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Discuss an approach (i) to perform TD simulations of dense plasmas,
i.e. the real-time dynamics of partially degenerate electrons and classical ions,
using an orbital-free approximation of time-dependent density functional theory,
(ii) to access to truly dynamical processes so far inaccessible to state-of-the-art techniques

Ability to simulate dynamical processes and non-equilibrium conditions must be developed:

- to support basic experiments:
- anticipated future X-ray sources will make it possible to probe genuine dynamical properties
- measurements difficult to interpret if recorded while the diverse species are out of equilibrium

- to support application-driven experiments

This talk: - the time-dependent Thomas-Fermi model

- implementation: combination of MD and plasma physics (PIC) techniques

- preliminary results



The Thomas-Fermi approximation retains the elegance of the correct theory
and provide deep physical insights.
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Thomas-Fermi approximation (1927): Old quantum mechanics: when electron is in state “i”, its motion
can be adequately described by means of classical mechanics

1

oen fPIE=N= Z( | ! == Large principal quantum number
e;<h(r,p

2mh

quasi/semi-classical/quantal
statistical model

] — [ n(r) ~ npp(r) = /deFD(ra pP) }

drdp 2 1
%Y states per phase-space 5 D) —
(2mh)3  volume element frp(r,p) (27h)3 1 + e~ Plu—h(r.p)
classical-like quantal




Originally, Thomas and Fermi considered high-Z atoms
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Thomas-Fermi is considered as a precursor of DFT
But DFT is essential to rigorously justify and extend Thomas-Fermi

1) Properties of an electronic system at equilibrium are completely determined by its
particle density alone (Hohenberg-Kohn)

Il) density of interacting particles is also the density of a fictitious,
non-interacting system of particles under the influence of the Kohn-Sham (KS) potential

v(r) = vgs(r) = Vert(r) + vE(T) + Vge(T)



The Time-Dependent Thomas-Fermi approximation
derived following Thomas’ 1926 paper

1. Assumptions and the deduction from them of an equation.

The following assumptions are made.
(1) Relativity corrections can be neglected.

(2) In the atom there is an effective field given by potential
V, depending only on the distance » from the nucleus, such that
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Vr— E, the nuclear charge, as r—0.
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Vlasov-like equation

Semi-classical Vlasov approximation



TF can also be derived from modern quantum mechanics
using a phase-space representation
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The TF approximation is increasingly accurate when s-summation . N ¢ /
is dominated by small s contribution, namely :

: WDM
- at high-temperature

or/and - at high-density
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» General potential:
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At high enough temperature, density matrix becomes highly mixed:
the underlying quantum interference and coherence effects are quenched by the incoherence
introduced by the thermal average: only terms close to the diagonal survive



The static Thomas-Fermi approximation can be extended to time-dependent phenomena
using time-dependent density functional theory

TDDFT: Given an initial condition, an interacting system of particles in an external,
TD potential is fully characterized by its TD particle density TL(I‘, t)

The TD density is also that of a fictitious, non-interacting system of particles
in an external, time-dependent potential
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From Time-Dependent Kohn-Sham to time-dependent Thomas-Fermi
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Time-Dependent Thomas-Fermi Molecular Dynamics
Simulations of Dense Plasmas

ag—?/ p— {hKS7 fW} /dew(R,P,t) :n(Rjt)

Despite its resemblance, this Vlasov-like equation is not the Vlasov equation of
traditional plasma physics:

fw is not the distribution function of the real electrons ; in the spirit of DFT,
it provides a path to the particle density.

the mean-field potential contains an additional exchange correlation term.
Computational plasma physics

fW satisfies the requirements of the Fermi-Dirac statistics and the fermionic character
Is preserved by the Vlasov dynamics: phase-space volumes are conserved.

However, the resemblance is very advantageous since it allows using numerical methods
of traditional plasma physics



Time-Dependent Thomas-Fermi Molecular Dynamics of Dense Plasmas
= dynamics of semi-classical (TF) electrons + classical ions

Htot(t) — Hp + Heact(t) Hp — Hz -+ He -+ ‘/;le

In general, a similar set of equations could be N
used to calculate the ionic density but further g (r, 1) = Z 5(r — Ry(1) + O(r — Ry(1)?2.
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nuclear motion classically.
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dynamics and the Vlasov equation for the a2z 7

electron dynamics



The Vlasov equation is solved using the pseudo-particle method

The method is similar to the standard particle-in-cell (PIC), except that in traditional
applications of PIC each numerical particle represents many real particles whereas here each
numerical particle represents a fraction of a physical electron.
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The solution of the coupled electron-ion dynamics amounts to the solution of Newton’s
equations, which lies in the realm of classical molecular dynamics

Ofw(r,p,t) [ p°
“2m " vks(rt), fw(r,p,?) time-dependent Thomas-Fermi

d*R.;
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Classical molecular dynamics
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\ dt?
o , _ 1 particle-particle particle-mesh
Remark #1: ions interact via the Coulomb interaction - — P3M method

P3M which combines high-resolution of individual encounters and rapid,
mesh-based, long-range force calculation

Remark #2: pseudo-particles interact via the mean field potential ~ vg[n] 4 vy [n]

=== nNO direct two-body interaction non-local  local
=== mesh calculation: PM of P3M

Remark #3: ions and pseudo-particles interact via a two-body potential v, and involve

the same difficulties as for the ion-ion interactions
— P:M
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Without our parallel P3M code,

those studies would not have been possible

Validation and extension ,
of the Landau-Spitzer
transport theories:
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Local field corrections vs memory function

to go beyond the mean-field aporoximation
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Initialization: J. Clerouin, E.L. Pollock and G. Zerah
a) pseudo-potential Uy, L~ Phys. Rev. A 46, 5130 (1992)
b)ions R, P, 1/ F. Lambert, J. Clerouin and G. Zerah
c) TF density with damped Car-Parrinello Phys. Rev. E 46, 016304 (2006)

d) initialize pseudo-particler;, P; and citing literature

I
>

PM force calculations:
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PP force calculations:
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external potential
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Equations of motion:

R;(t),Pr(t),ri(t), pi(t)
apply PBC
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Measurements / Diagnostics:
energies, entropy, currents...




Vlasov conserves entropy

The numerical scheme must conserve the fermionic character

Theory
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Numerical solution
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The infinite jellium is somewhat too basic : ballistic pseudo-particle trajectories

The finite jellium is richer
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Electron-ion collisions and Plasmon relaxation

T e (fs)
n(r,t) = no(r + eD(t))

Harmonic potential theorem
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We hope to perform similar calculation of the electrical conductivity



Stopping power calculation

(a) E=80keV (b) E=320keV
100 T T T T T 100 T T U T
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Cluster Excitation Energy [eV]

Cluster Charge

L. Plagne, C. Guet (2000)



Conclusion:

Discuss an approach to perform TD simulations of dense plasmas
using an orbital-free approximation of time-dependent density functional theory

Challenge: xc potentials beyond local density and time approximation ?

Looking for a postdoc position ?
Please come talk to me or contact me at

daligaul@lanl.gov .




