A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

Bei Wang1 Greg Miller2 Phil Colella3

1Princeton Institute of Computational Science and Engineering
Princeton University

2Department of Chemical Engineering and Materials Science
University of California at Davis

3Applied Numerical Algorithm Group
Lawrence Berkeley National Laboratory

Mathematical and Computer Science Approaches to High Energy Density Physics Workshop, IPAM
May 10, 2011
Outline

Background
 Vlasov equation
 Numerical methods for the Vlasov equation

Particle Methods
 The particle in cell method
 What is particle noise?

Noise Reduction: Phase-space Remapping
 Conservative, high order and positive remapping
 Mesh refinement

Numerical results
We consider a collisionless electrostatic plasma with two species, electron and ion, described by the Vlasov-Poisson equation.

Vlasov equation

\[
\frac{\partial f_e}{\partial t} + \mathbf{v} \cdot \nabla_x f_e + \mathbf{F} \cdot \nabla_v f_e = 0
\]

\[
\mathbf{F} = -\frac{q_e}{m_e} \mathbf{E}
\]

Poisson equation

\[
\rho = 1 - q_e \int_{\mathbb{R}^n} f_e d\mathbf{v}
\]

\[
\Delta \phi = -\rho \quad \mathbf{E} = -\nabla \phi
\]

\(f_e(\mathbf{x}, \mathbf{v}, t)\): the electron distribution function in phase space

\(\mathbf{F}(\mathbf{x}, t)\): Lorentz force (electrostatic case)

\(\mathbf{E}(\mathbf{x}, t)\): the self-consistent electrostatic field
Lagrangian description of the system

The distribution function f is conserved along the characteristics. At time s and t

$$f(X(t), V(t), t) = f(X(t_0), V(t_0), t_0)$$

where $(X(t), V(t))$ is the characteristics of the Vlasov equation:

$$\frac{dX}{dt} = V(t)$$
$$\frac{dV}{dt} = F(t)$$

where $X(t_0) = x_0$ and $V(t_0) = v_0$
Review of numerical methods: grid methods

1. Grid-based methods include spectral methods (Knorr 63, Armstrong 69, Flimas-Farrell 94), semi-Lagrangian methods (Cheng-Knorr 76, Sonnendrucker 99, Nakamura-Yabe 99), finite volume methods (Fijalkow 99, Filbet 01, Colella 11) and finite element methods (Zaki 88, Kilimas-Farrell 94).

2. They have drawn much attention in the past decade thanks to increasing processing power.
 - Advantage: Smooth representation of f
 - Disadvantage: High dimensions (up to 6) \rightarrow high computational cost (specifically memory)
Particle methods, e.g., the PIC method, are widely used and are preferred for high dimensions.

Advantages:
- Naturally adaptive, since particles only occupy spaces where the distribution function is not zero
- Simpler to implement, in particular in high dimensions

Disadvantages:
- particle noise → difficulties to get precise results in some cases, for example, in simulating the problems with large dynamic ranges
Particle methods

- In particle methods, we approximate the distribution function by a collection of finite-size particles

\[f(x, v, t) \approx \sum_k q_k \delta_{\epsilon_x}(x - \tilde{X}_k(t)) \delta_{\epsilon_v}(v - \tilde{V}_k(t)) \]

where \(q_k = f(x_i, v_i, 0) h_x h_v \)

\(\delta_{\epsilon_x}(y) = \frac{1}{\epsilon_x} u\left(\frac{y}{\epsilon_x}\right) \)

- At each time step, particles are transported along trajectories described by the equation of motion

\[\frac{dq_k}{dt} = 0 \]
\[\frac{d\tilde{X}_k}{dt} = \tilde{V}_k(t) \]
\[\frac{d\tilde{V}_k}{dt} = \tilde{F}_k(t) \]

where \(\tilde{X}_k(0) = x_k \) and \(\tilde{V}_k(0) = v_k \).
The PIC method

- Charge assignment:
 \[\tilde{\rho}(x_j, t^n) = \sum_k q_k \frac{u_1}{\varepsilon_x}(\frac{x_j - \tilde{X}_k(t^n)}{\varepsilon_x}) \]

 where \(j \) is the grid index.

- Field solver: i.e., FFTs or multigrid methods
 \[\frac{\phi_{j-1} - 2\phi_j + \phi_{j+1}}{\varepsilon_x^2} = \tilde{\rho}_j \]

 \[E_j = \frac{\phi_{j-1} - \phi_{j+1}}{2\varepsilon_x} \]

- Force interpolation:
 \[\tilde{E}(\tilde{X}_k, t^n) = \sum_j E_j u_1(\frac{x_j - \tilde{X}_k(t^n)}{\varepsilon_x}) \]
What is particle noise?

Particle noise: the numerical error introduced when evaluating the moments of the distribution function using particles in phase space and **the particle disorder induced by the numerical error**

Error analysis:

- Monte Carlo estimate (Aydemir 93)

\[
\text{error} \propto \frac{\sigma}{\sqrt{N}}
\]

where \(\sigma \) is the standard deviation depends on the particle sampling and the distribution function.

- The approach in vortex methods: consistency error + stability error (Cottet-Raviart 84):

\[
\text{error} \propto \text{consistency error} \times (\exp(at) - 1)
\]

where \(a \) is a physical parameter.
Error Analysis of the PIC method for the VP system

The charge density error is

\[
|\rho(x, t) - \bar{\rho}(x, t)| = |\rho(x, t) - \sum_k q_k \delta_{\varepsilon_x}(x - \tilde{X}_k(t))|
\]

\[
\leq \left| \rho(x, t) - \int_{\mathbb{R}} \rho(y, t) \delta_{\varepsilon_x}(x - y) dy \right|
\]

moment error: \(e_m(x, t) \propto \varepsilon_x^2\)

\[
+ \left| \int_{\mathbb{R}} \rho(y, t) \delta_{\varepsilon_x}(x - y) dy - \sum_k q_k \delta_{\varepsilon_x}(x - X_k(t)) \right|
\]

discretization error: \(e_d(x, t) \propto \varepsilon_x^2 \left(\frac{h_x}{\varepsilon_x} \right)^2\)

\[
+ \left| \sum_k q_k \delta_{\varepsilon_x}(x - X_k(t)) - \sum_k q_k \delta_{\varepsilon_x}(x - \tilde{X}_k(t)) \right|
\]

stability error: \(e_s(x, t) \propto \frac{1}{\varepsilon_x} \max_k |X_k - \tilde{X}_k|\)

\[
|E(x, t) - \bar{E}(x, t)| \propto \left(\varepsilon_x^2 + \varepsilon_x^2 \left(\frac{h_x}{\varepsilon_x} \right)^2 + \max_k |\tilde{X}_k(t) - X_k(t)| \right)
\]
By following Cottet and Raviart (84):

\[(\tilde{X}_k - X_k)(t) = \int_0^t (\tilde{V}_k - V_k)(t') dt'\]

and

\[(\tilde{V}_k - V_k)(t) = -\int_0^t \left((\tilde{E} - E)(\tilde{X}_k, t') + \frac{\partial E}{\partial x}(\tilde{X}_k - X_k)(t') \right) dt'\]
By using a variation on Gronwall’s inequality, we get

\[
\max_k (|X_k(t) - \tilde{X}_k(t)| + |V_k(t) - \tilde{V}_k(t)| + \|E - \tilde{E}(:, t)\|_{L^\infty})
\leq C_1 \left[\varepsilon_x^2 + \varepsilon_x^2 \left(\frac{h_x}{\varepsilon_x} \right)^2 \right]
\leq C_1 \left[\underbrace{\varepsilon_x^2 + \varepsilon_x^2 \left(\frac{h_x}{\varepsilon_x} \right)^2}_{e_c(x,t)} + \underbrace{e_s(x,t) \left(\exp(at) - 1 \right)}_{e_s(x,t)} \right]
\]

where \(a\) is \(\max(1, \| \frac{\partial E}{\partial x}(:, t) \|_{L^\infty})\), but not \(\varepsilon_x\) and \(h_x\).

Requirements for Convergence

- Particle overlapping: \(\frac{h_x}{\varepsilon_x} \leq 1\)
- Particle regularization: control the exponential-like term

ref: Cottet-Raviart 84 and Wang, Miller, Colella 11
Options if we want to reduce particle noise

- **Perturbative methods, such as the δf method** (Kotschenreuther 88, Dimits-Lee 93, Parker-Lee 93): discretize the perturbation with respect to a (local) Maxwellian in velocity space using particles

 \Rightarrow reduce σ (error $\propto \frac{\sigma}{\sqrt{N}}$)

- **Our approach: remapping**: remap the distorted charge distribution on regularized grid(s) in phase space and then create a new set of particle charges from the grids with regularized distribution

 \Rightarrow reduce exponential term
Conservative remapping on phase space \((x, v)\)

Particle charges are remapped (interpolated) to a grid in phase space

\[q_i = q_k u\left(\frac{x_k - x_{i_x}}{h_x}\right) u\left(\frac{v_k - v_{i_v}}{h_v}\right) \]

Total charge and momentum are conserved if the interpolation function \(u\) satisfies

\[
\sum_{i \in \mathbb{Z}} u\left(\frac{x-x_i}{h}\right) = 1 \\
\sum_{i \in \mathbb{Z}} x_i u\left(\frac{x-x_i}{h}\right) = x
\]
High order interpolation

A modified B-spline by Monaghan (85)

\[u_2(y) = \begin{cases}
1 - \frac{5|y|^2}{2} + \frac{3|y|^3}{2} & 0 \leq |y| \leq 1 \\
\frac{1}{2}(2 - |y|)^2(1 - |y|) & 1 < |y| \leq 2 \\
0 & \text{otherwise}
\end{cases} \]

\(u_2 \) can approximate a quadratic function exactly (error is \(O(h^3) \)). Moreover, its first and second order derivatives are continuous.
Positivity for high order interpolation functions

Algorithm: Global mass redistribution based on flux corrected transport (Zalesak 78)

Treat interpolation as advection

\[f_{i}^{n+1} = f_{i}^{n} + \nabla \cdot F \]

\[f_{i}^{n+1} = \sum_{k} q_{k} \frac{1}{h x h v} u_{1 |2}(\frac{x_{i} - x_{k}}{h}) \]

\[f_{i}^{n} = \sum_{k} q_{k} \frac{1}{h x h v} u_{0}(\frac{x_{i} - x_{k}}{h}) \]

Obtain the flux by solving a Poisson equation \(\nabla \cdot F = f_{i}^{n+1} - f_{i}^{n} \)

Define a low order flux \(F^{lo} \) and a high order flux \(F^{hi} \) as being using a low order \(u_{1} \) and a high order \(u_{2} \) interpolation.

Correct the low interpolation value by using the idea of FCT.
Algorithm: Local mass redistribution by Chern-Colella (87)

We redistribute the undershoot of cell i

$$
\delta f_i = \min(0, f_i^n)
$$

to neighboring cells in proportion to their capacity ξ

$$
\xi_{i+\ell} = \max(0, f_{i+\ell}^n)
$$

The distribution function is conserved, which fixes the constant of proportionality

$$
f_{i+\ell}^{n+1} = f_{i+\ell}^n + \frac{\xi_{i+\ell}}{\sum_{\ell' \neq 0} \xi_{i+\ell'}} \delta f_i
$$
Mesh refinement

Motivation: Remapping creates too many small strength particles at the edge of the distribution function.

Algorithm: Interpolate as in uniform grid first, then transfer the charge from invalid cells to valid cells.

The valid deposit cells: filled circles The invalid cell: open circles
Introduction collision term

1. Remapping provides an opportunity to integrate collision models with a grid-based solver.
2. Example: simplified Fokker-Planck equation suggested by Rathmann and Denavit (75)

\[
\left(\frac{\partial f}{\partial t} \right)_c = \nabla_v \cdot [\nu vf + D\nabla_v (\nu f)]
\]

where \((\nu, D)\) are constants.

- Discretize it using a finite volume discretization and a second order \(L_0\) stable, implicit scheme
- Solve the matrix system using multigrid method
- Couple it with the Vlasov equation with operator splitting

\[
\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial x} - E \cdot \frac{\partial f}{\partial v} = \left(\frac{\partial f}{\partial t} \right)_c
\]
1D Vlasov-Poisson: linear Landau damping

The initial distribution of linear Landau damping is

\[f_0(x, v) = \frac{1}{\sqrt{2\pi}} \exp(-v^2/2)(1 + \alpha \cos(kx)) \]

where \(\alpha = 0.01 \), \(k = 0.5 \), \(L = 2\pi/k \).

The evolution of the amplitude of the electric field: exponential decay with rate \(\gamma = -0.1533 \)

![Graph](image1)

\[\text{w/o remapping} \]

particle number: 960

CPU times: 3.99 seconds

![Graph](image2)

\[\text{w/ remapping} \]

particle number: 960-1,539

CPU times: 5.21 seconds
1D Vlasov-Poisson: linear Landau damping

\[\gamma = -0.1533 \]

- **w/o remapping**
 - Particle number: 60,416
 - CPU times: 141.60 seconds

- **w/ remapping**
 - Particle number: 1,539
 - CPU times: 5.21 seconds
1D Vlasov-Poisson: the two stream instability

The initial distribution of the two stream instability is

\[f_0(x, v) = \frac{1}{\sqrt{2\pi}} v^2 \exp(-v^2/2)(1 + \alpha \cos(kx)) \]

where \(\alpha = 0.05, k = 0.5, L = 2\pi/k \).

The evolution of \(f(x,v,t) \)

\[\text{w/o remapping, particle number: 18,360} \quad \text{w/ remapping, particle number: 18,360-24,242}\]
1D Vlasov-Poisson: the two stream instability

Comparison of $f(x, v, t)$ at the same instant of time $t = 20$

w/o remapping $\max_c = 1.740$ vs. $\max_e = 0.3$

w/ remapping $\max_c = 0.3082$ vs. $\max_e = 0.3$
1D Vlasov-Poisson: the two stream instability

E field Errors and convergence rates

w/o remapping

w/ remapping
1D Vlasov-Poisson-Fokker-Planck: the two stream instability

The evolution of $f(x,v,t)$

Simulation w/o (left) and w/ (right) collision at $t=30$
The initial distribution of linear Landau damping in 2D is

\[f_0(x, y, v_x, v_y) = \frac{1}{2\pi} \exp\left(-\frac{(v_x^2 + v_y^2)}{2}\right)(1 + \alpha \cos(kx) \cos(ky)) \]

where \(\alpha = 0.05, k = 0.5, L = \frac{2\pi}{k}. \)

The evolution of the electric energy \(\xi_e \): exponential decay with constant rate \(\gamma \)

Without remapping, particle number: 1,228,800

With remapping, particle number: 1,228,800-1,835,008
2D Vlasov-Poisson: the two stream instability

The initial distribution for the two stream instability in 2D is

\[f_0(x, y, v_x, v_y) = \frac{1}{12\pi} \exp\left(-\frac{v_x^2 + v_y^2}{2}\right)(1 + \alpha \cos(k_x x))(1 + 5v_x^2) \]

where \(\alpha = 0.05 \), \(k_x = 0.5 \), \(L = 2\pi/k \).

Comparison of projected distribution function in \((x, v_x)\) at time \(t = 20 \)

\[\begin{array}{c}
\text{w/o remapping, particle number: 14,408,192} \\
\text{w/ remapping particle number: 14,408,192-22,184,217}
\end{array} \]
The parallel and multidimensional Vlasov-Poisson solver is implemented using Chombo framework, a C/C++ and FORTRAN library for the solutions of partial differential equations on a hierarchy of block-structured grid with finite difference methods developed in the ANAG group of LBNL.

- The physical domain is decomposed into patches
- Each patch is assigned to a processor
- Particles are assigned to a processor according to their physical position
- Particles are transferred between patches using MPI

Continuous work in ANAG: scalable multidimensional particle in cell code with remapping
Future Work

- Adaptivity on creating a hierarchy of grids for remapping
- Apply the method to magnetic fusion plasmas, e.g., gyrokinetic particle in cell method
- Parallel scalability
- GPU acceleration of remapping
Thank you!

Questions?