links with perpendicular BCs

Metastable Hopf links with perpendicular BCs

Rotational & translational elastic coupling:

Colloidal Solomon links with homeotropic BCs

Summary: graph presentations of links

A. Martinez, L. Hermosillo, M. Tasinkevych, and I. I. Smalyukh. PROC. NATL. ACAD. SCI. U.S.A. 112, 4546-4551 (2015)

Conclusions

→Soft Matter provides an experimental toolkit of exploring topology;

- →Interplay of line field and surface topologies much more is left to be explored
- →Topology the basis for controlling self-assembly (can use)
- defect linking as means of self-assembly!)
- →Inter-linking of defect loops brings around defect
- structures distinct from classic results for vector fields!
- →Probing topological interplay through the survey of local and global minimizers of states in LC colloids

Thank you!