All electron *ab initio* molecular simulations Status, successes, and some computational challenges

IPAM Workshop "Challenges in Warm Dense Matter" - IPAM, May 24, 2012

Enormous successes:

Enormous successes:

(Bio)molecular matter

- Structural complexity
- statistical averages & dynamics
- "weak" interactions critical

Enormous successes:

(Bio)molecular matter

- Structural complexity
- statistical averages & dynamics
- "weak" interactions critical

(Bio)molecular matter

- Structural complexity
- statistical averages & dynamics
- "weak" interactions critical

Graphene / SiC

Ta₃W₃

- Structure!
- Stability, free energies
- electronic, mechanical, optical, ... properties

 Ta_4W_9

Matter at extreme conditions

- "electron gas + protons"; high-pressure compounds, transitions
- (Born-Oppenheimer) molecular dynamics, classical nuclei
- Quantum nuclei? (PIMD)

(Bio)molecular matter

- Structural complexity
- statistical averages & dynamics
- "weak" interactions critical

Graphene / SiC

Ta₃W₃

Ta₄W₉

- Structure!
- Stability, free energies
- electronic, mechanical, optical, ... properties

Today: "Mostly density-functional theory", plenty of flavors

Matter at extreme conditions

- "electron gas + protons"; high-pressure compounds, transitions
- (Born-Oppenheimer) molecular dynamics, classical nuclei
- Quantum nuclei? (PIMD)

... but we still face some challenges:

<u>... but we still face some challenges:</u>

- Methods. Are we computing the right thing?
 - Current DFT (LDA/GGA and beyond) may qualitatively fail with or without warning for much of the interesting space, even for "structure"
 - Other numerical approximations? (grids, cutoffs, pseudoization, ...)
 - "Classical" vs. "quantum" nuclei? Born-Oppenheimer?

<u>... but we still face some challenges:</u>

• Methods. Are we computing the right thing?

- Current DFT (LDA/GGA and beyond) may qualitatively fail with or without warning for much of the interesting space, even for "structure"
- Other numerical approximations? (grids, cutoffs, pseudoization, ...)
- "Classical" vs. "quantum" nuclei? Born-Oppenheimer?
- Algorithms. Can we compute the right thing?
 - Realistically sized systems to capture "reality"
 - Statistical averages, dynamics, combinatorial complexity of "structure"?
 - Simply, hardware vs. software utilize *available* hardware effectively

Outline

An approach to all-electron "density functional theory and beyond": FHI-aims [1]

- Numeric atom-centered (localized) basis sets
- Scalability (1,000s of atoms, 1(0),000s of CPUs)
- ▶ Pushing towards "better" functionals (→P. Rinke)

[1] The Fritz Haber Institute ab initio molecular simulations suite (FHI-aims)
V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler,
Computer Physics Communications 180, 2175-2196 (2009) - http://www.fhi-berlin.mpg.de/aims/

Outline

An approach to all-electron "density functional theory and beyond": FHI-aims [1]

- Numeric atom-centered (localized) basis sets
- Scalability (1,000s of atoms, 1(0),000s of CPUs)
- ▶ Pushing towards "better" functionals (→P. Rinke)

Where do "we" come from?

- (Bio)molecular structure and spectroscopy
- Nanostructured inorganic surfaces

[1] The Fritz Haber Institute ab initio molecular simulations suite (FHI-aims)
V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler,
Computer Physics Communications 180, 2175-2196 (2009) - http://www.fhi-berlin.mpg.de/aims/

Outline

An approach to all-electron "density functional theory and beyond": FHI-aims [1]

- Numeric atom-centered (localized) basis sets
- Scalability (1,000s of atoms, 1(0),000s of CPUs)
- ▶ Pushing towards "better" functionals (→P. Rinke)

Where do "we" come from?

- (Bio)molecular structure and spectroscopy
- Nanostructured inorganic surfaces

... and some challenges (towards WDM)

[1] The Fritz Haber Institute ab initio molecular simulations suite (FHI-aims)
V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler,
Computer Physics Communications 180, 2175-2196 (2009) - http://www.fhi-berlin.mpg.de/aims/

Fritz Haber Institute, Berlin

[Richard-Willstätter-Haus]

In

Fritz Haber Institute, Berlin

[Richard-Willstätter-Haus]

Fritz Haber Institute, Berlin

[Richard-Willstätter-Haus]

Matthias Scheffler

Ville Havu (FHI/Helsinki)

Scalability

Rainer Johanni (Munich)

"Beyond LDA / GGA"

Xinguo Ren (FHI)

Biomolecular simulations

Mariana Rossi

Franziska Alex Tkatchenko Schubert

Carsten Baldauf

Matthias Scheffler

Ville Havu (FHI/Helsinki)

Scalability

Rainer Johanni (Munich) "Beyond LDA / GGA"

Xinguo Ren (FHI)

Biomolecular simulations

Mariana Rossi Franziska Schubert

Alex Tkatchenko

Carsten Baldauf

... FHI-aims - support from many more:

Karsten Reuter, Patrick Rinke, Ralf Gehrke, Paula Havu, Andreas Dolfen, Felix Hanke, Stefan Gutzeit, Andrea Sanfilippo, Luca Ghiringhelli, Sergey Levchenko, Matthias Gramzow, Mina Yoon, Christian Carbogno, Norbert Nemec, Jörg Meyer, Fabio Caruso, Sucismita Chutia, Jürgen Wieferink, Simiam Ghan, Viktor Atalla, Matti Ropo, Ferdinand Evers, Alex Bagrets, Heiko Appel, Daniel Berger, Oliver Hofmann, ...

Fritz Haber Institute, Berlin

[Richard-Willstätter-Haus]

• Cover (essentially) the entirety of chemistry / materials:

- Cover (essentially) the entirety of chemistry / materials:
 - first/second row elements

- Cover (essentially) the entirety of chemistry / materials:
 - first/second row elements
 - ▶ 3d transition metals (magnetism)

- Cover (essentially) the entirety of chemistry / materials:
 - first/second row elements
 - ▶ 3d transition metals (magnetism)
 - 4d/5d elements (relativity)

- Cover (essentially) the entirety of chemistry / materials:
 - first/second row elements
 - ▶ 3d transition metals (magnetism)
 - 4d/5d elements (relativity)
 - f-electron systems

- Cover (essentially) the entirety of chemistry / materials:
 - first/second row elements
 - ▶ 3d transition metals (magnetism)
 - 4d/5d elements (relativity)
 - f-electron systems
 - ...

- Cover (essentially) the entirety of chemistry / materials:
 - first/second row elements
 - ▶ 3d transition metals (magnetism)
 - 4d/5d elements (relativity)
 - f-electron systems
 - ...
- Periodic, cluster systems on equal footing

- Cover (essentially) the entirety of chemistry / materials:
 - first/second row elements
 - ▶ 3d transition metals (magnetism)
 - 4d/5d elements (relativity)
 - f-electron systems
 - ...
- Periodic, cluster systems on equal footing
- "Properties" (structure, dynamics, spectroscopy, ...)

- Cover (essentially) the entirety of chemistry / materials:
 - first/second row elements
 - ▶ 3d transition metals (magnetism)
 - 4d/5d elements (relativity)
 - f-electron systems
 - ...
- Periodic, cluster systems on equal footing
- "Properties" (structure, dynamics, spectroscopy, ...)
- Path "beyond" DFT-LDA/GGA (HF, hybrids, RPA, MP2, GW, ...)

- Cover (essentially) the entirety of chemistry / materials:
 - first/second row elements
 - ▶ 3d transition metals (magnetism)
 - 4d/5d elements (relativity)
 - f-electron systems
 - ...
- Periodic, cluster systems on equal footing
- "Properties" (structure, dynamics, spectroscopy, ...)
- Path "beyond" DFT-LDA/GGA (HF, hybrids, RPA, MP2, GW, ...)
- (Massively) parallel scalability

- Cover (essentially) the entirety of chemistry / materials:
 - first/second row elements
 - ▶ 3d transition metals (magnetism)
 - 4d/5d elements (relativity)
 - f-electron systems
 - ...
- Periodic, cluster systems on equal footing
- "Properties" (structure, dynamics, spectroscopy, ...)
- Path "beyond" DFT-LDA/GGA (HF, hybrids, RPA, MP2, GW, ...)
- (Massively) parallel scalability

Our goal: Efficient method, but do not sacrifice accuracy

Numerical approximations (including all electrons) should be reliably convergable for the *actual* problem of interest!

$$\left[-\frac{\nabla^2}{2} + v_{\text{ext}}(\boldsymbol{r}) + v_{\text{es}}(\boldsymbol{r}) + v_{\text{xc}}(\boldsymbol{r})\right]\psi_k(\boldsymbol{r}) = \epsilon_k\psi_k(\boldsymbol{r})$$

Kohn-Sham Equations

Basis set:

$$\psi_k(m{r}) = \sum_i c_{ki} arphi_i(m{r})$$

$$\left[-\frac{\nabla^2}{2} + v_{\text{ext}}(\boldsymbol{r}) + v_{\text{es}}(\boldsymbol{r}) + v_{\text{xc}}(\boldsymbol{r})\right]\psi_k(\boldsymbol{r}) = \epsilon_k\psi_k(\boldsymbol{r})$$

Kohn-Sham Equations

Basis set:

$$\psi_k(\boldsymbol{r}) = \sum_i c_{ki} \varphi_i(\boldsymbol{r})$$

Generalized eigenvalue
problem:

$$\underline{\underline{h}}\,\underline{\underline{c}}_k = \epsilon_k\,\underline{\underline{s}}\,\underline{\underline{c}}_k$$

$$\begin{aligned} h_{ij} &= \langle \varphi_i | \hat{h}_{\text{KS}} | \varphi_j \rangle \\ s_{ij} &= \langle \varphi_i | \varphi_j \rangle \end{aligned}$$

$$\left[-\frac{\nabla^2}{2} + v_{\text{ext}}(\boldsymbol{r}) + v_{\text{es}}(\boldsymbol{r}) + v_{\text{xc}}(\boldsymbol{r})\right]\psi_k(\boldsymbol{r}) = \epsilon_k\psi_k(\boldsymbol{r})$$

Kohn-Sham Equations

Basis set:

Many good options:

$$\left[-\frac{\nabla^2}{2} + v_{\text{ext}}(\boldsymbol{r}) + v_{\text{es}}(\boldsymbol{r}) + v_{\text{xc}}(\boldsymbol{r})\right]\psi_k(\boldsymbol{r}) = \epsilon_k\psi_k(\boldsymbol{r})$$

Kohn-Sham Equations

Many good options:

• Plane waves

$$\left[-\frac{\nabla^2}{2} + v_{\text{ext}}(\boldsymbol{r}) + v_{\text{es}}(\boldsymbol{r}) + v_{\text{xc}}(\boldsymbol{r})\right]\psi_k(\boldsymbol{r}) = \epsilon_k\psi_k(\boldsymbol{r})$$

Kohn-Sham Equations

Many good options:

- Plane waves
- Augmented plane waves (Slater 1937; Andersen 1975; etc.)
Central decision: the basis set

$$\left[-\frac{\nabla^2}{2} + v_{\text{ext}}(\boldsymbol{r}) + v_{\text{es}}(\boldsymbol{r}) + v_{\text{xc}}(\boldsymbol{r})\right]\psi_k(\boldsymbol{r}) = \epsilon_k\psi_k(\boldsymbol{r})$$

Kohn-Sham Equations

Many good options:

- Plane waves
- Augmented plane waves (Slater 1937; Andersen 1975; etc.)
- Gaussian-type orbitals

Central decision: the basis set

$$\left[-\frac{\nabla^2}{2} + v_{\text{ext}}(\boldsymbol{r}) + v_{\text{es}}(\boldsymbol{r}) + v_{\text{xc}}(\boldsymbol{r})\right]\psi_k(\boldsymbol{r}) = \epsilon_k\psi_k(\boldsymbol{r})$$

Kohn-Sham Equations

Many good options:

- Plane waves
- Augmented plane waves (Slater 1937; Andersen 1975; etc.)
- Gaussian-type orbitals
- <u>Many</u> others: (L)MTO, "real-space", numeric atom-centered functions, ...

$$arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

• $u_i(r)$: Flexible choice - "Anything you like."

Many popular implementations: DMol³ (Delley), FPLO (Eschrig et al.), PLATO (Horsfield et al.), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

$$arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

• $u_i(r)$: Flexible choice - "Anything you like."

Many popular implementations: DMol³ (Delley), FPLO (Eschrig et al.), PLATO (Horsfield et al.), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

$$\left[-\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + v_i(r) + v_{\rm cut}(r)\right]u_i(r) = \epsilon_i u_i(r)$$

$$arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

• $u_i(r)$: Flexible choice - "Anything you like."

<u>Many popular implementations:</u> DMol³ (Delley), FPLO (Eschrig *et al.*), PLATO (Horsfield *et al.*), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

$$\left[-\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + v_i(r) + v_{\text{cut}}(r) \right] u_i(r) = \epsilon_i u_i(r)$$

- free-atom like: $v_i(r) = v_{\text{free atom}}^{\text{DFT}}(r)$
- Hydrogen-like: $v_i(r) = z/r$
- free ions, harm. osc. (Gaussians), ...

$$arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

• $u_i(r)$: Flexible choice - "Anything you like."

<u>Many popular implementations:</u> DMol³ (Delley), FPLO (Eschrig et *al.*), PLATO (Horsfield *et al.*), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

$$arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

• $u_i(r)$: Flexible choice - "Anything you like."

→ Localized; "naturally" all-electron

<u>Many popular implementations:</u> DMol³ (Delley), FPLO (Eschrig *et al.*), PLATO (Horsfield *et al.*), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications **180**, 2175-2196 (2009)

$$arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

• $u_i(r)$: Flexible choice - "Anything you like."

<u>Many popular implementations:</u> DMol³ (Delley), FPLO (Eschrig et *al.*), PLATO (Horsfield *et al.*), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

- → Localized; "naturally" all-electron
- → The choice of <u>efficient</u> and of <u>enough</u> radial functions is obviously important

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications **180**, 2175-2196 (2009)

$$arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

• $u_i(r)$: Flexible choice - "Anything you like."

Many popular implementations: DMol³ (Delley), FPLO (Eschrig *et al.*), PLATO (Horsfield *et al.*), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

- → Localized; "naturally" all-electron
- → The choice of <u>efficient</u> and of <u>enough</u> radial functions is obviously important
- → We have a basis set library for all elements (1-102), from fast qualitative to meV-converged (total energy, LDA/GGA) calculations -<u>efficient and accurate approach</u>

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications **180**, 2175-2196 (2009)

Simple robust selection strategy:

Initial basis {*u*}⁽⁰⁾: Occupied free atom orbitals *u*free

Example: Cu₂ binding curve for different basis sets

Example: Cu₂ binding curve for different basis sets

Example: Cu₂ binding curve for different basis sets

• Increasing basis set: clear drift of d_{min} towards smaller values

- Increasing basis set: clear drift of d_{min} towards smaller values
- Reason: Minimal basis \rightarrow exponential basis set error as function of d

- \bullet Increasing basis set: clear drift of d_{\min} towards smaller values
- Minimal basis \rightarrow exponential basis set error as function of d
- meV-level accuracy for practical basis sets; small d require larger basis

Extreme example: H_2 (only one occupied orbital)

Extreme example: H_2 (only one occupied orbital)

Extreme example: H₂ (only one occupied orbital)

Extreme example: H₂ (only one occupied orbital)

Light elements (particularly H): Basis optimization for single geometry not enough!

Light elements (particularly H): Basis optimization for single geometry not enough! Robust basis construction: Optimize average of several dimer bond distances

Iterative selection of NAO basis functions

<u>"Pool" of trial basis functions:</u> 2+ ionic *u(r)* Hydrogen-like *u(r)* for Z=0.1-20

Optimization target:

Non-selfconsistent symmetric dimers, averaged for different d

Pick basis functions one by one: Total energy convergence

Iterative selection of NAO basis functions

<u>"Pool" of trial basis functions:</u> 2+ ionic *u(r)* Hydrogen-like *u(r)* for Z=0.1-20

<u>Optimization target:</u> Non-selfconsistent symmetric dimers, averaged for different *d*

Pick basis functions one by one: Total energy convergence

In practice: Hierarchical basis set library for all elements

	Н	С	0	Au	Systematic hierarchy of basis (sub)sets its mating
minimal	1s	[He] + 2s2p	$[\mathrm{He}] + 2s2p$	[Xe] + 6s5d4f	- Dasis (sub)sets, iterative
Tier 1	H(2s,2.1)	$\mathrm{H}(2p,\!1.7)$	$\mathrm{H}(2p,\!1.8)$	$Au^{2+}(6p)$	based on dimers
	$\operatorname{H}(2p,\!3.5)$	H(3d, 6.0)	H(3d, 7.6)	$\mathrm{H}(4f,\!7.4)$	Dased On Uniters
		$\mathrm{H}(2s,\!4.9)$	H(3s, 6.4)	$\mathrm{Au}^{2+}(6\mathrm{s})$	"First tier"
				${\rm H}(5g,\!10)$	
				$\mathrm{H}(6h,\!12.8)$	
				H(3d, 2.5)	\int
Tier 2	H(1s, 0.85)	H(4f, 9.8)	H(4f, 11.6)	$\operatorname{H}(5f,\!14.8)$	
	$\mathrm{H}(2p,\!3.7)$	$\mathrm{H}(3p,\!5.2)$	H(3p, 6.2)	H(4d, 3.9)	
	$\mathrm{H}(2s,\!1.2)$	H(3s, 4.3)	$\mathrm{H}(3d,\!5.6)$	H(3p, 3.3)	"Second tier"
	H(3d, 7.0)	$\mathrm{H}(5g,\!14.4)$	$\operatorname{H}(5g,\!17.6)$	H(1s, 0.45)	
		H(3d, 6.2)	H(1s, 0.75)	$\mathrm{H}(5g,\!16.4)$	
				H(6h, 13.6)	
Tier 3	H(4f, 11.2)	$\operatorname{H}(2p,\!5.6)$	$\mathcal{O}^{2+}(2p)$	$H(4f, 5.2)^{*}$	
	H(3p, 4.8)	H(2s, 1.4)	H(4f, 10.8)	H(4d, 5.0)	
	•••	•••	•••	•••	→ "Third tier"

Transferability: (H₂O)₂ hydrogen bond energy ...

... conformational energy hierarchy, large molecules ...

... conformational energy hierarchy, large molecules ...

Cohesive proper	rties, b	ulk semi	iconduc	<u>tors</u>	
	Si				
PBE0	a [Å]	B_0 [Mbar]	$E_{\rm coh} [{\rm eV}]$		
FHI-aims, <i>tight</i>	5.439	0.99	4.553		
Ref. [1]	5.433	1.00	4.555		
HSE06					
FHI-aims, <i>tight</i>	5.446	0.98	4.527		
Ref. [2]	5.435	0.98	4.582		
HSE06	HSE06 GaAs				
FHI-aims, tight	5.695	0.71	3.150		
Ref. [2]	5.687	0.71	3.149		
HSE06	Ge				
FHI-aims, tight	5.700	0.71	3.761		
Ref. [3]	5.703	0.73	n/a		

[1] J. Paier et al., J. Chem. Phys. 124, 154709 (2006).

- [2] J. Paier et al., J. Chem. Phys. 125, 249901 (2006).
- [3] A. Stroppa *et al.*, PRB **83**, 085201 (2011).

... and many-body perturbation theory - MP2, RPA, GW

Ren, Rinke, Blum, Wieferink, Tkatchenko, Sanfilippo, Reuter, Scheffler, NJP 14, 053020 (2012)

Jurecka et al., Phys. Chem. Chem. Phys 8, 1985 (2006)

NAO basis set: CNO: min.+3s3p3d1f H: min.+4s3p2d

Resolution of identity for Coulomb operator

→ recover CBS limit within 5%!

Perturbation theory: Counterpoise correction ESSENTIAL for MP2, RPA

So where are we at?

• Sound, accurate basis sets, elements 1-102

- Sound, accurate basis sets, elements 1-102
- Basic numerical techniques for DFT Real-space integrals, Poisson equation, scalar relativity etc. (Becke, Delley, Baerends, <u>many</u> others)

- Sound, accurate basis sets, elements 1-102
- Basic numerical techniques for DFT Real-space integrals, Poisson equation, scalar relativity etc. (Becke, Delley, Baerends, <u>many</u> others)
- Non-periodic, periodic boundary conditions on exactly equal footing

- Sound, accurate basis sets, elements 1-102
- Basic numerical techniques for DFT Real-space integrals, Poisson equation, scalar relativity etc. (Becke, Delley, Baerends, <u>many</u> others)
- Non-periodic, periodic boundary conditions on exactly equal footing
- "Properties": Structure optimization, *ab initio* molecular dynamics, vibrations/phonons, spectroscopy, etc.

- Sound, accurate basis sets, elements 1-102
- Basic numerical techniques for DFT Real-space integrals, Poisson equation, scalar relativity etc. (Becke, Delley, Baerends, <u>many</u> others)
- Non-periodic, periodic boundary conditions on exactly equal footing
- "Properties": Structure optimization, *ab initio* molecular dynamics, vibrations/phonons, spectroscopy, etc.
- LDA, GGA, van der Waals corrections, hybrid functionals, Hartree-Fock+MP2, RPA, *GW*, ...

- Sound, accurate basis sets, elements 1-102
- Basic numerical techniques for DFT Real-space integrals, Poisson equation, scalar relativity etc. (Becke, Delley, Baerends, <u>many</u> others)
- Non-periodic, periodic boundary conditions on exactly equal footing
- "Properties": Structure optimization, *ab initio* molecular dynamics, vibrations/phonons, spectroscopy, etc.
- LDA, GGA, van der Waals corrections, hybrid functionals, Hartree-Fock+MP2, RPA, *GW*, ...
- Massively parallel scalable eigensolver ELPA

- Sound, accurate basis sets, elements 1-102
- Basic numerical techniques for DFT Real-space integrals, Poisson equation, scalar relativity etc. (Becke, Delley, Baerends, <u>many</u> others)
- Non-periodic, periodic boundary conditions on exactly equal footing
- "Properties": Structure optimization, *ab initio* molecular dynamics, vibrations/phonons, spectroscopy, etc.
- LDA, GGA, van der Waals corrections, hybrid functionals, Hartree-Fock+MP2, RPA, *GW*, ...
- Massively parallel scalable eigensolver ELPA

Scalability: Real systems (Kohn-Sham DFT)

SiC(111)-($6\sqrt{3}x6\sqrt{3}$) graphene-like monolayer (216-338 atoms/layer ... want >2000 atoms total)

What we would like to do routinely:

- 1,000s of atoms, light or heavy
- I0-70 basis function
- Occupied eigenstates for Kohn-Sham DFT:

1/3-1/6 of full basis size

Scalability: Real systems (Kohn-Sham DFT)

SiC(111)-($6\sqrt{3}x6\sqrt{3}$) graphene-like monolayer (216-338 atoms/layer ... want >2000 atoms total)

What we would like to do routinely:

- 1,000s of atoms, light or heavy
- I0-70 basis function
- Occupied eigenstates for Kohn-Sham DFT:

1/3-1/6 of full basis size

... and we have (now!) large computers:

IBM BlueGene (MPG, Garching) 16384 CPU cores

Where does the time go? (Kohn-Sham DFT)

IBM BlueGene (MPG, Garching) 16384 CPU cores

Where does the time go? (Kohn-Sham DFT)

α-helical Ala₁₀₀ (1000 atoms), high accuracy, DFT-PBE

IBM BlueGene (MPG, Garching) 16384 CPU cores

Where does the time go? (Kohn-Sham DFT)

$$\underbrace{\underline{h}}\underline{c}_{k} = \epsilon_{k} \underline{\underline{s}} \underline{c}_{k}$$

<u>Generalized (non-orthogonal) eigenvalue problem:</u>

- Transform to orthogonal form: $U^{-T}HU^{-1}$
- Transform orthogonal H' to tridiagonal form
- Solve tridiagonal eigenproblem
- Backtransform (1) solution to standard form

Data: (2008)

• Backtransform (2) standard to general form

$$\underbrace{\underline{h}}\underline{c}_{k} = \epsilon_{k} \underline{\underline{s}} \underline{c}_{k}$$

<u>Generalized (non-orthogonal) eigenvalue problem:</u>

- Transform to orthogonal form: $U^{-T}HU^{-1}$
- Transform orthogonal H' to tridiagonal form
- Solve tridiagonal eigenproblem
- Backtransform (1) solution to standard form
- Backtransform (2) standard to general form

Significant improvement: "ELPA" library

<u>http://elpa.rzg.mpg.de</u> <u>http://elpa-lib.fhi-berlin.mpg.de</u>

$$\underbrace{\underline{h}}\underline{c}_{k} = \epsilon_{k} \underline{\underline{s}} \underline{c}_{k}$$

"EigensoLver for Petaflop Applications"

- "Drop-in enhancement" for ScaLapack solution (same layout)
- Rewrite of all communication, data handling etc. from scratch (retain only serial BLAS, Lapack)
- LGPL license free to use with open or closed codes as long as modifications to ELPA library itself are open

German Ministry for Research and Education (BMBF) funded consortium, 2008-2011: Garching Computing Center (Max Planck Society); Fritz Haber Institute; Wuppertal University; Technical University Munich; MPI Mathematics in Science; IBM

Example: Reduction to tridiagonal form (just linear algebra)

Chief bottleneck: Tridiagonalization

"Conventional" reduction:

Example: Reduction to tridiagonal form (just linear algebra)

Chief bottleneck: Tridiagonalization

Auckenthaler, Blum, Bungartz, Huckle, Johanni, Krämer, Lang, Lederer, Willems, Parallel Computing **37**, 783-794 (2011).

Example: Reduction to tridiagonal form (just linear algebra)

Chief bottleneck: Tridiagonalization

Need two eigenvector backtransformation steps instead of one

• Heavily optimized backtransform for eigenvectors (adaptive data layout, architecture-specific linear algebra kernels) to offset overhead

Auckenthaler, Blum, Bungartz, Huckle, Johanni, Krämer, Lang, Lederer, Willems, Parallel Computing **37**, 783-794 (2011).

Our experience: Significant improvement

Open source (LGPL): http://elpa.rzg.mpg.de

α-helical Polyalanine Ala₁₀₀ *Matrix*: 27069, *States*: 3410

... so what about that "petascale"?

Outline

An approach to all-electron "density functional theory and beyond": FHI-aims [1]

- Numeric atom-centered (localized) basis sets
- Scalability (1,000s of atoms, 1(0),000s of CPUs)
- ▶ Pushing towards "better" functionals (→P. Rinke)

Where do "we" come from?

- (Bio)molecular structure and spectroscopy
- Nanostructured inorganic surfaces

... and some challenges (towards WDM)

[1] The Fritz Haber Institute ab initio molecular simulations suite (FHI-aims)
 V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler,
 Computer Physics Communications 180, 2175-2196 (2009) - http://www.fhi-berlin.mpg.de/aims/

Outline

An approach to all-electron "density functional theory and beyond": FHI-aims [1]

- Numeric atom-centered (localized) basis sets
- Scalability (1,000s of atoms, 1(0),000s of CPUs)
- ▶ Pushing towards "better" functionals (→P. Rinke)

Where do "we" come from?
(Bio)molecular structure and spectroscopy

Nanostructured inorganic surfaces

... and some challenges (towards WDM)

[1] The Fritz Haber Institute ab initio molecular simulations suite (FHI-aims)
 V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler,
 Computer Physics Communications 180, 2175-2196 (2009) - http://www.fhi-berlin.mpg.de/aims/

Cold, not so dense world: Biomolecules

- Proteins: macromolecules that perform essential tasks inside living organisms
- ~60.000 different proteins in human organism, several billion per cell.
- <u>The structure of a protein determines its</u> <u>function!</u>

This structure is not random, but tuned by the amino acid sequence.

Cold, not so dense world: Biomolecules

- Proteins: macromolecules that perform essential tasks inside living organisms
- ~60.000 different proteins in human organism, several billion per cell.
- <u>The structure of a protein determines its</u> <u>function!</u>

This structure is not random, but tuned by the amino acid sequence.

Typical "building blocks:" Secondary structure

Cold, not so dense world: Biomolecules

- Proteins: macromolecules that perform essential tasks inside living organisms
- ~60.000 different proteins in human organism, several billion per cell.
- <u>The structure of a </u><u>function!</u>

Can we push "first principles" to predict secondary structure? (~100s of atoms)

This structure is not random, but tuned by the amino acid sequence.

Typical "building blocks:" Secondary structure

Hemoglobin

- DFT in the Perdew-Burke-Ernzerhof (1996) generalized gradient approximation
- Non-empirical, widely used, but any GGA lacks van der Waals tails

- DFT in the Perdew-Burke-Ernzerhof (1996) generalized gradient approximation
- Non-empirical, widely used, but any GGA lacks van der Waals tails
- Inclusion of van der Waals (vdW) dispersion via a C₆[n]/R⁶ term: (Yang, Grimme, Hobza, many others)

$$E_{\text{DFT}} + \sum_{\text{atoms } ij} \frac{C_6^{ij}}{R_{ij}^6} \cdot f_{\text{damp}}(R_{ij})$$

- DFT in the Perdew-Burke-Ernzerhof (1996) generalized gradient approximation
- Non-empirical, widely used, but any GGA lacks van der Waals tails
- Inclusion of van der Waals (vdW) dispersion via a C₆[n]/R⁶ term: (Yang, Grimme, Hobza, many others)

$$E_{\text{DFT}} + \sum_{\text{atoms } ij} \frac{C_6^{ij}}{R_{ij}^6} \cdot f_{\text{damp}}(R_{ij})$$

 Here: C₆[n] term derived from self consistent electron density [1]

[1] A.Tkatchenko and M. Scheffler, PRL **102**, 073005 (2009)

- DFT in the Perdew-Burke-Ernzerhof (1996) generalized gradient approximation
- Non-empirical, widely used, but any GGA lacks van der Waals tails
- Inclusion of van der Waals (vdW) dispersion via a C₆[n]/R⁶ term: (Yang, Grimme, Hobza, many others)

$$E_{\text{DFT}} + \sum_{\text{atoms } ij} \frac{C_6^{ij}}{R_{ij}^6} \cdot f_{\text{damp}}(R_{ij})$$

 Here: C₆[n] term derived from self consistent electron density [1]

[1] A.Tkatchenko and M. Scheffler, PRL **102**, 073005 (2009)

Rossi, Blum, Kupser, von Helden, Bierau, Pagel, Meijer, Scheffler, J. Phys. Chem. Lett. 1, 3465 (2010)

α-helical Ac-Ala₁₅-LysH⁺ (180 atoms): Helical? <u>Experiment</u>: von Helden, Kupser, Bierau, Meijer, Molecular Physics, FHI Berlin

Infrared multiphoton dissociation spectroscopy, FELIX free electron laser

Room temperature

Rossi, Blum, Kupser, von Helden, Bierau, Pagel, Meijer, Scheffler, J. Phys. Chem. Lett. 1, 3465 (2010)

α-helical Ac-Ala₁₅-LysH⁺ (180 atoms): Helical?

<u>Experiment</u>: von Helden, Kupser, Bierau, Meijer, Molecular Physics, FHI Berlin

Infrared multiphoton dissociation spectroscopy, FELIX free electron laser

Room temperature

Rossi, Blum, Kupser, von Helden, Bierau, Pagel, Meijer, Scheffler, J. Phys. Chem. Lett. 1, 3465 (2010)

Theory: DFT-PBE+vdW; shifted, not scaled

α-helical Ac-Ala₁₅-LysH⁺ (180 atoms): Helical?

Now what happens without van der Waals?

Kohtani et al., JACS **126**, 7420 (2004): "Extreme stability of an unsolvated helix" Ac-Ala₁₅-LysH⁺ α -helix is stable up to \approx 650 K

Now what happens without van der Waals?

Kohtani et al., JACS **126**, 7420 (2004): "Extreme stability of an unsolvated helix" Ac-Ala₁₅-LysH⁺ α -helix is stable up to \approx 650 K

PBE	PBE+vdW

A. Tkatchenko, M. Rossi, V. Blum, J. Ireta, and M. Scheffler, Phys. Rev. Lett. 106, 118102 (2011)
Now what happens without van der Waals?

Kohtani et al., JACS **126**, 7420 (2004): "Extreme stability of an unsolvated helix" Ac-Ala₁₅-LysH⁺ α -helix is stable up to \approx 650 K

A. Tkatchenko, M. Rossi, V. Blum, J. Ireta, and M. Scheffler, Phys. Rev. Lett. 106, 118102 (2011)

Now what happens without van der Waals?

Kohtani et al., JACS **126**, 7420 (2004): "Extreme stability of an unsolvated helix" Ac-Ala₁₅-LysH⁺ α -helix is stable up to \approx 650 K

A. Tkatchenko, M. Rossi, V. Blum, J. Ireta, and M. Scheffler, Phys. Rev. Lett. 106, 118102 (2011)

Combinatorial explosion!

Can we tackle the conformational space of a 220-atom system? Combinatorial explosion!

Can we tackle the conformational space of a 220-atom system? Combinatorial explosion!

Helix, protonated C-terminus?

Can we tackle the conformational space of a 220-atom system? Combinatorial explosion!

Helix, protonated C-terminus?

Wei et al., JCP 126, 204307 (2007) Replica Exchange / Force Field

Peter Kupser, Gert von Helden, Frank Filsinger, Kevin Pagel, Gerard Meijer, Molecular Physics, FHI Berlin

Peter Kupser, Gert von Helden, Frank Filsinger, Kevin Pagel, Gerard Meijer, Molecular Physics, FHI Berlin

Peter Kupser, Gert von Helden, Frank Filsinger, Kevin Pagel, Gerard Meijer, Molecular Physics, FHI Berlin

Peter Kupser, Gert von Helden, Frank Filsinger, Kevin Pagel, Gerard Meijer, Molecular Physics, FHI Berlin

Ac-LysH⁺-Ala₁₉: Searching a huge conformational space

Marinari, Parisi, Europhys. Lett **19**, 451 (1992); U.H.E. Hansmann, Chem. Phys. Lett. **281**, 140 (1997); Y. Sugita, Y. Okamoto, Chem. Phys. Lett. **314**, 14 (1999); many others

Ac-LysH⁺-Ala₁₉: Searching a huge conformational space

But typical (even just to scan for structures): 100s of nanoseconds, O(10) trajectories → first principles??

Marinari, Parisi, Europhys. Lett **19**, 451 (1992); U.H.E. Hansmann, Chem. Phys. Lett. **281**, 140 (1997); Y. Sugita, Y. Okamoto, Chem. Phys. Lett. **314**, 14 (1999); many others

Coupling REMD & first principles:

Coupling REMD & first principles:

Coupling REMD & first principles:

Conformation prototypes vs. IRMPD: (1) Helical monomers

Theory-theory comparison, harmonic: <u>Ac-LysH⁺-Ala₁₉ \leftrightarrow Ac-Ala₁₉-LysH⁺</u>

Conformation prototypes vs. IRMPD: (1) Helical monomers

Theory-theory comparison, harmonic: <u>Ac-LysH⁺-Ala₁₉ \leftrightarrow Ac-Ala₁₉-LysH⁺</u>

Conformation prototypes vs. IRMPD: (1) Helical monomers

I) "Just helical" models: Need C-terminus proton. No Amide-II shift.

Conformation prototypes vs. IRMPD: (2) Helical dimers

2) "Best dimer" models: Plausible, but no Amide-II shift.

Conformation prototypes vs. IRMPD: (3) Any monomers

Upshot: Ac-Ala19-LysH⁺ vs. Ac-LysH⁺-Ala19

Ac-Ala₁₉-LysH⁺:

"Helix seeker" - Alanine likes helices, and proton at electrostatically favorable end

Upshot:Ac-Ala19-LysH⁺ vs.Ac-LysH⁺-Ala19

Ac-Ala₁₉-LysH⁺:

"Helix seeker" - Alanine likes helices, and proton at electrostatically favorable end

Ac-LysH⁺-Ala₁₉

"Frustrated helix seeker" - Alanine likes helices, but proton at "wrong" end

→ Mix of energetically similar "bent" helix segments that twist proton to "right" end of helix explains spectra!

Cold, not so dense world: Challenges

Hemoglobin ("Real" protein)

"Trivial": System sizes, simulation times -~100 picoseconds, ~1000 atoms is still low end

"Trivial": System sizes, simulation times -~100 picoseconds, ~1000 atoms is still low end

"Less trivial": Meaningful free energy based predictions beyond harmonic approximation

"Trivial": System sizes, simulation times -~100 picoseconds, ~1000 atoms is still low end

"Less trivial": Meaningful free energy based predictions beyond harmonic approximation

"Less trivial": "Coarse-grained" techniques to sample "rare events" without wasteful simulations

"Trivial": System sizes, simulation times -~100 picoseconds, ~1000 atoms is still low end

"Less trivial": Meaningful free energy based predictions beyond harmonic approximation

"Less trivial": "Coarse-grained" techniques to sample "rare events" without wasteful simulations

"Less trivial": Yet more accurate energies, but not (much) more expensive. GGA still barely good enough for ~few meV

"Trivial": System sizes, simulation times -~100 picoseconds, ~1000 atoms is still low end

"Less trivial": Meaningful free energy based predictions beyond harmonic approximation

"Less trivial": "Coarse-grained" techniques to sample "rare events" without wasteful simulations

"Less trivial":Yet more accurate energies, but not (much) more expensive. GGA still barely good enough for ~few meV

"Not trivial": Nuclei (esp. hydrogen) are not classical particles. Electronic excitations?

"Trivial": System sizes, simulation times -~100 picoseconds, ~1000 atoms is still low end

"Less trivial": Meaningful free energy based predictions beyond harmonic approximation

"Less trivial": "Coarse-grained" techniques to sample "rare events" without wasteful simulations

"Less trivial":Yet more accurate energies, but not (much) more expensive. GGA still barely good enough for ~few meV

"Not trivial": Nuclei (esp. hydrogen) are not classical particles. Electronic excitations?

Most of these sound suspiciously like "warm, (somewhat) dense" as well!

"Hopes:"

• Sound, accurate basis sets, elements 1-102

"Hopes:"

- Sound, accurate basis sets, elements 1-102
- Simple basic recipe, no implicit limit to all-electron accuracy by cutoff radii, pseudoization radii, etc.

"Hopes:"

- Sound, accurate basis sets, elements 1-102
- Simple basic recipe, no implicit limit to all-electron accuracy by cutoff radii, pseudoization radii, etc.
- Still "pretty compact" basis sets compared to possible alternatives

"Hopes:"

- Sound, accurate basis sets, elements 1-102
- Simple basic recipe, no implicit limit to all-electron accuracy by cutoff radii, pseudoization radii, etc.
- Still "pretty compact" basis sets compared to possible alternatives

Challenges:

S.B. Carroll, Science 316, 1427 (2007)

"Hopes:"

- Sound, accurate basis sets, elements 1-102
- Simple basic recipe, no implicit limit to all-electron accuracy by cutoff radii, pseudoization radii, etc.
- Still "pretty compact" basis sets compared to possible alternatives

Challenges:

• Many atoms per volume = high density of basis functions per volume.We suffer like all others.

S.B. Carroll, Science 316, 1427 (2007)
Warm, dense: "Hopes" and challenges

"Hopes:"

- Sound, accurate basis sets, elements 1-102
- Simple basic recipe, no implicit limit to all-electron accuracy by cutoff radii, pseudoization radii, etc.
- Still "pretty compact" basis sets compared to possible alternatives

Challenges:

- Many atoms per volume = high density of basis functions per volume.We suffer like all others.
- For very dense conditions, add basis functions for low-distance limit?

S.B. Carroll, Science 316, 1427 (2007)

Warm, dense: "Hopes" and challenges

"Hopes:"

- Sound, accurate basis sets, elements 1-102
- Simple basic recipe, no implicit limit to all-electron accuracy by cutoff radii, pseudoization radii, etc.
- Still "pretty compact" basis sets compared to possible alternatives

Challenges:

- Many atoms per volume = high density of basis functions per volume.We suffer like all others.
- For very dense conditions, add basis functions for low-distance limit?
- Are sums over high-lying states really the way?

S.B. Carroll, Science 316, 1427 (2007)

So where are we at?

- Sound, accurate basis sets, elements 1-102
- Basic numerical techniques for DFT Real-space integrals, Poisson equation, scalar relativity etc. (Becke, Delley, Baerends, <u>many</u> others)
- Non-periodic, periodic boundary conditions on exactly equal footing
- "Properties": Structure optimization, *ab initio* molecular dynamics, vibrations/phonons, spectroscopy, etc.
- LDA, GGA, van der Waals corrections, hybrid functionals, Hartree-Fock+MP2, RPA, *GW*, ...
- Massively parallel scalable eigensolver ELPA

So where are we at?

- Sound, accurate basis sets, elements 1-102
- Basic numerical techniques for DFT Real-space integrals, Poisson equation, scalar relativity etc. (Becke, Delley, Baerends, <u>many</u> others)
- Non-periodic, periodic boundary conditions on exactly equal footing
- "Properties": Structure optimization, *ab initio* molecular dynamics, vibrations/phonons, spectroscopy, etc.
- LDA, GGA, van der Waals corrections, hybrid functionals, Hartree-Fock+MP2, RPA, *GW*, ...
- Massively parallel scalable eigensolver ELPA

