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Presentation Outline 
  Derivation of the Multi-Fluid Plasma Model 

–  Moments of Boltzmann Eq. (5M or 13M systems) 
–  Eigenvalues and timescales of the model 
–  Collision terms for scattering & reacting interactions 

  Context for the Model: Relation to MHD & Kinetic Models 
–  Asymptotic approximations & modification of dispersion relations 

  Computational Solution Methods 
–  Balance law form of governing equations, approx. Riemann fluxes 
–  Finite Volume & Finite Element spatial discretizations 
–  Addressing divergence errors in Maxwell’s equations 
–  Non-reflecting open boundary conditions 

  Applications of Multi-Fluid Plasma Code 
–  Benchmarking to analytical dispersion, GEM challenge, & UQ 
–  Drift instabilities in Z-pinches & FRCs, experiment anomalous resistivity 
–  Sheath formation dynamics in plasma generation 
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Discrete model accounting for each constituent particle is not particularly 
useful for the mathematical treatment of realistic plasmas. Instead an 
average is performed to give a statistical description. 

Plasmas may be most accurately modeled using kinetic theory, 
distribution functions, fs(x, v, t), governed by a Boltzmann equation 

Derivation of the multi-fluid plasma model 
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     for each plasma species s, e.g. i+, e-, n, and Maxwell’s equations. 

However, the model fills six dimensional space. 

Simpler plasma models are generated by taking moments over velocity 
space of the Boltzmann equation and the distribution function for each 
species, which gives the Multi-Fluid Plasma model. 
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The principal fluid variables for each species are derived by computing 
moments of the distribution functions as 

Principal variables for the multi-fluid plasma model 

5M model evolves variables: Eqs.(1,2) & tensor contraction of Eq.(3). 
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13M model evolves variables: Eqs.(1,2,3) & tensor contraction of Eq.(4). 

All variables with a physical meaning are retained in the 13M model.* 

* H. Grad, CPAM 2 (1949) 
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The governing equations that evolve the principal fluid variables are 
derived by computing moments of the Boltzmann equation as 

Governing equations for the multi-fluid plasma model 

Assuming appropriate smoothness properties of fs and manipulating the 
integrals gives the governing equation for evolving the moment 
variable, term A. 
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Each moment of the Boltzmann equation gives an equation for the 
moment variable given by term A, and introduces the next higher 
moment variable given by term B. 

Closure Problem: System of equations is truncated by relating higher 
moment variables to lower moment variables. 
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Multi-fluid plasma model expressed in balance law form* 
The governing equations for the multi-fluid plasma model can be 

expressed in balance law form with divergence fluxes and sources. 
The 5M equations are 

The fluids are coupled to each other and to the electromagnetic fields 
through Maxwell’s equations and interaction source terms. 

where the total energy is 

* e.g., Shumlak & Loverich, JCP 187 (2003); Hakim & Shumlak, PoP 14 (2007) 
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Multi-fluid plasma model expressed in balance law form 
The 13M model equations have a more complicated form.* 

where the reduced fourth moment is defined as 
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* Torrilhon, CCP 7 (2009); Hakim, JFE 27 (2008); Gilliam (2011) 
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Multi-fluid plasma model expressed in balance law form 
The 13M model equations have a more complicated form.* 

The equations describe the evolution of the 13M variables: density, 
momenta, pressure tensor, heat flux. 

where the reduced fourth moment is defined as 

* Torrilhon, CCP 7 (2009); Hakim, JFE 27 (2008); Gilliam (2011) 
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Maxwell’s equations govern the evolution of the electromagnetic fields. 
The evolution of the electromagnetic fields is coupled to the fluids 
through source terms for current density and charge density. 

Field evolution is governed by full Maxwell’s equations. 

In addition to these time-dependent equations, two divergence equations 
(involutions) must also be satisfied. 
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Combining the governing equations for the fluids with full Maxwell’s 
equations yields the ideal multi-fluid plasma model. The fluid 
equations can be expressed as 

Time scales of the multi-fluid plasma model 
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The flux Jacobian,                      , is computed and analyzed to give the 
system’s eigenvalues, which demonstrates the system is weakly 
hyperbolic – real, but repeated, eigenvalues with a complete set of 
eigenvectors. 

 For example, the eigenvalues for the two-fluid plasma model (ions, 
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Combining the fluid eigenvalues with the characteristics of Maxwell’s 
equations and the source terms provides the characteristic speeds 
and frequencies, and thereby the time scales. 

L/ui, L/ue, L/vTi, L/vA, L/vTe, L/c , 1/ωci , 1/ωce , 1/ωpi , 1/ωpe , τeq 

 

 

Time scales of the multi-fluid plasma model 

Time Scales (s) Lab Plasma, FRC F Region 

1/ωpe  5×10-14 6×10-8 

L/c  3×10-9 7×10-2 

1/ωci  10-8 4×10-3 

L/vA 10-5 3×101 

L/vTi 4×10-5 104 

τeq 10-3 105 

Large separation of physical time scales makes the equation system stiff. 
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Collisions appear as source terms of fluid equations 
Including scattering and reacting collisions (ionization, recombination, 

charge exchange) introduces additional source terms that couple the 
fluids. The governing equations for the electron fluid for an interacting 
three-fluid model (electron, ion, neutral) becomes* 
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Context for the multi-fluid plasma model 
The only approximation made in the multi-fluid plasma model is local 

thermodynamic equilibrium of each fluid but not with the other fluids, 
which allows 

The model consists of governing equations for density, momentum, and 
energy for electrons and ions. 

Maxwell’s equations complete model. Finite speed of light is included. 

Fluids interact through electromagnetic fields and collisions. 

Fields are affected by the fluids (currents and charge separations). 

Assuming only two fluids, averaging the two fluids, and applying 
simplifying assumptions yield the single-fluid MHD model. 

–  low frequency, zero electron mass, zero Larmor radius, zero 
Debye length, zero skin depth 
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Relation between two-fluid and MHD plasma models 
With no loss of generality, the two-fluid equations can be combined to 

describe a single (center of mass) fluid and a relative drift motion 
between the fluids, for example, a fluid velocity and current density. 
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The represents no loss of generality. Asymptotic approximations are often 
then applied. 

Zero electron inertia: 

Infinite speed of light: 

    !"B = µ
0
j

This yields the Hall-MHD model. (Additional simplifications give resistive 
MHD and ideal MHD.) 
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For propagation along the magnetic field, the two-fluid plasma model 
includes right-hand and left-hand circularly polarized waves, including 
a lower frequency branch. 

Ion waves are also captured in the model. 

Two-fluid plasma model supports many waves 
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Two-fluid plasma model must resolve plasma frequency and light 
propagation. Asymptotic approximations (me  0, c  ∞) simplify two-
fluid model and yield Hall-MHD model.* At low frequency and long 
wavelength, Hall MHD dispersion relation matches two-fluid model. 

Two-fluid plasma model supports many waves 

* Srinivasan & Shumlak, PoP 18 (2011) 
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Two-fluid plasma model must resolve plasma frequency and light 
propagation. Asymptotic approximations (me  0, c  ∞) simplify two-
fluid model and yield Hall-MHD model.* At low frequency and long 
wavelength, Hall MHD dispersion relation matches two-fluid model. 

Approximations simplify the model, but lead to difficulty 

Hall MHD wave misses resonance, diverges from two-fluid wave. Wave 
velocities approach infinity. System becomes mathematically stiff. 
Dissipation (hyper-resistivity) is required for stability (truncate k). 

* Srinivasan & Shumlak, PoP 18 (2011) 
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The governing equations for the ideal multi-fluid plasma model can be 
expressed as 

Solution methods for the multi-fluid plasma model 
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Using the eigensystem of the flux Jacobian, an upwind flux can be 
constructed as an approximate Riemann solver.* 
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*  Roe, JCP 43 (1981); Shumlak & Loverich, JCP 187 (2003) 

Limiters can be applied to the second term to result in second-order 
accurate fluxes. 

A finite volume scheme can be constructed to solve the equation system. 
However, the source terms must be tightly coupled to the hyperbolic 
fluxes. Source splitting or implicit methods can be used. 
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The solution vector is expanded using a set of basis functions as 

Higher order solution methods using finite elements 
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The governing equation is then projected using a Galerkin method as 

Integrating by parts and applying the divergence theorem gives 
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This equation is valid in general but is inconvenient for realistic, 
complicated geometrical domains. Instead, the domain is divided into 
finite elements and the integral equation is applied to each element 
with some assumption of continuity at the element boundaries. 
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If the solution is assumed to be continuous (C0), the fluxes are 
automatically continuous, and the result is the usual finite element 
method. 

Level of continuity between the finite elements 
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Problem: Spurious oscillations occur at discontinuities (shocks) for 
hyperbolic systems.   Not suitable for many plasma simulations. 

During assembly of the global system for the simultaneous solution for 
all      , the boundary integral term cancels everywhere except at the 
domain boundaries. Volume integrals are evaluated by quadrature. 

The finite element method works well for many elliptic and parabolic 
systems on complicated geometries. 
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If the solution is allowed to be discontinuous, but with continuous fluxes
(C-1), which is the only featured required by the conservation law, the 
resulting system is the discontinuous Galerkin method.* 

Level of continuity between the finite elements 
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Fluxes for the surface integral are again evaluated using an upwind 
method such as an approximate Riemann solver with solution values 
on either side of the interface. 
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Limiting is often accomplished by 
locally reducing expansion order. 

Time is advanced with a 3rd order 
TVD, Runge-Kutta method. 

* Cockburn et al., MC 52 (1989); Loverich et al., CCP 9 (2011) 
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Application/comparison to electromagnetic plasma shock 

* Brio & Wu, JCP 75 (1988) 

This is a two-fluid plasma model generalization of the MHD shock problem.* 
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Application/comparison to electromagnetic plasma shock 



Uri Shumlak, shumlak@uw.edu 

Application/comparison to electromagnetic plasma shock 
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Application/comparison to electromagnetic plasma shock 
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Application/comparison to electromagnetic plasma shock 
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Application/comparison to electromagnetic plasma shock 
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Fast wave analysis in the electromagnetic plasma shock 
The wave vector is perpendicular to the discontinuity and parallel to 

the longitudinal magnetic field,           . 

The plasma dispersion relation for this case yields the left and right 
circularly polarized waves (L mode and R mode), in addition to the 
slower Alfven waves. 

 

 

The low frequency portion of the lower branch of the R mode is the 
whistler wave. 
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Application/comparison to electromagnetic plasma shock 
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Application/comparison to electromagnetic plasma shock 
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Two-fluid plasma model spans the physical space beyond MHD. Physical 
scales and speeds are fundamental to the model: rL, λD, cse, csi, c 

The algorithm captures expected behavior in the limits: MHD (rL = 0, λD = 0, 
c = ∞) or neutral gas (rL = ∞, λD = ∞). Electron effects → plasma waves. 

Two-fluid plasma model captures expected waves* 

*  Shumlak & Loverich, JCP 187 (2003) 
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As mentioned earlier, a motivation for high order accuracy is the unsplit 
coupling of the hyperbolic fluxes and the source terms. 

This is demonstrated by the propagation of electrostatic ion cyclotron 
waves and by equilibrium calculations. 

The electrostatic ion cyclotron wave is a dispersive wave that results from 
adding a source term to the Euler equations. The momentum equation 
becomes 

Motivation for higher order accuracy 

This problem has an analytical solution of 
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High-order, discontinuous Galerkin accurately captures the detailed 
spatial structure of plasma dynamics without large computational grids. 

DG solutions are compared to second-order wave propagation solutions 
for electrostatic ion cyclotron waves (dispersive waves). 

DG improves accuracy for equivalent resolution.* 

The effective resolution 
(defined as the number 
of unknowns) is held 
approx. constant. 

The benefit of using high-
order is evident. 

* Srinivasan, Hakim, & Shumlak, CCP 10 (2011) 
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High-order, discontinuous Galerkin accurately captures the detailed 
spatial structure of plasma dynamics without large computational grids. 

DG solutions are compared to second-order wave propagation solutions 
for electrostatic ion cyclotron waves (dispersive waves). 

DG improves accuracy for equivalent resolution.* 

The wave propagation 
method introduces a 
phase shift for the 
same effective 
resolution. 

* Srinivasan, Hakim, & Shumlak, CCP 10 (2011) 

    !n
2 = k

n
2c

s
2 + !

c
2



Uri Shumlak, shumlak@uw.edu 

Plasmas are often strongly magnetized which produces strongly 
anisotropic transport properties. One example is thermal conductivity 
which can have parallel to perpendicular conductivities of 106. 

We investigate the ability of a finite element method to solve the 
anisotropic heat conduction equation. 

High order is important for preserving anisotropies* 

A 3D problem with             and              . 
A Gaussian temperature profile is 
specified aligned with a toroidal 
magnetic field. An effective       is 
measured from the numerical 
simulations. 
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* Meier, Lukin, & Shumlak, CPC 181 (2010) 



Uri Shumlak, shumlak@uw.edu 

The numerical results demonstrate the importance of high order spatial 
representation to capture the anisotropic heat conduction and the 
minimize the numerically generated      . 

High order is important for preserving anisotropies* 

* Meier, Lukin, & Shumlak, CPC 181 (2010) 

  D!

Results show expected 
behavior for 
increased spatial 
resolution and for 
increased 
polynomial order. 

Even for constant     
dof = Nx np, higher 
order is better able 
to preserve 
anisotropy. 
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Maxwell’s equations govern the evolution of the electromagnetic fields. 
The fields couple to the fluids through source terms. 

Dynamics of the electromagnetic fields are modeled 

Violation of these constraints leads to nonphysical effects – charge 
generation and parallel magnetic forces. 

Divergence conditions can be enforced by purely hyperbolic formulation or 
with a mixed potential formulation. 

In addition to these time-dependent equations, two divergence equations 
(involutions) must also be satisfied. 
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The divergence constraints are transformed into hyperbolic equations and 
coupled to the dynamical equations (Faraday’s and Ampere’s laws).* 

Hyperbolic form provides uniform treatment of fields 

Divergence error correction potentials φ and ψ “sweep” the divergence 
error out of the domain at speeds χ and γ which are greater than c. 

* Munz et al., CPC 130 (2000) 
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The divergence constraints are transformed into hyperbolic equations and 
coupled to the dynamical equations (Faraday’s and Ampere’s laws).* 

Hyperbolic form provides uniform treatment of fields 

Divergence error correction potentials φ and ψ “sweep” the divergence 
error out of the domain at speeds χ and γ which are greater than c. 

* Munz et al., CPC 130 (2000) 
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Another approach introduces potentials to transform Maxwell’s equations 
to automatically satisfy the divergence constraints. 

Mixed potential formulation satisfies involutions 

Substitution into Maxwell’s equations results in 2nd order equations for the 
potentials. A gauge condition must also be selected for         . Common 
choices are either the Coulomb gauge or … 
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Another approach introduces potentials to transform Maxwell’s equations 
to automatically satisfy the divergence constraints. 

Mixed potential formulation satisfies involutions 

Substitution into Maxwell’s equations results in 2nd order equations for the 
potentials. A gauge condition must also be selected for         . Common 
choices are either the Coulomb gauge or the Lorenz gauge. 
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Improved electromagnetic models are benchmarked 
Current coalesces and magnetic flux reconnects through the current layer 

without requiring collisional effects → GEM reconnection challenge.* 

 Because the reconnection process involves magnetic field lines tearing 
and reconnecting, the problem is susceptible to generating non-
solenoidal magnetic fields,                  (divergence errors). 

* Birn et al., JGR 106 (2001) 

   !"B# 0
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Collisionless magnetic reconnection plasma benchmark 
Current coalesces and magnetic flux reconnects through the current layer 

without requiring collisional effects → GEM reconnection challenge.* 

 The problem has been solved by several different plasma models. 

* Birn et al., JGR 106 (2001) 

MHD model lacks sufficient physical 
completeness for the problem and 
is unable to model collisionless 
reconnection. 
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Collisionless magnetic reconnection plasma benchmark 
Current coalesces and magnetic flux reconnects through the current layer 

without requiring collisional effects → GEM reconnection challenge.* 

 The problem has been solved by several different plasma models. 

* Birn et al., JGR 106 (2001); ^Hakim & Shumlak, PoP 14 (2007) 

 

Solutions with the multi-fluid model 
agree with the published results.^ 
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Collisionless magnetic reconnection plasma benchmark 
Current coalesces and magnetic flux reconnects through the current layer 

without requiring collisional effects → GEM reconnection challenge. 

 The problem has been solved by several different plasma models. 

Uncertainty quantification analysis of 
the multi-fluid plasma model has 
provided a more rigorous 
validation test of agreement. 
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Improved electromagnetic models are benchmarked 
The divergence error is significantly reduced with the perfectly hyperbolic 

formulation. The mixed potential formulation reduces the error to 
machine precision, at greater computational expense. 
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Since the multi-fluid plasma model has fast light waves and slower ion 
acoustic waves, non-physical reflections of fast waves at open 
boundaries are likely. Non-local boundary conditions use a lacuna-
based methods that match an interface condition.* The matching is 
provided by auxiliary source. 

 

Non-local boundary conditions to absorb waves 

The additional domain is shown 
in 1D. 

* Tsynkov, JCP 199 (2004) 
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The governing equation in the interior domain is 
expressed as 

Non-local boundary conditions to absorb waves* 

     

!q
!t

+" i F = S,

while in the auxiliary domain the governing 
equation is defined as 

    

!w
!t

+"#F(w) = S(w)+$(q),

with the requirement that                       gives the “near-boundary source” 
as 

     !(q) ="#F(µq)$S(µq)$µ"#F(q)+ µS(q).

    w = qµ(x)

The boundary condition for the interior solution is set such that 

  
q

interface

!
= w

interface

+

The auxiliary solution is periodically re-integrated to damp the solution 
before it reflects and contaminates the solution at the interface. 

* Meier, Glasser, Lukin, & Shumlak, JCP 231 (2012) 
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Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

Other methods have been used to reduce reflections, e.g. Riemann 
methods, PML. However, they are limited to normal incidence, purely 
hyperbolic, or problem-specific frequencies. The lacuna-based 
methods offer more versatility.  

Non-local boundary conditions demonstrated in 1D 

To demonstrate the 
effectiveness of the non-
local boundary conditions, a 
1D pulse is modeled using 
the Euler equations with 
thermal heat conduction. 



Uri Shumlak, shumlak@uw.edu 

 The lacuna-based methods work for oblique incidence waves in either 
purely hyperbolic or mixed hyperbolic/parabolic systems. The method 
even works in 2D where there is no true lacuna. (Huygens’ principle 
states true lacunae only exist in odd dimensional space.) 

Lacuna-based open boundaries work even in 2D 

 Shown is the nonlinear evolution of a 2D pressure pulse interacting with 
open boundaries on all sides. 

* Meier, Glasser, Lukin, & Shumlak, JCP 231 (2012) 
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Drift turbulence instabilities in a Z-pinch* 
Z-pinch plasmas can exhibit 

drift turbulence 
instabilities when the drift 
speed exceeds the ion 
sound speed. This 
instability may explain 
the anomalous resistivity 
observed in many 
experiments. 

Anomalous resistivity is also 
observed in FRC (Field 
Reversed Configuration) 
plasmas, such as the 
FRC experiment. 

* Loverich & Shumlak, PoP 13 (2006) 
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Anomalous resistivity in a Harris current sheet* 

ne 

The same effect can be seen in a planar geometry in a Harris current 
sheet. The configuration has a horizontal current carried by a planar 
plasma. The Harris current sheet is ideal MHD stable. 

 
The plasma develops the 

lower hybrid drift 
turbulence instability 
similar to the cylindrical 
Z-pinch configuration. 

 
The mode develops along 

the density gradients and 
grows until saturation. 

* Hakim & Shumlak, PoP 14 (2007) 
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Anomalous resistivity in a Harris current sheet 

Ex 

The resulting charge separation effect of the instability can be seen from 
the large horizontal electric field that develops. In resistive MHD, this 
configuration would have an electric field that only varies in y. 

The electric field appears as  
an enhanced resistivity 
that is higher than the 
expected classical 
Spitzer resistivity. 

 

* Hakim & Shumlak, PoP 14 (2007) 
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Anomalous resistivity in the UW TCS FRC experiment 
An effective resistivity can be computed and compared to the classical 

Spitzer resistivity. 

!
!
= E " j# j " j#

* Hakim & Shumlak, PoP 14 (2007) 
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Anomalous resistivity in the UW TCS FRC experiment 
An effective resistivity can be computed and compared to the classical 

Spitzer resistivity. 

!
!
= E " j# j " j#

Pulse Vd e / VTh i η┴ / η┴ classical 

8966 2.22 11.12 

8971 2.34 12.77 

8997 2.32 7.97 

Experimental data from the UW TCS FRC 
measure an effective resistivity that 
compares well with the simulations. 

TCS/upgrade 
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3D, magnetically confined plasma simulations - FRC 
FRCs form a toroidal equilibrium 

structure where plasma 
pressure is balanced by 
magnetic forces. Accurate 
balance of the hyperbolic 
fluxes and the source terms 
is essential. 

FRC plasmas require two-fluid 
models for accuracy. 

Electron drift produces an 
azimuthal current and 
poloidal magnetic fields. 
Cross-field drift can lead to a 
drift turbulence instability. 

* Shumlak et al., CPC 182 (2011) 
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Self-consistent plasma sheath formation – reactions* 
Three-fluid calculations provide self-consistent 

formation of plasma sheath which involves 
ionization and recombination physics. Since 
the model allows for electric fields and 
charge separation, external voltages can be 
applied. 

Initial sheath formation shows Langmuir wave 
propagation. 

    
!

L
2 = !

pe
2 +1.5k 2v

Te
2

* Shumlak et al., CPC 182 (2011) 
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2D effects are evident, but Langmuir wave persists 
2D effects can also be modeled for 

electrodes with finite extent, for 
realistic plasma configurations. 

Langmuir waves propagate away 
from the electrodes during the 
initial plasma sheath formation. 

When a quasi-steady-state is 
achieved, the current is carried 
mostly by electrons. Eddy 
currents are also visible. 

ni – ne 
t = 0.1 

j 
t = 2 
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Summary 
  Moments of Boltzmann Eq. form foundation of multi-fluid plasma models. 
  Scattering & reacting collisions and electromagnetic fields couple the 

multiple fluids to each other and to the fields. 
  Usual asymptotic approximations simplify the governing model (Hall-MHD), 

but lead to unphysical wave behavior. 
  High-order methods accurately compute equation system even when large 

source terms balance hyperbolic fluxes or strong anisotropies. 
  Divergence relations of Maxwell’s equations are satisfied either with purely 

hyperbolic treatment or with mixed potential formulation. 
  Lacuna-based methods can robustly model open boundaries. 
  Validation applications produce accurate, physically-expected results. 

–  Drift turbulence instability related to anomalous resistivity 
–  Ion, electron, neutral simulations of plasma sheath formation dynamics 

  We have developed a high-order code for the multi-fluid plasma model 
called WARPX (Washington Approximate Riemann Plasma). 


