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The Vlasov-Poisson equation

We consider a collisionless electrostatic plasma with two species,
electron and ion, described by the Vlasov-Poisson equation

Vlasov equation

∂fe
∂t

+ v · ∇xfe + F · ∇vfe = 0

F = − qe
me

E

Poisson equation

ρ = 1− qe

∫
Rn

fedv

∆φ = −ρ E = −∇φ

fe(x, v, t): the electron distribution function in phase space
F(x, t): Lorentz force (electrostatic case)
E(x, t): the self-consistent electrostatic field



Lagrangian description of the system

The distribution function f is conserved along the characteristics.
At time s and t

f (X(t),V(t), t) = f (X(t0),V(t0), t0)

where (X(t),V(t)) is the characteristics of the Vlasov equation:

dX

dt
= V(t)

dV

dt
= F(t)

where X(t0) = x0 and V(t0) = v0



Review of numerical methods: grid methods

1. Grid-based methods include spectral methods (Knorr 63,
Armstrong 69, Flimas-Farrell 94), semi-Lagrangian methods
(Cheng-Knorr 76, Sonnendrucker 99, Nakamura-Yabe 99),
finite volume methods (Fijalkow 99, Filbet 01, Colella 11) and
finite element methods (Zaki 88, Kilimas-Farrell 94).

2. They have drawn much attention in the past decade thanks to
increasing processing power.

I Advantage: Smooth representation of f
I Disadvantage: High dimensions (up to 6) −→ high

computational cost (specifically memory)



Review of numerical methods: particle methods

Particle methods,e.g.,the PIC method,are widely used and are
preferred for high dimensions.
Advantages:

I Naturally adaptive, since particles only occupy spaces where
the distribution function is not zero

I Simpler to implement, in particular in high dimensions

Disadvantages:

I particle noise −→ difficulties to get precise results in some
cases, for example, in simulating the problems with large
dynamic ranges



Particle methods
I In particle methods, we approximate the distribution function by a collection of

finite-size particles

f (x , v , t) ≈
∑
k

qkδεx (x − X̃k (t))δεv (v − Ṽk (t))

qk = f (xi , vi , 0)hxhv

where X̃k (0) = xi , Ṽk (t) = vi .∫ ∞
−∞

δεx (y)dy = 1

δεx (y) =
1

εx
u(

y

εx
)
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I At each time step, particles are transported along trajectories described by the
equation of motion

dqk

dt
= 0

dX̃k

dt
= Ṽk (t)

dṼk

dt
= F̃ k (t)

where X̃k (0) = xk and Ṽk (0) = vk .



The PIC method

I Charge assignment:

ρ̃(xj , t
n) =

∑
k

qk

εx
u1(

xj − X̃k (tn)

εx
)

where j is the grid index.

I Field solver: i.e., FFTs or multigrid methods

φj−1 − 2φj + φj+1

εx 2
= ρ̃j

Ej =
φj−1 − φj+1

2εx

I Force interpolation:

Ẽ(X̃k , t
n) =

∑
j

Eju1(
xj − X̃k (tn)

εx
)



What is particle noise?

Particle noise: the numerical error introduced when evaluating the
moments of the distribution function using particles in phase space
and the particle disorder induced by the numerical error
Error analysis:

I Monte Carlo estimate (Aydemir 93)

error ∝ σ√
N

where σ is the standard deviation depends on the particle sampling and the

distribution function.

I The approach in vortex methods: consistency error + stability
error (Cottet-Raviart 84):

error ∝ consistency error × (exp(at)− 1)

where a is a physical parameter.



Error Analysis of the PIC method for the VP system

The charge density error is

|ρ(x , t)− ρ̃(x , t)| = |ρ(x , t)−
∑
k

qkδεx (x − X̃k (t))|

≤
∣∣∣∣ρ(x , t)−

∫
R
ρ(y , t)δεx (x − y)dy

∣∣∣∣︸ ︷︷ ︸
moment error:em(x,t)∝ε2

x

+

∣∣∣∣∣
∫
R
ρ(y , t)δεx (x − y)dy −

∑
k

qkδεx (x − Xk (t))

∣∣∣∣∣︸ ︷︷ ︸
discretization error:ed (x,t)∝εx 2( hx

εx
)
2

+

∣∣∣∣∣∑
k

qkδεx (x − Xk (t))−
∑
k

qkδεx (x − X̃k (t))

∣∣∣∣∣︸ ︷︷ ︸
stability error:es (x,t)∝ 1

εx
maxk |Xk−X̃k |

|E(x , t)− Ẽ(x , t)| ∝
(
εx

2 + εx
2

(
hx

εx

)2

+ max
k
|X̃k (t)− Xk (t)|

)



By following Cottet and Raviart (84):

(X̃k − Xk )(t) =

∫ t

0
(Ṽk − Vk )(t′)dt′

and

(Ṽk − Vk )(t) = −
∫ t

0

(
Ẽ(X̃k , t

′)− E(Xk , t
′)
)
dt′

= −
∫ t

0

(
(Ẽ − E)(X̃k , t

′) +
(
E(X̃k , t

′)− E(Xk , t
′)
))

dt′

= −
∫ t

0

(
(Ẽ − E)(X̃k , t

′) +
∂E

∂x
(X̃k − Xk )(t′)

)
dt′



By using a variation on Gronwall’s inequality, we get

max
k

(|Xk (t)− X̃k (t)|+ |Vk (t)− Ṽk (t)|+
∥∥∥E − Ẽ(·, t)

∥∥∥
L∞

)

≤ C1

εx 2 + εx
2(

hx

εx
)

2

︸ ︷︷ ︸
ec (x,t)

+

(
εx

2 + εx
2(

hx

εx
)2

)
(exp(at)− 1)︸ ︷︷ ︸

es (x,t)


where a is max(1,

∥∥∥ ∂E
∂x

(·, t)
∥∥∥
L∞

), but not εx and hx .

Requirements for Convergence

I Particle overlapping: hx
εx
≤ 1

I Particle regularization: control the exponential-like term

ref: Cottet-Raviart 84 and Wang,Miller,Colella 11



Options if we want to reduce particle noise

I Perturbative methods, such as the δf method
(Kotschenreuther 88, Dimits-Lee 93, Parker-Lee 93):
discretize the perturbation with respect to a (local)
Maxwellian in velocity space using particles

⇒ reduce σ ( error ∝ σ√
N

)

I Our approach: remapping: remap the distorted charge
distribution on regularized grid(s) in phase space and then
create a new set of particle charges from the grids with
regularized distribution

⇒ reduce exponential term



Conservative remapping on phase space (x, v)

Particle charges are remapped (interpolated) to a grid in phase
space

qi = qku(
xk − xix

hx
)u(

vk − viv
hv

)
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Total charge and momentum are conserved if the interpolation
function u satisfies ∑

i∈Z u( x−xih ) = 1∑
i∈Z xiu( x−xih ) = x



High order interpolation

A modified B-spline by Monaghan (85)

u2(y) =


1− 5|y |2

2 + 3|y |3
2 0 ≤ |y | ≤ 1

1
2 (2− |y |)2(1− |y |) 1 < |y | ≤ 2

0 otherwise
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u2 can approximate a quadratic function exactly (error is O(h3)).
Moreover, its first and second order derivatives are continuous.



Positivity for high order interpolation functions
Algorithm: Global mass redistribution based on flux corrected
transport (Zalesak 78)
Treat interpolation as advection

f n+1
i = f ni +5 · F

f n+1
i =

∑
k

qk
1

hxhv
u1|2(

∣∣∣∣xi − xk
h

∣∣∣∣) f ni =
∑
k

qk
1

hxhv
u0(

∣∣∣∣ xi − xk
h

∣∣∣∣)
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Obtain the flux by solving a Poisson equation 5 · F = f n+1
i − f ni

Define a low order flux Flo and a high order flux Fhi as being using
a low order u1 and a high order u2 interpolation.
Correct the low interpolation value by using the idea of FCT



Positivity for high order interpolation functions

Algorithm: Local mass redistribution by Chern-Colella (87)
We redistribute the undershoot of cell i

δfi = min(0, f ni )

to neighboring cells in proportion to their
capacity ξ

ξi+` = max(0, f ni+`)

The distribution function is conserved,
which fixes the constant of proportionality

f n+1
i+` = f ni+` +

ξi+`

neighbors∑
`′ 6=0

ξi+`′

δfi

Cell with Negative Charge

Neighboring Cells

`

i



Mesh refinement

Motivation: Remapping creates too many small strength particles
at the edge of the distribution function.
Algorithm: Interpolate as in uniform grid first, then transfer the
charge from invalid cells to valid cells

Ω`+1
c

Ω`
c

Particle is at the coarser level side

Ω`+1
c

Ω`
c

Particle is at the finer level side

The valid deposit cells: filled circles The invalid cell: open circles



Introduce collision term

1. Remapping provides an opportunity to integrate collision
models with a grid-based solver.

2. Example: simplified Fokker-Planck equation suggested by
Rathmann and Denavit (75)

(
∂f

∂t
)c = ∇v · [νvf + D∇v (νf )]

where (ν,D) are constants.

I Discretize it using a finite volume discretization and a second
order L0 stable, implicit scheme

I Solve the matrix system using multigrid method
I Couple it with the Vlasov equation with operator splitting

∂f

∂t
+ v ·

∂f

∂x
− E ·

∂f

∂v
= (

∂f

∂t
)c

N+1
t

N+1/2N

R R+C

PIC

R



1D Vlasov-Poisson: linear Landau damping

The initial distribution of linear Landau damping is

f0(x , v) =
1
√

2π
exp(−v2/2)(1 + α cos(kx))

where α = 0.01, k = 0.5, L = 2π/k.

The evolution of the amplitude of the electric field: exponential decay with rate
γ = −0.1533
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1D Vlasov-Poisson: linear Landau damping
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1D Vlasov-Poisson: the two stream instability

The initial distribution of the two stream instability is

f0(x , v) =
1
√

2π
v2exp(−v2/2)(1 + α cos(kx))

where α = 0.05, k = 0.5, L = 2π/k.

The evolution of f(x,v,t)

w/o remapping, particle number: 18,360 w/ remapping, particle number: 18,360-24,242



1D Vlasov-Poisson: the two stream instability

Comparison of f (x , v , t) at the same instant of time t = 20

w/o remapping maxc = 1.740 vs. maxe = 0.3 w/ remapping maxc = 0.3082 vs. maxe = 0.3



1D Vlasov-Poisson: the two stream instability

E field Errors and convergence rates
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1D Vlasov-Poisson-Fokker-Planck: the two stream
instability

The evolution of f(x,v,t)

Simulation w/o (left) and w/ (right) collision at t=30



2D Vlasov-Poisson:linear Landau damping

The initial distribution of linear Landau damping in 2D is

f0(x , y , vx , vy ) =
1

2π
exp(−(v2

x + v2
y )/2)(1 + α cos(kx) cos(ky))

where α = 0.05, k = 0.5, L = 2π/k.

The evolution of the electric energy ξe : exponential decay with constant rate γ

-20

-18

-16

-14

-12

-10

-8

-6

 0  2  4  6  8  10  12  14  16

lo
g(

ξ e
)

t

γ
without remapping, hx=L/32, hvx

=hmax/16

w/o remapping, particle number: 1,228,800

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

 0  2  4  6  8  10  12  14  16

lo
g(

ξ e
)

t

γ
with remapping, hx=L/32, hvx

=hmax/16

w/ remapping, particle number: 1,228,800-1,835,008



2D Vlasov-Poisson: the two stream instability

The initial distribution for the two stream instability in 2D is

f0(x , y , vx , vy ) =
1

12π
exp(−(v2

x + v2
y )/2)(1 + α cos(kxx))(1 + 5v2

x )

where α = 0.05, kx = 0.5, L = 2π/k.

Comparison of projected distribution function in (x , vx ) at time t = 20

w/o remapping, particle number: 14,408,192 w/ remapping particle number: 14,408,192-22,184,217



Code implementation

The parallel and multidimensional Vlasov-Poisson solver is
implemented using Chombo framework, a C/C++ and FORTRAN
library for the solutions of partial differential equations on a
hierarchy of block-structured grid with finite difference methods
developed in the ANAG group of LBNL.

I The physical domain is decomposed into patches

I Each patch is assigned to a processor

I Particles are assigned to a processor according to their
physical position

I Particles are transferred between patches using MPI

Continuous work in ANAG: scalable multidimensional particle in
cell code with remapping



Future Work

I Adaptivity on creating a hierarchy of grids for remapping

I Apply the method to magnetic fusion plasmas, e.g.,
gyrokinetic particle in cell method

I Parallel scalability

I GPU acceleration of remapping



Thank you!

Questions?
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