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INTRODUCTION

e REDUCED DESCRIPTIONS ARE CENTRAL TO PLASMA THEORY:
LOWER DIMENSIONALITY
ELIMINATION OF UNNECESSARY SCALES



INTRODUCTION

e THE FLUID FORMALISM PROVIDES A FAVORED REDUCED FRAMEWORK FOR
LOW-FREQUENCY, MACROSCOPIC PLASMA PHYSICS



INTRODUCTION

e THE CONVENTIONAL, SHORT-MEAN-FREE-PATH FLUID CLOSURE DOES NOT
APPLY TO THE LOW-COLLISIONALITY REGIMES OF MAIN INTEREST IN SPACE
AND MAGNETIC FUSION PLASMAS



e IN A MAGNETIZED PLASMA, A VALID FLUID DESCRIPTION OF LOW-FREQUENCY,
MACROSCOPIC PHYSICS (w <« ., L> p,) PERPENDICULAR TO THE MAGNETIC
FIELD IS POSSIBLE REGARDLESS OF COLLISIONALITY



e AT LOW-COLLISIONALITY, THE FLUID DESCRIPTION OF PARALLEL PHYSICS
CANNOT BE CLOSED. THE KINETIC INFORMATION FOR THE PARALLEL CLOSURE
INVOLVES ONLY THE GYROPHASE AVERAGE OF THE DISTRIBUTION FUNCTIONS



e A CONSISTENTLY CLOSED LOW-COLLISIONALITY THEORY CAN BE BASED ON
A HYBRID FLUID AND KINETIC SYSTEM, WITH DRIFT-KINETIC EQUATIONS FOR
THE GYRO-AVERAGED DISTRIBUTION FUNCTIONS TO GET PARALLEL CLOSURE.
SUCH A THEORY WILL BE PRESENTED HERE, EMPHASIZING:
RIGOROUS TREATMENT OF HIGH-ORDER FINITE LARMOR RADIUS EFFECTS
PRECISE CONSISTENCY BETWEEN FLUID AND DRIFT-KINETIC SIDES
EXACT CONSERVATION LAWS



MAXWELL-BOLTZMANN SYSTEM FOR WEAKLY COUPLED PLASMAS
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MAXWELL-BOLTZMANN SYSTEM FOR WEAKLY COUPLED PLASMAS
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LOW-FREQUENCY SYSTEM FOR QUASINEUTRAL PLASMAS (v < wy,, L > Ap)
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THE LOW-FREQUENCY QUASINEUTRAL SYSTEM, WITH FOKKER-PLANCK-LANDAU
OPERATORS FOR BINARY COULOMB COLLISIONS,
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CAN BE CONSIDERED THE "STANDARD MODEL” AT THE ROOT OF A LARGE
PART OF THEORETICAL PLASMA RESEARCH



LOW-FREQUENCY, LARGE-SPATIAL-SCALE SYSTEM FOR MAGNETIZED PLASMAS

ASYMPTOTICS BASED ON THE EXPANSION PARAMETER §~p,/L <1

MASS AND TEMPERATURE RATIOS ORDERED AS m./m, ~ %, T,/T, ~ 1

TWO DYNAMICAL ORDERINGS TO BE CONSIDERED:
1. COLLISIONLESS FAST DYNAMICS, FAR FROM MAXWELLIAN
v, =1, =0, w ~ 08, U, ~ Ue ~ Uty
First-order accuracy in /. Apt for space applications.
2. LOW-COLLISIONALITY SLOW DYNAMICS, NEAR MAXWELLIAN
Uy~ 0V ~ 0% Qey w62, w~ U ~ OO, fo— e~ 0 s fe— fae ~ 0% e

Second-order accuracy in . Apt for application to confined magnetic fusion experiments.
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THE LOW-FREQUENCY, LARGE-SPATIAL-SCALE, MAGNETIZED PLASMA SYSTEM
CONSERVES EXACTLY PARTICLE NUMBER, MOMENTUM AND ENERGY:
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1. FLUID-KINETIC CLOSURE OF THE
LOW-FREQUENCY, LARGE-SPATIAL-SCALE, MAGNETIZED PLASMA SYSTEM
FOR COLLISIONLESS FAST DYNAMICS, FAR FROM MAXWELLIAN

V="V, = 07 W~ 59&7 U, ~ Ue ~ Vthy

first-order accuracy in ¢



THE NON-GYROTROPIC (PERPENDICULAR) CLOSURES ARE DERIVED ALGEBRAICALLY
AFTER 0o-EXPANSION OF THE FLUID MOMENTS OF THE FULL KINETIC EQUATION:
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THE GYROTROPIC (PARALLEL) CLOSURES ARE THE FOLLOWING MOMENTS OF THE
GYROPHASE-AVERAGED DISTRIBUTION FUNCTIONS IN THE REFERENCE FRAMES
OF THE MEAN FLOWS, TO BE SOLVED FOR KINETICALLY:
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THE DRIFT-KINETIC EQUATIONS FOR THE GYROPHASE-AVERAGED DISTRIBUTION
FUNCTIONS IN THE REFERENCE FRAMES OF THE MEAN FLOWS, f,(v/,v},x,t), ARE:
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THE DRIFT-KINETIC EQUATIONS FOR THE GYROPHASE-AVERAGED DISTRIBUTION
FUNCTIONS IN THE REFERENCE FRAMES OF THE MEAN FLOWS, f,(v/,v},x,t), ARE:
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and the electron coefficient functions
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THESE FULFILL THE PHASE-SPACE VOLUME CONSERVATION CONDITIONS
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THE FIRST THREE MOMENTS OF THE GYROPHASE-AVERAGED DISTRIBUTION
FUNCTIONS ARE:
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THE FIRST THREE MOMENTS OF THE GYROPHASE-AVERAGED DISTRIBUTION
FUNCTIONS ARE:
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AND THE CORRESPONDING MOMENTS OF THE DRIFT-KINETIC EQUATIONS YIELD:
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CONSISTENT WITH THE FLUID PART OF THE SYSTEM



2. FLUID-KINETIC CLOSURE OF THE
LOW-FREQUENCY, LARGE-SPATIAL-SCALE, MAGNETIZED PLASMA SYSTEM
FOR LOW-COLLISIONALITY SLOW DYNAMICS, NEAR MAXWELLIAN
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THE NON-GYROTROPIC (PERPENDICULAR) CLOSURES ARE:
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THE GYROTROPIC (PARALLEL) CLOSURES ARE THE FOLLOWING MOMENTS OF THE
NON-MAXWELLIAN PARTS OF THE GYRO-AVERAGED DISTRIBUTION FUNCTIONS:
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THE DRIFT-KINETIC EQUATIONS FOR THE NON-MAXWELLIAN PARTS OF THE
GYRO-AVERAGED DISTRIBUTION FUNCTIONS IN THE REFERENCE FRAMES OF
THE MEAN FLOWS, fy,(v],v).x,t), ARE:
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THE DRIFT-KINETIC EQUATIONS FOR THE NON-MAXWELLIAN PARTS OF THE
GYRO-AVERAGED DISTRIBUTION FUNCTIONS IN THE REFERENCE FRAMES OF
THE MEAN FLOWS, fy,(v],v).x,t), ARE:
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with the coefficient functions for the electron collisionless advection operator
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and the coefficient functions for the ion collisionless advection operator
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THESE FULFILL THE PHASE-SPACE VOLUME CONSERVATION CONDITIONS
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The collision-independent driving terms, D, f);s, are lengthy but explicit functions,

given in Phys. Plasmas 17, 082502 (2010) and Phys. Plasmas 18, 102506 (2011)

In them, the fluid continuity and temperature equations were substituted for the

time derivatives of the Maxwellians



The collision-independent driving terms, D, [, are lengthy but explicit functions,

given in Phys. Plasmas 17, 082502 (2010) and Phys. Plasmas 18, 102506 (2011)
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operafor acting on it Eq. (34) retains only the first-order accu-
racy, d, /dt = O, /L) + O(8va, /L). So, Eq. (34) is just a spe-
cial case of the general first-order result of Ref, 12, namely its
slow flow and close to Maxwellian limit:
d 0 a a .
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where the coefficient functions are

Magnetized plasma with low collisionality and slow dynamics orderings. Il

Phys. Plasmas 18, 102506 (2011)

with up, = b x V(al,)/{mnfk,}, the lowest-order dinmag-
netic drift velocity. It is immediately verified that Eqs. (37)-(39)
fulfill the phase-space volume conssrvation condition
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The drift-kinetic equation (26) has some unconventional
yet desirable features that are worth commenting on. First, it
is referred 10 the moving-frame velocity coordinates (v, x),
which give rise to the driving term proportional to
Vou,~3b [(b-Vju,] In return, the fluid closure moments
(12)-(15) are evaluated directly without the need of a cum-
bersome subtraction of the mean velocity, Second, the
moving-frame derivation incorp cxncily the b
tion of the electric field, consistent with the momentum con-
servation equation or peneralized Ohm's law (10), Some
pieces of the elecic field are subject 10 cancellations, in
panticular, the electron inertia piece is canceled by an inertial
force from the transformation to the moving frame. In addi-
tion, there is the above discussed cancellation of terms pro-
portional to the parallel density gradient from free-streaming
and parallel electric field acceleration on the Maxwellian,
Equation (26) includes just the residual part of the clectric
ficld after these cancellations are taken into account Funll;.
Eq (26} is with the required condi-
tions that the 1, vy, and v” velocity moments of fyy, vanith
because under these conditions, the 1, v}, and v moments
of Eq. (26) are exact identities,

‘Ihe collision operators in Eq (26) sre needed only in
their lowest nonvanishing order, C,lf,.f,)~C.lf..1]
~ 8"t L)f gy Therefore, it Is sufficient to use the follow-
ing linearized forms:
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where the superscripts indicate that only the leading pans of
order & (11,/ L1fp, need to be retained. The detalls of these
collision operators will be discussed in the next section,

V. COLLISION OPERATORS

The lincarized collision operators (28) and (29} u«III be
taken in their complete Fokker-Flanck-Landau form.* In
accordance with the present drift-kinetic derivation they
must be expressed in the reference frame of the electron
mean flow velocity, but this does not pose any difficulty by
virtoe of their Galilean invariance. Only some care has to be
exercised to account for the different electron and jon mean
velocities and 1o retain some electron-ion collision terms that
produce leading-order effects as a result of contributions o
the electron distribution function structure on the fon thermal
veloclty scale. For the sake of completeness, it Is worth re-
visiting these cullislun operator expressions in detail.

The linearized | collision of is
completely standard and, by Galilean invariance, its labora-
tory frame expression applies equally to the moving refer-
ence frame. Thus, dropping the (x,1) arguments and with the
electron collision frequency defined as

A4

cenln A
e (30}
dnm vy,

in the rationalized elecromagnetic system of units being
used hege, lhe Muwr!lun test part is the well-known inte-
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The first three moments of the collision-independent driving terms are:
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The collisional driving terms, Q" are
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ngll — (27T)_1%d05{066[f]\767 fMe] + Cee[fMea fNe] + Ceb[fNea fML]} +

. | focol ais ” : =
+ (2m) 7" $do Col fare, far] — T Fei™ + 3(2m)2m, (i N 1) ( T. 3)] Jare =

= Ce[fNe] + Iecou



The collisional driving terms, Q" are

QSON — (27—‘-)_1]{d@{cbb[fNL7fML}‘i‘CLL[fMLafNJ} = CL[fNL]

and

ngll — (27T)_1%d05{066[fN67 fMe] + Cee[fMea fNe] + Ceb[fNea fML]} +

/ 12
-1 v” coll 2V6me TL me/U
e o ol ful = | B g (1) (")

= Ce[fNe] + Igou

These have particle, momentum and energy conservation properties:

/dSV/ (1,”U|/|,U/2> ngll — 0



FROM THE DEFINITION OF v/ AS RELATIVE TO THE MEAN FLOWS AND THE
CONDITION THAT THE FLUID DENSITY AND TEMPERATURES BE THOSE IN
THE MAXWELLIANS:

J &' (10),0"%) fxg = 0



FROM THE DEFINITION OF v/ AS RELATIVE TO THE MEAN FLOWS AND THE
CONDITION THAT THE FLUID DENSITY AND TEMPERATURES BE THOSE IN
THE MAXWELLIANS:

/d3V’ (1,7)"|,v/2> Invs = 0

THEN, USING THE EXPRESSIONS OF THE COLLISIONLESS ADVECTION OPERATORS,
IT IS VERIFIED THAT

defne ;
/dSV/ (1,'U|l|,?]/2) dé\ﬂ — /ClSV/ (1>U]/|7U/2) (Ds st 4+ ngll)

SO, CONSISTENT WITH THE CONDITIONS /v’ (1,v],v?) fyx, =0, THE (1,v],v")
MOMENTS OF THE DRIFT-KINETIC EQUATIONS ARE SATISFIED IDENTICALLY



SUMMARY

A RIGOROUS FINITE-LARMOR-RADIUS FLUID AND DRIFT-KINETIC THEORY HAS BEEN

DEVELOPED, SUITABLE TO DESCRIBE MACROSCOPIC DYNAMICS OF MAGNETIZED

PLASMAS IN COLLISIONLESS OR LOW-COLLISIONALITY REGIMES. IT FEATURES:

e LOW-FREQUENCY, QUASINEUTRAL EQUATIONS FOR THE ELECTROMAGNETIC FIELDS

e FLUID EQUATIONS FOR THE DENSITY, ION FLOW VELOCITY AND TEMPERATURES

e PARTICLE, MOMENTUM AND ENERGY CONSERVATION IN THE FLUID SYSTEM

e EXPLICIT EXPRESSIONS FOR THE NON-GYROTROPIC (PERPENDICULAR) CLOSURES

e GYROTROPIC (PARALLEL) CLOSURES AS MOMENTS OF THE GYROPHASE-AVERAGED
DISTRIBUTION FUNCTIONS



e DRIFT-KINETIC EQUATIONS FOR THE GYROPHASE-AVERAGED DISTRIBUTION
FUNCTIONS IN THE REFERENCE FRAMES OF THEIR MEAN FLOWS

e PHASE-SPACE VOLUME CONSERVATION BY THE DRIFT-KINETIC COLLISIONLESS
ADVECTION OPERATORS

e FOR FAR-FROM-MAXWELLIAN DISTRIBUTION FUNCTIONS, THE fu|" MOMENTS OF
THE DRIFT-KINETIC EQUATIONS ARE IDENTITIES, AND THE 1 AND v MOMENTS
REPRODUCE THE FLUID CONTINUITY AND TEMPERATURE EQUATIONS

e FOR NEAR-MAXWELLIAN DISTRIBUTION FUNCTIONS WITH THE FLUID
CONTINUITY AND TEMPERATURE EQUATIONS SUBSTITUTED FOR THE TIME
DERIVATIVES OF THE MAXWELLIANS, THE 1, vy AND v MOMENTS OF THE
DRIFT-KINETIC EQUATIONS ARE IDENTITIES





