Continuum Theories of active liquid crystalline fluids

Aparna Baskaran Brandeis University

Scope of today's talk

- Pedagogical theory talk —literature, experimental systems not detailed
- Active fluids: World view and context
- Story 1: active polar fluid (solitary waves)
- Story 2: active nematic fluid (defect ordered nematic)
- Things to be done, coming attractions....

Traditional non-equilibrium materials

- Driven at the boundary : Macroscopic Drive
- Energy cascades down to the microscale dissipation/temperature
- Thermodynamics gives me a theoretical handle on what happens

Active Materials

- Driven at the microscale
- Energy cascades up to the macroscale
- Rules of the game ? Design principles ?

Why should I care?

Interesting from a fundamental point of view :

- Liberation from the constraints of equilibrium
- Need to invent theory Fluctuation-dissipation, regression etc out the window.
- New Physics : Long range order in 2D, Anamolous fluctuations, Novel instabilities and pattern formation,

Why should I care?

Interesting from a more real world point of view :

- Physical Scaffold of Biological Systems
- Properties dynamically changed by coupling to regulation

Theoretical paradigm-Symmetry and Hydrodynamics

- Prototype active fluid : Particles that consume fuel from environment and produce forces
- Classify fluids based on symmetry
- Symmetry of activity

Introduction and Context Examples

- Polar activity and polar interactions
- Move through a medium Force=velocity

allu

Macroscopic theory – Hydrodynamics

Dynamics of Conserved Quantities and Broken Symmetry VariablesDensity of ParticlesPolarization (Velocity)

$$\rho(\mathbf{r},t)$$
 $\mathbf{P}(\mathbf{r},t)$ ($w_0\mathbf{P}$)

$$\partial_t \mathbf{P} + \lambda_1 (\mathbf{P} \cdot \nabla \mathbf{P}) = -D_{\mathbf{R}} \left(a_2 + P^2 a_4 \right) \mathbf{P} - w_0 \nabla \rho + (D_s - D_b) \nabla (\nabla \cdot \mathbf{P}) + D_b \nabla^2 \mathbf{P} + \lambda_2 \mathbf{P} (\nabla \cdot \mathbf{P}) + \frac{\lambda_3}{2} \nabla P^2$$
To one and To 1005

Active Polar Fluid

• Start with an equilibrium polar fluid

$$\partial_t \mathbf{P} = -\frac{\delta F}{\delta \mathbf{P}}$$

- Gradient descent dynamics on some free energy landscape
- Under some imposed inhomogeneous flow $\partial_{t}\mathbf{P} + \lambda_{1}(\mathbf{P} \cdot \nabla^{\mathbf{D}}) = D_{\Sigma}\left(a_{T} + D^{2}a_{T}\right)\mathbf{P} \qquad \qquad \forall \nabla \alpha + \begin{pmatrix} D \\ \delta F \end{pmatrix} = D_{b}\nabla(\nabla \cdot \mathbf{P})$ $\partial_{t}\mathbf{P} + \mathbf{u} \cdot \nabla\mathbf{P} + \boldsymbol{\omega} \times \mathbf{P} + \overleftarrow{E} \cdot \mathbf{P} = -\frac{\delta F}{\delta \mathbf{P}}$ • Active fluid has self generated flow $\mathbf{u} = \mu_{T}\mathbf{F}_{act}$ $\boldsymbol{\omega} = \mu_{R}\boldsymbol{\tau}_{act}$ $= \lambda \mathbf{P}$ $\overleftarrow{E} \sim \mu_{S}\nabla\mathbf{F}_{act} \sim \nabla\mathbf{P}$

- Extensively studied equation that has rich phenomenology Toner PRL 1995, Bertin PRE 2006, J.Phys A 2009, Solon PRL 2012 ...many many others,
 - Applicable to self propelled particle systems with "Vicsek" like interactions Actin filament motility assay, quinke rotors, chemotactic bacteria, self-propelled rods....
 - Focus on one particular phenomenon solitary waves

$$\partial_t \rho = -\nabla \cdot (w_0 \rho \mathbf{P} - D \nabla \rho)$$

$$\partial_{t} \mathbf{P} + = -\underline{D}_{\mathbf{R}} \left(a_{2} + P^{2} a_{4} \right) \mathbf{P} -$$
Low density a2 >0 and P = 0
High density a2<0 and P = $\sqrt{\frac{-a_{2}(\rho)}{a_{4}(\rho)}}$

Stripe Phase

- Not a pattern but rather solitonic wave trains
- Initial conditions determine widths/number of stripes

$$\partial_t \rho = -\nabla \cdot w_0 \rho \mathbf{P}$$

 $\partial_t \rho \mathbf{P} = -w_0 \nabla \rho$

Recent work along these lines: Solon PRL 2014

Stripe Phase

NB : Not a complete story, works only close to the critical point

Dynamics of Conserved Quantities and Broken Symmetry VariablesDensity of ParticlesNematic Order Parameter

 $\rho\left(\mathbf{r},t\right)$

$$Q_{\alpha\beta}\left(\mathbf{r},t\right) = \left\langle \hat{u}_{\alpha}\hat{u}_{\beta} - \frac{1}{2}\delta_{\alpha\beta} \right\rangle$$

• Start with an equilibrium nematic fluid

$$\partial_t Q_{\alpha\beta} = -\frac{\delta F}{\delta Q_{\alpha\beta}}$$

• Gradient descent dynamics on some free energy landscape

$$\partial_t Q_{\alpha\beta} + \mathbf{u} \cdot \nabla Q_{\alpha\beta} + \Omega_{\alpha\gamma} Q_{\gamma\beta} - Q_{\alpha\gamma} \Omega_{\gamma\beta} + E_{\alpha\gamma} Q_{\gamma\beta} = -\frac{\delta F}{\delta Q_{\alpha\beta}}$$

• Active fluid has self generated flow $\Omega_{\alpha\beta} = \frac{1}{2} \varepsilon_{\alpha\beta\gamma} \omega_{\gamma}$ $\mathbf{u} = \mu_T \mathbf{F}_{act} = \lambda_C \nabla \cdot \overleftrightarrow{Q} \qquad \boldsymbol{\omega} = \mu_R \boldsymbol{\tau}_{act} = \lambda_R \nabla \times \nabla \cdot \overleftrightarrow{Q}$

$$E_{\alpha\beta} \propto \mu_E \lambda \partial_\gamma F_\beta$$

• The dynamical equation of interest

- Close to the critical density "similar phenomenology"
 - Symmetry does not allow for propagating waves
 - Instead you get bands of nematic high density regions

Recent work : Ngo PRL 2014 Bertin New J.Phys 2013...

• What happens to the homogeneous nematic state at high densities?

- What happens to Random Initial Conditions?
- Initialize in an isotropic state and integrate the equations

• Defect Ordered Nematic

• Turbulent Defective nematic

Coming Attractions/Weird things that real systems do

• The defect order in the experimental system is nematic

• Confinement does weird things : <u>Movie</u>

<u>Summary</u>

- Active fluids sorted by symmetry
- Two stories
- Solitary waves in polar systems
- Defective states in nematic systems
- More things to understand than understood

Students

Elias Putzig

Gabe Redner

Collaborators

Mike Hagan

Arvind Baskaran

Gopinath et al PRE 2012

Baskaran et al EPJE 2012

Putzig et al Phys Rev E 2014

DeCamp et al Nature Materials 2015

Putzig et al arXiv:1506.03501

Active Nematic Fluid – Context

Active nematic suspension

$$\partial_t Q_{\alpha\beta} + \mathbf{u} \cdot \nabla Q_{\alpha\beta} + \Omega_{\alpha\gamma} Q_{\gamma\beta} - Q_{\alpha\gamma} \Omega_{\gamma\beta} + E_{\alpha\gamma} Q_{\gamma\beta} = -\frac{\delta F}{\delta Q_{\alpha\beta}}$$

$$\nabla^2 \mathbf{u} = \nabla \cdot \sigma^{act}$$

$$\sigma_{ij}^{act} = \alpha Q_{ij}$$

$$\nabla^2 \mathbf{u} + \zeta \mathbf{u} = \nabla \cdot \sigma^{act}$$

- Same director dynamics
- Stokes equation
- Same active stress
- Screening/damping
- Same theory with $\lambda_{\rm C} = \lambda_{\rm R}$

Many experts in the audience : Marchetti et al, Yeomans et al...

Active Nematic Fluid – Context

Dry Active nematic

$$\partial_t Q_{ij} = -\left(\alpha + \beta Tr\left(Q^2\right)\right)Q_{ij} + \nabla^2 Q_{ij} + \partial_i \partial_j \rho$$

 $\partial_t \rho = \nabla^2 \rho + \partial_i \partial_j Q_{ij}$

Many experts in the audience : Ramaswamy et al, Toner et al, Bertin et al, Aranson et al Shi et al, Chate et al... • This theory with $\lambda_{\rm C} = \lambda_{\rm R} = 0$ $D_{\delta} = 0$

- Valid close to critical density
- Phase separation, chaos giant number fluctuations
- Unchanged here