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Motivation 

National Ignition Facility 

Inertial 
Confinement Fusion 

The high densities (1024-26 cm-3) imply 
that quantum mechanics is necessary 
for the electrons. 

Energy Balance 

D’s and T’s 

electrons 

radiation alphas 

neutrons 
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Quantum Effects 

•Ion Coupling 

•Electron Coupling 

•Degeneracy 

•Coulomb Logarithm 

•Dynamic Response 

•Adiabaticity 
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Stopping Power 

MD Simulations by Mike Surh 

v/vth 

Large discrepancies exist between 
theoretical models 

Classical Stopping 

Wakefield 
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We need a computational tool capable of 
distinguishing between models for quantum stopping 
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Temperature Relaxation 

Courtesy of Lorin Benedict 

Range from multiple 
independent MD runs (DB) 

Potentials 
DB = Dunn-Broyles 

mK = modified Kelbg 
(using exact pair 
density matrix) 

Kinetic Models 
GLB = Generalized 
Lennard-Balescu 
LFC = Local Field 

Correction 

Methods 
MD = Molecular 

Dynamics 
HNC = Hypernetted 

Chain 
HNC provides a static 
LFC from a potential. 
MD gives a dynamic 

LFC implicitly. 

How well do quantum 
statistical potentials calculate 
temperature relaxation? 

How important are 
local field 
corrections? 

How important is 
quantum dynamic 
response? 
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Path Integral Monte Carlo 

This leads to the “polymer ring isomorphism”: 

Main difficulty is the 
Fermion Sign Problem. 

Highly Accurate, but computationally 
demanding and limited to equilibrium 
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Quantum Molecular Dynamics 

Courtesy of Luke Shulenburger 

Xenon melting, n = 9.91 g/cc, T = 6000K 

• Great static electron and 
dynamic ion properties 

•  Great dynamic properties 
near equilibrium within 
linear response 

• Adiabatic approximation  
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Green atoms are initially solid 
Red are initially liquid 



Quantum Statistical Potentials (QSPs) 

MD codes are designed to solve a classical problem. Can we make 
quantum mechanics look like classical mechanics? 

Utilize well-known 
properties of the 
quantum partition 
function. 

Classical mechanics 
looks similar…. 
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Defining the QSP Formally 

Key observations: 
1. Gaussian integrals in classical form are trivially done. 
2. Expectation of density operator is positive. 

Three approximations: 

1. Assume antisymmetry is additive: Pauli potential 

2. Assume that total interaction is sum over pairs: diffractive potential 

3. Assume system is near equilibrium 

Multiplying by one 

The many-body potential 
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Density Dependent Pauli Potentials 

• For a finite temperature and density ideal Fermi 
gas, the effective potential can be explicitly written 
down.  

• In a pair approximation, the effective interaction 
results from the solution of a non-linear integral 
equation.  

• We solved that equation and we fit the result.  

• Important point: we fit to a density-dependent pair 
potential. 

Pauli potential: 

Definitions used: 

Great paper for learning QSPs 
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Pair Diffraction Potentials 
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Solve the Bloch equation perturbatively: 

Kelbg potential 

There is no reason not to simply solve this exactly, using 
solutions of the two-body Schrodinger equation: 

We include contributions from the discrete and continuous 
spectrum (i.e., bound states are included). 

Courtesy of Michael S. Murillo and Heather Whitley 
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Results for Hot Dense Hydrogen 



ei  0.01

 
T

TF

 6.05

“Hansen” is one of the standard 
models and “HNC” is an 
accurate integral equation 

method (neither shown here). 

Courtesy of Heather Whitley 
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Successes and Failures of QSPs 

Atomic recombination in carbon. 
This term acts to suppress 

unphysical density fluctuations 
(Heisenberg). 

Why QSPs work. Why QSPs don’t work. 

Dynamic quantum 
response differs from 

classical response 

Excellent static properties, but dynamic 
properties need to be checked 
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The Problem 

The quantum state exists in an uncountably-infinite-dimensional Hilbert space. 
Little intuition exists for reducing to a tractable subspace 

Ehrenfest Theorem 

Approximations to the Schrödinger 
equation are equivalent to a closure 

in the evolution of the position-
momentum moments 
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The Time Dependent Variational Principle 

Feldmeier and Schnack (2000) 

Time Dependent Variational Principle 

What is the smallest subspace 
of the full Hilbert space which 
gives the right statistical 
properties (both static and 
dynamic)? 

How can we balance accuracy 
and computational cost? 
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Ions are treated completely classically 

Wave Packet Molecular Dynamics 

Variational Ansatz 

Hartree Product (Slater Determinants can be used too) Electron Coordinates 

Isotropic Gaussian 

Classical-looking 4D Hamilton’s equations 
Physical interpretation of variational parameters 
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WPMD Simulations 

Antisymmetrization Methods 
T – Two-body antisymmetrization 
F – Full Antisymmetrization (with 
respect to kinetic energy only) 
eFF – Electron Force Field 
 
Width Constraint Methods 
H – Harmonic Constraint 
E – Energy Constraint 
P – Periodic Boundary Condition 
Constraint 

Klakow et al. 1994a, Klakow et al. 1994b, Klakow et al. 1996, Knaup et al. 1999, Knaup 
et al. 2000, Knaup et al. 2001, Knaup et al. 2002, Knaup et al. 2003, Zwicknagel and 
Pschiwul 2006, Jakob et al. 2007, Su and Goddard 2007, Morozov and Valuev 2009, 
Jakob et al. 2009, Su and Goddard 2009, Jaramillo-Bolero et al. 2010  

Hydrogen studies only 

Ad hoc constraints are 
needed at high 

temperatures to get 
sensible answers. 

Public Release number LA-UR-12-21648    Paul E. Grabowski 



Wave Packet Spreading in  
Wave Packet Molecular Dynamics 

Leads to constant electron background 

Much of coding by Dave Richards 
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Width Constraints 

Morozov and Valuev 2009 

A change in variational ansatz 

leads to a harmonic constraint on the width 

Ebeling et al. 2006, width constraint first 
introduced by Knaup et al. 1999 

Energy Constraint 

Periodic Boundary Conditions 

Constraints lead 
to empirical 
parameters, and 
can get some 
physics right. 
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Electron Force Field Method 

Su and Goddard 2007 
Su and Goddard 2009 
Jaramillo-Botero et al. 2011 

Deuterium 300K 

Empirical parameters fixed by DFT 
calculations of molecules 
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Snapshots of Wigner phase space density of a single electron with V=0. 



t 1a.u. 0.024 fs

The Free Particle 

Wave packet spreading is a real physical phenomenon 
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Split Operator Fourier Transform 

Time dependent Schrödinger equation 
solver on a Fourier grid (MxMxM). 

Δt = 10-4 fs 
M = 128 

This method produces our 
reference numerically exact 

single particle solution 

Code and SOFT solution done by Andreas Markmann 
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Scattering from a Yukawa Field 
Scattering from a Yukawa Field 

SOFT 

WPMD 

Free Particle 

Fixed Screened 
Proton 
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Courtesy of Ilya Valuev, Igor Morozov, and Andreas Markmann 

More Gaussians is Better 

One Gaussian Two Gaussians 

See Ilya Valuev’s poster or 
Morozov and Valuev 2012 
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Courtesy of Ilya Valuev, Igor Morozov, and Andreas Markmann 

More Gaussians is Better 

Three Gaussians Four Gaussians 

See Ilya Valuev’s poster or 
Morozov and Valuev 2012 
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10 eV 85 eV t = 0.05 fs 

Localization from a Plane Wave 

Probability isocontour 
at four times average 

density 

High energy electrons  
still prefer to be near ions 
and do so despite having 
large uncertainties in the 

positions. 
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Localization 

10 eV 85 eV t = 0.10 fs 

Localization from a Plane Wave 

Probability isocontour 
at four times average 

density 
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10 eV 85 eV t = 0.15 fs 

Localization from a Plane Wave 

Probability isocontour 
at four times average 

density 
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10 eV 85 eV t = 0.20 fs 

Localization from a Plane Wave 

Probability isocontour 
at four times average 

density 
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10 eV 85 eV t = 0.25 fs 

Localization from a Plane Wave 

Probability isocontour 
at four times average 

density 

Density fluctuations in 
time can be large 
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Wave Packet Ansatz Plane Wave Ansatz 

The Choice of Variational Ansatz 

A full plane wave basis can 
represent any periodic function. 

The Hartree approximation will be assumed here,  
but at the expense of greater computation can be discarded 

A Gaussian is limited to a very 
simple aperiodic form 
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Philosophy 

If one only cares about ion dynamics, one can hide all sorts of 
sins in the electron-electron interaction and still get dynamic 

electron screening right (at least at high temperature). 

Calculated with Hypernetted Chain  
using a Dunn-Broyles potential. 

Hydrogen 
n = 1025 cm-3 

Radial Distribution Function Stopping Power of a Proton by an Electron Target 

Θ =1.13 
Γ = 0.93 

Γ = 0.27 

Degeneracy effects can often be small 

Fully degenerate 
high-velocity limit 

Non-degenerate 
RPA 
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Plane Wave Molecular Dynamics 

Wave Function 

Hamiltonian 

Equations of 
Motion 

Scaling 

Number of particles 

Number of Fourier 
modes per dimension 

Memory 

Computation 

Hartree Term Self Energy Lattice Sum 
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Plane Wave Molecular Dynamics 
Simulation 

• Hydrogen Plasma 
• T = 184 eV 
• navg = 1025 cm-3 

• 100 protons and 100 electrons 
• Black dots are protons 
• Colors are electron density 
• Mp = 10me 

• Simulation time = 10a.u. = 0.24 fs 
• Runs on my laptop overnight 

n/navg 

1.90 
1.63 
1.36 
1.09 
0.82 
0.55 
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Radial Distribution Function 

 n = 10^25/cc T = 184 eV 

WPMD prediction 

(Dunn-
Broyles) 

Calculated with 
static ions 
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• We have developed a quantum dynamic 
method 

• The method is a good compromise between 
computational cost and accuracy 

• We will now use it to calculate dynamic 
quantities (temperature relaxation, electrical 
conductivity, etc.) 

Summary 
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