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Overview

Exchange and Correlation (XC) in DFT
Introduction to finite temperature XC functionals
Confined and extended system results
Future work for finite temperature XC functionals
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Exchange and Correlation in DFT
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W. Kohn

DFT Basics

Hohenberg-Kohn (1964)

Kohn-Sham (1965)

, KS single particle equations
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D.M. Ceperley

 approximations

LDA (local density approximation)

Prior to 1980 approximate electron gas calculations:

RPA, high-low density interpolation, GW, local field corrections (i.e. STLS)

Post 1980 Ceperley-Alder QMC calculation parameterizations:

Vosko-Wilk-Nusair (1980) VWN

Perdew-Zunger (1981) PZ81

Perdew-Wang (1992) PW92

Exc
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J.P. Perdew

 approximations

Gradient expansions as proposed by Kohn-Sham implemented by several
others.
Often not better or worse than LDA results.

GGA (generalized gradient approximation)

Can include corrections beyond second order expansion
and enforce various constraints on XC.

Becke (1988) B88

Perdew-Wang (1991) PW91

Perdew-Burke-Ernzerhof (1996) PBE

Perdew's Jacob's Ladder...

Exc
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Extension to Finite Temperature

8 of 45



N.D. Mermin

Finite Temperature DFT

Mermin (1965) extension of Hohenberg-Kohn to finite temperature.
Development through the grand canonical ensemble.

KS scheme also applies
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 approximations - LDA

No finite temperature benchmarks equivalent to ground state QMC results.

Again interpolation and approximate theoretic methods are required.

Known  and High  limits
QMC and Debye-Hückel, respectively.

Useful thermodynamics
for the UEG

F xc

T = 0 T
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Exchange only F x
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 beyond LDA

Geldart (1993) has provided a closed form expression (in Fermi integrals) for
the first term in the finite temperature gradient expansion.

Developed in grand canonical ensemble, analgous to KS original proposal for
gradient expansion.

F x

(n,T ) = − [ − 3 ]Bx
πβ 2
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Finite temperature Correlation
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RPA

Originally calculated by Gupta and Rajagopal (1980), revised by Perrot and
Dharma-wardana (1984).

Linearized inversion for , direct inversion will differ.
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STLS type Dielectric

Finite temperature version of Singwi-Tosi-Land-Sjölander local field
corrections.

Calculated and fit by Ichimaru et. al. (1985)

After self-consistent solutions fit,
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2 ∑

l=−∞

∞ Φ(x,l)

1+(2Γt/πα )[1−G(x)]Φ(x,l)x 2

G(x) = − [S(y) − 1](1 + ln ) dy3
4 ∫

0

∞

y 2 −x 2 y 2

2xy
∣∣
x+y
x−y

∣∣

Γ = β/ , α = (4/9π , x = q/rs )1/3 qF

= [S(x) − 1] dx,εint Γ
παβ ∫

0

∞

(n,T ) =f xc
1
β ∫

0

Γ
dΓ
Γ (β )εint t

16 of 45



Classical Mapping

Idea is to map quantum variables to classical variables, for which classical
calculation results are equivalent/correct for the quantum system.

Perrot and Dharma-wardana realization through CHNC.

At , given density , the CHNC equations are solved with  which is
adjusted until  is found which produces the same  as the
benchmark QMC.

The CHNC calculation also produce pair distribution functions in good
agreement with the benchmarks, and are always non-negative.

For 

interpolates between 0 and high .

T = 0 n Tcf
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Exchange-correlation energy per electron for .

Approximately 5% difference at K from ground state.

= 1rs

T = 200000
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Exchange-correlation energy per electron for .

Approximately 2% difference at K from ground state.

= 0.5rs

T = 200000
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Exchange-correlation energy per electron for .

Approximately 50% difference at K from ground state.

= 5rs

T = 200000
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Not necessarily related to temperature dependence.

=vxc
∂(n )f xc

∂n
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Finite temperature Hartree-Fock

Mermin (1963) examined finite temperature Hartree-Fock, showing in the
grand ensemble that there is an ensemble of Slater determinants that
minimizes the Hartree-Fock free energy and provides an upper bound as at
zero temperature.

 with respective orbitals and 

Single particle equations
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Confined hydrogen
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Model Problem

Hard-wall rectangular parallelepiped containing a few (1-32) hydrogen
atoms, where fixed atomic positions are sampled.
Box size is from 1 au3 (Bohr3) to free limit (arbitrarily large).
Temperatures range from 0 to 300,000 K (0 → ≈ 26 eV)
Methods: Finite Temperature Hartree-Fock (FTHF) and Kohn-Sham density
functional theory (DFT).
Unique truncated Gaussian type orbital basis is employed.

8 Hydrogen atoms in cubic
arrangement of spacing 
confined within a hardwall
cube of side length .

a

L
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Truncated Gaussian Type Orbitals

Basis Requirements

Large number of orbitals for thermal occupation.
Matching of hardwall boundary condition.
Efficient calculation of electron repulsion integrals.

Cartesian Gaussians
truncated to match BCs.
Coefficients  and  set
by requiring continuity of
basis functions.

 is nucleus posistion.

a0 aL

=gnbox

[ (x) − (0)] 0 ≤ x ≤a0 gn gn x c
[ (x) − ( )] ≤ x ≤aL gn gn Lx x c Lx

(x) = (x −gn x c)
n e−α(x−xc)2

x c
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Results - Free Energy

 to  K.
 au; for simple cubic lattice

this corresponds to 

HF free energy is better approximated
by temperature dependent LDA
exchange functional.

T = 0 300000
a = 2.0

= 1.24.rs
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Comparison of previous with Geldart finite temperature exchange gradient
correction included.
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Free Energy Components

Entropic and kinetic terms contribute most to overall change in free energy,
but change in exchange free energy is not negligible.

At 300 kK  is 25% of  and 14% of .ΔF x ΔE ΔF

28 of 45



ftHF for solid Li
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Pseudopotentials

PPs are required, but must be specialized for WDM systems.

Issues are transferability to higher densities and temperatures.

Inclusion of more core orbitals in calculation is necessary.

All electron zero temperature calculations for clusters can benchmark PP
calculations.
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PP for Hartree-Fock

ftHF calculation will be for Li densities = 0.5 - 1.2 g/cc.
and temperatures up to 100 kK

This allows use of standard 1 electron PP

ρ

31 of 45



Li ftHF free energy results
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Li ftHF pressure results
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Finite temperature XC results
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Li  - LDA free energy

Free energy for ground state LDA and 3 ftXC LDA functionals.

F xc
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Li LDA pressure

Pressure results for bcc Li at 1
g/cc up to 100 kK. All
temperature dependent
functionals show about 5%
lowering of the pressure at 100
kK.
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ftXC beyond LDA

Consider the PBE functional for exchange and correlation.

Replace the uniform energy densities by the finite temperature versions.

The constraint based parameters of the ehancement factors are taken to be
temperature independent.

, ⟶ ,εx εc f x f c
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Pressure in MD

P = −PID
∂F int

∂V

=PID
N TkB
V
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Simple cubic hydrogen  g/cc.
Pressure and percent difference, for LDA and PBE.

Green is minimum percent difference and red is maximum, for functional.

= 1ρH
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Simple cubic hydrogen  g/cc.
Pressure and percent difference, for LDA and PBE.

Green is minimum percent difference and red is maximum, for functional.

= 2ρH
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Simple cubic hydrogen  g/cc.
Pressure and percent difference, for LDA and PBE.

Green is minimum percent difference and red is maximum, for functional.

= 4ρH
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Temperature dependent XC results for eigenvalues.

Simple cubic hydrogen  g/cc, .

64 atom Gamma point calculation with 500 bands.

= 0.981805ρH T = 95250K
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Temperature dependent XC QMD results.

Deuterium  g/cc, at .

64 atom Gamma point calculation.

= 1.96361ρD T = 95250, 125000K
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Summary and Outlook

Finite temperature exchange-correlation functionals are in infancy with
respect to ground state functions.
This is in part due to lack of high quality LDA data, and lack of benchmark
systems.
Finite temperature Hartree-Fock provides one means of benchmarks for
exchange, quantum chemistry post-HF procedures may provide
benchmarks for correlation.
Finite temperature functionals add no real additional cost to DFT methods.
High accuracy DFT calculations in warm dense matter will require
temperature dependent exchange-correlation functionals.

Thank You!
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