Multiple timescale simulations of global
macroscopic dynamics of magnetized plasma

Stephen C. Jardin?
N.M. Ferraro?, J. Breslaul' J. Chent,

Princeton Plasma Physics Laboratory
2 General Atomics

IPAM Workshop
Computational Challenges in Magnetized Plasma

University of California, Los Angeles
April 17, 2012

This work was performed in close collaboration with M. Shephard, F. Zhang, and F.
Delalondre at the SCOREC center at Rensselaer Polytechnic Institute in Troy, NY.

Acknowledgements also to: G. Fu, S. Hudson, H. Strauss, L. Sugiyama

~PPPL

HHHHHHHHHHHHHHH
PHYSIIS LREORATORY



For magnetic confinement, there are 4 classes of major
simulation codes, each addressing different phenomena
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Summary and Overview:

» 3D MHD equations are a mixed system: hyperbolic + parabolic
* This leads to multiple timescales in a magnetized plasma

» The hyperbolic terms are associated with ideal MHD wave propagation
and global instabilities.
* These are the shortest timescales: typically micro-seconds

» The parabolic terms are associated with diffusion and transport of the
magnetic field, current, pressures, and densities
* These are the longest timescales: typically 100s of milliseconds

« To calculate both phenomena in a single simulation requires a highly
iImplicit formulation so that the time step is determined by accuracy
requirements only

e not by numerical stability requirements such as Courant condition

« The implicit solution procedure is complicated by the fact that the
multiple timescales present in the physics lead to a very ill-conditioned
matrix equation that needs to be solved each time step.

» Here we describe the techniques we use to deal with this in M3D-C?



2-Fluid 3D MHD Equations:

% +Ve(nV)=0 continuity
OB

nMi(%—‘tj+ VeVV)+Vp=JxB-V-ll,, —V-II momentum

E+VxB=nJ+i(JxB—Vpe—v-He) Ohm's law
ne

E P + Ve E PV [=—p, VeV +1J = Veq, +Q, electron energy
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2 ot 2 g
ldeal MHD The objective of the M3D-C! project is to solve these equations as
Resistive MHD  accurately as possible in 3D toroidal geometry with realistic B.C.
2-fluid MHD and optimized for a low-f torus with a strong toroidal field.

Contain ideal MHD, reconnection, and transport timescales
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Three types of wave solutions in ideal MHD

Slow Wave

propagation

 only propagates
parallel to B

» only compresses fluid
in parallel direction

» does not perturb
magnetic field
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parallel to B

* incompressible
e only bends the
field, does not
compress it
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Fast Wave
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propagation

e can propagate
perpendicular to B

» only compresses fluid
in L direction

e compresses the
magnetic field



Three types of wave solutions in ideal MHD
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 only propagates  only propagates * Can prqpagate
parallel to B parallel to B perpendicular to B
 only compresses fluid e incompressible  only compresses fluid
in parallel direction * only bends the in L direction
« does not perturb field, does not e compresses the
| magnetic field compress it ] magnetic field

*This is the wave that

Plasma instabilities grow makes equations stiff

out of these two waves



The three ideal MHD waves have widely
separate velocities for propagation with kB ~ 0
viee) | F

fast wave: V¢
Alfven wave: V,

slow wave: Vg

—

B

For tokamak geometry and
parameters, the three wave
velocities satisfy the inequalities:

Ve >V, >V,

This leads to multiple time-
scales, even within ideal MHD

Wave speed diagram for ideal MHD.
Intersection points show wave velocity for

given propagation direction.



Implicit solution requires evaluating the
spatial derivatives at the new time level.

The advantage of an implicit solution is that the time step can be
very large and still be numerically stable (no Courant condition)

If we discretize in space (finite difference, finite element, or
spectral) and linearize the equations about the present time level,
the implicit equations take the form:

—n+1 — N

AlZ
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A32

\% I,
B

P I

1
Ry

Very large, ~ (107 x 107)
non-diagonally dominant,
non-symmetric, ill-conditioned sparse

. . 8
matrix (contains all MHD waves)



Implicit solution requires evaluating the
spatial derivatives at the new time level.

The advantage of an implicit solution is that the time step can be
very large and still be numerically stable (no Courant condition)

If we discretize in space (finite difference, finite element, or
spectral) and linearize the equations about the present time level,
the implicit equations take the form:

All
A21
A31

AlZ
A22
A32

How best to solve this? \

Preconditioned iterative method
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Very large, ~ (107 x 107)
non-diagonally dominant,
non-symmetric, ill-conditioned sparse

. . 9
matrix (contains all MHD waves)



Preconditioning

...preconditioning is a procedure of an application of a transformation, called
the preconditioner, that conditions a given problem into a form that is more

suitable for numerical solution. ... Wikipedia
AeX=Db
Left preconditioning multiplies by a matrix from the left:
PeAeX=Pe)
Right preconditioning multiplies by a matrix from the right:
AePeY =D

Y=P'eX (orX=PeY)

The preconditioner P is chosen so that P A or A P has better properties
than the original matrix A. Most of the differences between the different
3D MHD codes is due to a difference in the preconditioning techniques.
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Preconditioning

...preconditioning is a procedure of an application of a transformation, called
the preconditioner, that conditions a given problem into a form that is more

suitable for numerical solution. ... Wikipedia
AeX=Db
Left preconditioning multiplies by a matrix from the left:
PeAeX=Pe)
Right preconditioning multiplies by a matrix from the right:
AePeY =D

Y=P'eX (orX=PeY)

The preconditioner P is chosen so that P A or A P has better properties
than the original matrix A. Most of the differences between the different
3D MHD codes is due to a difference in the preconditioning techniques.

Here we use a 3-level preconditioner that is motivated by the physics of
MHD phenomena in tokamaks. 11



More on Preconditioning

From:
L. N. Trefethen and D. Bau, lll, Numerical Linear Algebra (SIAM) 1997

“In ending this book with the subject of preconditioners, we find
ourselves at the philosophical center of the scientific computing of
the future...

Nothing will be more central to computational science in the next
century than the art of transforming a problem that appears
Intractable into another whose solution can be approximated
rapidly.

For Krylov subspace matrix iterations, this is preconditioning.”



Still more on Preconditioning

“Direct solvers are often the best option for 2-dimensional
problems, but not for 3-dimensional problems.

Generally speaking, preconditioning attempts to improve the
spectral properties of the coefficient matrix. For symmetric
positive definite problems, the rate of convergence of the CG
method depends on the spectral radius.

For non-symmetric problems, the situation is more complicated
and the eigenvalues may not describe the convergence
properties. Nevertheless, a clustered spectrum (away from 0)
often results in rapid convergence, particularly when the
preconditioned matrix is close to normal. “

FROM: Michele Benzi, “Preconditioning Techniques for Large Linear
Systems: A Survey”, J. Comput. Phys. 182, 418-477 (2002)



Still more on Preconditioning

“Direct solvers are often the best option for 2-dimensional
problems, but not for 3-dimensional problems.

Generally speaking, preconditioning attempts to improve the
spectral properties of the coefficient matrix. For symmetric
positive definite problems, the rate of convergence of the CG
method depends on the spectral radius.

For non-symmetric problems, the situation is more complicated
and the eigenvalues may not describe the convergence
properties. Nevertheless, a clustered spectrum (away from 0)
often results in rapid convergence, particularly when the
preconditioned matrix is close to normal. “

Make the matrix Reduce the spectral radius (using
(close to) symmetric 2D direct solves if needed)

A

max

FROM: Michele Benzi, “Preconditioning Techniques for Large Linear * (A)= ‘ /1‘
Systems: A Survey”, J. Comput. Phys. 182, 418-477 (2002)

min



3 step physics-based preconditioner greatly improves
iterative solve

(1) Splitimplicit ~ (2) Apply
formulation annihilation
_ operators

Original matrix
multiplying

Vn+1’ Bn+1, pn+1
* NON-symmetric,
» non-diagonally
dominant &
* large range of
eigenvalues

/

Smaller matrix
multiplying V"*1 only,
* nearly symmetric

» closer to diagonal

o still with large
range of eigenvalues

[ ]
[ ]

/

Matrix now
consists of 3

[ 1 [ 1.

dominant diagonal each block is
blocks, each with greatly reduced.
narrower range of

eigenvalues.

(3) Apply block-Jacobi
preconditioner by using
SuperLU_dist on each
poloidal plane independently

[ ]

> | ] —>

GMRES

/

Now, range of
eigenvalues in

Preconditioned
system converges
in 10’s of iterations
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(1) Split implicit formulation eliminates B"*! and p"*! in favor of V"+!

As an example, consider the
simple 1D wave equation for
velocity V and pressure p

Implicit FD time advance
evaluates spatial derivatives
at the new time level

v _ op
5'[ 6)( [ @ . 2 ﬂ — O
o _. OV ot ox”

ot OX
an+1 _an —c p?:lllz o p?jlllz

ot OX
p?ill/z — P ¢ an:il _an+1
ot OX
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(1) Split implicit formulation eliminates B"** and p"*! in favor of V"*1

As an example, consider the N = c@
simple 1D wave equation for ot OX [ @_CZ ﬂ 0
velocity V and pressure p op c oV o’ ox”
ot OX
an+1 —V; p?:11/2 - p?j/z
Implicit FD time advance ot OX
evaluates spatial derivatives — i VR
at the new time level Pj2 = P ¢ Via -V,
ot OX

Now, algebraically eliminate new time pressure in favor of velocity

V_n+1 = zv_n+1 +V-n+l n _n" Symmetl’ic &
an+1 :an + (5tc)2 ( j+1 J . j—1 4 5tc pj+l/2 pj—1/2 <— diagonally
OX OX dominant!
i otC /., n. .
p?+11/2 n p?+1/2 v S (an+11 _an 1)

These equations will give exactly the same answers, but can be solved sequentially! 18



Schematic of difference in matrices to be inverted
after applying split implicit formulation

A _1 _S
S 1 -S
S 1 -S
S 1 -S
S 1 -S
2N S 1 -S
S 1 -S
s 1 -S
s 1 -S
S 1 -S
S 1 -S

Coupled system
multiplying V"+1 & pn+t

S

1_

(14282 -§?
I ~§?  1428% -§?
N -8 14+28% -§?
~S?  1+425% -§?
l -8 1428% -§?
] -S? 14287

N

1
1
1

|

S :=E¥§£:s>1
OX

Un-coupled system multiplying
v+l & ph*lseparately

Substitution takes us from having to invert a 2N x 2N anti-symmetric system
that has large off-diagonal elements to sequentially invertinga N x N
symmetric system that is diagonally dominant + the identity matrix.

Mathematically equivalent - same answers! (but much better conditioned)

19



Relation of split implicit method to Schur Complement
The original system can be written as:
known RHS
A BI[V]™ [R] o«
C D||P|

Here, A and D are diagonal matrices, and

S —S S =S Vj_]_ Pj-v2
T —_
B-— S -5 , C=-B' = s =S V=V P=pg, |
S -S S =S j+1 Pjrar

Solve first for P"*1 in terms of V*+l: p+l=-D1C V"™l + D1 Q"

Next, eliminate P+!: AV =R" A'=A-BD'C

an — RI’] _B D—lQn
In this example, A’ 20
IS symmetric



Now apply this technique to the basic 3D MHD equations:

oV :i[VxB]xB—Vp Ideal MHD Equations for velocity,

A magnetic field, and pressure:
B=Vx[VxB] Symmetric Hyperbolic System
p=-V-Vp—ypV-V 7-waves

PV =i[Vx(BwatB)]x(B+95t1’3)—v( p+65tp)

0

B= Vx[(V +<95tV)><B] Taylor Expand in Time

p=—(V+05tV):Vp—ypV+(V +65tV)
Substitute from 2"9 and 3" equation into first, finite difference in time:

{p-0°(Bt)’ L} V™ ={p—0*(St)*L| V" +5t{—Vp +ﬂi(VxB)><B}

MHD Operator: ——




3 step physics-based preconditioner greatly improves
iterative solve
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/
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/

Now, range of
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Preconditioned
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in 10’s of iterations
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(2) Apply annihilation operators to separate
eigenvalues into diagonal blocks

o
(o
e v
\\- .. i

o

Velocity vector written in terms of 3 scalar fields (Helmholtz decomposmon)

0 0
V=R*VU xVg¢+ Rza)v¢+i2vw VoRR T Z
/! R ™S
Associated mainly with Associated mainly with Associated mainly with
the shear Alfven wave: the slow wave: also the fast wave: does
does not compress the does not compress the compress the toroidal
toroidal field toroidal field field

To obtain scalar equations, we apply annihilation projections to isolate the
physics associated with the different wave types in different blocks in the matrix

—_

Alfven wave: V@V, x R? oV

(1—02(5’[)L)E+V eVV

Vp+JIxB-Velly, —V-II , |

. 2 PY —
slow wave: RVg nM [

Code can be run with 1,2 (reduced MHD)
or 3 (full MHD) velocity variables

fast wave: ~V R 23



Aside on the form of the Vector Fields

Because the externally imposed toroidal field in a tokamak is very
strong, any plasma instability will slip through this field and not
compress it. We need to be able to model this motion very
accurately because of the weak forces causing the instability.

In M3D-C*, we express the V = R2VU xVd + R*wV +LV
velocity field as shown Z ¢ R?2 v

All components orthogonal ! _ﬂV‘Z dr = J-[RZ vV U[" +R%0* +—‘V¢Z‘ }dr

Consider now the action of the first

2
term in V on the external toroidal field: B = F0V¢ V =R"VU x V¢

Vi % -

(V % B) * Any unstable motion
will mostly consist of the

) velocity component U....
- v¢-Vx[(R VU x V) F0v¢]
» Analytic elimination of

= _Fov°[VU X V¢] this potentially
stabilizing term greatly

=0 The velocity field U does not )
increases accuracy. 24

compress the external toroidal field!



Eigenvalue

107

106 4

105 4

104 4

103

102 4

101 3

100 4

101

1072

1073

10+

10-5 4

106

M3D-C* can be run with 1, 2, or 3 velocity variables. Tracking the
eigenvalues shows how they separate into 3 groups in a cylinder

4

L

—
1

—

PR—

—_—

Slow Wave
kMAX/leN =1.46 E6

Fast Wave
XMAX/XM,N =7.3E4 |

Alfven Wave
>_ }\’MAX/XMlN =9.9 E4

1

U

2 3
Number of velocity variables

U+w

U+ow+y

I

Original matrix:
Amax/ A= 1012

T[]
_ [ ]

Annihilation
operators split this
into 3 loosely
connected matrices,
each with a condition
number much less
than original matrix

25



3 step physics-based preconditioner greatly improves
iterative solve

(1) Splitimplicit ~ (2) Apply
formulation annihilation
_ operators

Original matrix
multiplying

Vn+1’ Bn+l, pn+1
* NON-symmetric,
» non-diagonally
dominant &
* large range of
eigenvalues

/

_Smaller mautrix
multiplying V"*1 only,

* nearly symmetric
* closer to diagonal
« still with large

range of eigenvalues

(3) Apply block-Jacobi
preconditioner by using
SuperLU_dist on each

poloidal plane independently

[ ]

N

[ ]

/

Matrix now
consists of 3
dominant diagonal
blocks, each with
narrower range of
eigenvalues.

[ ]
I

GMRES

[ 1.
/

Now, range of
eigenvalues in
each block is
greatly reduced.

Preconditioned
system converges
in 10’s of iterations
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(3) Apply block-Jacobi preconditioner by using
SuperLU_dist on each poloidal plane independently

M3D-C?! uses a triangular wedge high order finite element

« Continuous 15t derivatives in all directions ... C! continuity
» Unstructured triangles in (R,Z) plane
 Structured in toroidal direction (¢ )

Triangular wedge Top view: 16-32 Slice view:
integration volume toroidal prisms ~ 10% nodes/plane

Because of the small zone size within the plane, and hence
strong coupling, we precondition the matrix by directly inverting
the components within each poloidal plane simultaneously.

Block Jacobi Preconditioner: greatly reduces condition number 27



(3) Apply block-Jacobi preconditioner by using
SuperLU_dist on each poloidal plane independently (cont)

« All the nodes on each poloidal plane are coupled only to their nearest
neighbors. This leads to block triangular structure

ar n+1 r —n

_Bl C, A1V Yi
I A B;, G
« e e Vii Yia are 2D sparse
A, B, C ] Vv, | Y matrices at plane j
y y * Vj+1 Yiu
. . . , ] Vj denotes all the
. . . . velocity variables
on plane |
_CN Ay BN_ _VN i RN

Block Jacobi preconditioner corresponds to
multiplying each row by inverse of diagonal block B}

PETSc now has the capability of doing this using

SuperLU_Dist or MUMPS concurrently on each plane 8




Eigenvalues

Eigenvalues of A=3 3D Matrix
Before and After Preconditioning

U U+ow U+o+y
le+7 le+/ le+7
1le+6 le+6 le+6
le+5 le+5 le+5 New modes
le+4 le+4 | le+4 - in this range
1le+3 le+3 le+3 -
le+2 le+2 - le+2 A
le+l le+l - 1le+1 -
1e+0 le+0 - le+0
le-1 e-1 - le-1
le-2 le-2 - le-2
le-3 }8—3 1 1e-3
le-4 le-4 - le-4
le-5 le-5 le-5
1e-6 le-6 - le-6
le-7 le-7 | le-7
le-8 te-8 ] le-8 1 Reduced by factor 2.0
1e-9 : 1e-9 . . . 1e-9 . . . . &
0 2500 5000 O 2500 5000 7500 10000 2500 5000 7500 10000 12500 150

Number Number Number



Z (m)

Growth Rate (y/w,)

0.4

0.3

0.2

0.0

Extensive benchmarking for ideal,
resistive, and two fluid modes

o KN VA

T D CT IR 73] | 5 ' | | ' T
E . MID-C l_=C|} ] 2| [T Numerical GJT84 !
s ] wr — Analytical GG J79 '
- B 3 — Tearing mode 1
E S Sk 3 ] ~ Interchange mode i
E A e ® 3 | e mepe i
F &2 3 £ :
o Pl 4 £ 1
: 'y . ] 8 |
s fa oo BLITH El =5/3) 1 9 E
S ___ELITE (r=0) 3 . !
F e ___ GATO (I'=573) 3 |
e _ . GATO (T=0) ] |
é n.ﬁ;{;}u||||||||||||||||||||||||||||||||||||||.....§ i
I

0 10 20 30 40 50 w0k ,a —

. 10 10 10 10 10 10
Toroidal Mode Number (n) 520 45, betaz0 005 Resistivity

|deal MHD

Resistive MHD

Kinetic Energy

Comparison of K.E. vs time for 3 codes

—— SEL v=5x10"
[y | —— NIMROD
——— M3D-C" H=1x10"

NOTE:
In SEL, E, = vn"'a(n"J)
In M3D-C’, E, = HA(J)

Time

2-Fluid
Reconnection



Parallel Scaling Studies have been performed from 96 to 12288 p

Cycle Time

1000
900 -
ool | —e— .08 _
s00 | | —®— .04 Weak Scaling Study
.03
007 | _o o2
400 | e Ideal Scaling 16 24 32 64
300 ~ 16 32
8 16 o 40 60
200 @@
100 : .
100 1000 10000

Number of Processors

Triangle linear
dimension
varied by
factor of 4

Number of
toroidal planes
varied from 8
to 64

Time increased by
1.7 as # of zones
increased by 130
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Kinetic Energy
Transport Timescale simulations in
which stability is important:
with At =40 7,

Specify a transport model: L )

Toroidal Current

Resistivity: 7 = n2 p—3/2
Thermal Conductivity: x| = N2 pv2

. 6
’('” —_ lO KJ_ 1010t
t ()

Viscosity: uniform (~n)

Loop Valtape

Current controller provides loop
voltage to maintain plasma current
at initial value.

1010
Loop voltage provides thermal mm‘ni;”;nem
energy through Ohmic heating :
Current density periodically peaks,
becomes unstable, reconnects,
and broadens...periodic cycle

(sawtooth)




Generic sawtooth studies are now
underway

Repeatingsawtooth cycle

Time (1000 X Tyye) —>

Kinetic Energy (AU)

o R N W




Typical result: 15t sawtooth event depends on initial conditions.
After many events, system reaches steady-state or periodic behavior

Kinetic Energy

o
"
p
e
1
&
L]

R e p e at| n g Kinetic Energy
sawtooth cycle

A
v

Precursor phase Crash phase



Poincare plots during a single sawtooth cycle

40 55 70 85 100



DB: C1.hS
Cycle: 30 Time: 60000

—0,004

~—0.005

I-u.ﬂm
-0.003

Isosurface of p = .006





Kinetic Energy

V=R*VUxVg+ Rza)V¢+%Vl;(

Kinetic Energy in the three velocity components

le-3
le-4 A U

_—
le-5 A X
le-6 A
le-7 A
le-8 A
le-9 A
le-10 . . . .

0 2000 4000 6000 8000 10000

t / tAlfven

The poloidal velocity decomposition used in M3D-C! is

very effective in capturing most of the poloidal flow in U.
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Stationary States with Flow

In lower viscosity cases, the sawtooth
behavior stops after a few cycles, and a

central helical (1,1) structure forms with flow.

This flow Is such as to flatten the central
pressure and temperature. This flattening
causes the current density to also flatten
near the center, keeping g, ~ 1 in the central
region.

38



Bx107"®

Ex107°

4x107°

Kinetic Energy (u,B%/2)

r

P

o
@

_ 1+ steady—state/C1.h5 ]

sowtooth/L1.no Central poloidal velocity vectors

for steady-state equilibrium i

e e L e  w e e e e e R T 4 e e w e b 4 4 momoms .
CLLDTTTI oS S mmmale—mma il Sommwnt - SirrsIiil,
P it R R L A AN M
AL R I it T U T T B S T S S B A T T
[ it I vy [ | [P o N P IIaN
el I I A R A frlTiNa
et i e e [ bRl RVERES [P I
[P ey DO L Vet DL lt""‘ [ I
[, Chme 2D VYT Ll Ly vt tt, ot
AN e oo L R T T e, YANT Lt LIRS
NN NIIIccriaarIol SRR R ILL S S
B P T T e, A S
smm—— oI 2 . oI Rk

Sawtoothing discharge -
Non-sawtoothing discharge

5.0%10* 1.0x10° 1.5x10° 2.0%

Time (Tamen)



g-profile

4.5

4.0 1

3.5 4

3.0

2.5 A

2.0 A

1.5 A1

1.0

0.5

Comparison of 3D Sawtooth Free Helical Stationary State
(SFHSS) with 2D configuration with same transport parameters

2D 3D
4.5
— t=0 4.0 4 — t=0
— t=24000 — 1t=24000
t=48000 35 1 t=48000
— t=96000 20 - — 1t=96000
o .
E 2.5
o
O
2.0
1.5 4
1.0 4
T T T T 0.5 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
minor radius minor radius

Exact same case was run with M3D-C1 in 2D and in 3D.
* In 2D, g, drops to about 0.7.
 In3D, itis clamped at 1.0
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Comparison of 3D Sawtooth Free Helical Stationary State
(SFHSS) with 2D configuration with same transport parameters

2D
o pressure |
: toroidal |
N \ current |
i / \ density |
f / \\ :
1} ]
: \
i \
: AN
of O

3D

; pressure |
3¢ .

: toroidal

: current |
2f /\_ﬂ density 1
1f \ ]
Oi

In 3D, pressure and toroidal current density are much less peaked.



Close up of central toroidal velocity contours (top) and poloidal velocity vectors for

stationary state at different toroidal angles

Vi(max) ~ 0.0004, V,(max)~ 0.0002



Differences in sawtooth behavior for bean-shaped and elliptical-
shaped plasmas has been well documented experimentally
(Lazarus, Tobias, ...)

1.2 14 18 1.8 2.0 2.3 1.2 1.4 18 18 20 2.2
R (L) R (L)

DIII-D shot 118164 DIII-D shot 118162



We have imported these equilibria from geqdsk files, and inferred the
transport properties from the plasma properties...simulations in

progress
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Stationary Current Density for DIlI-D Oval (shot 118164)




Stationary velocity stream function for DIII-D Oval (shot 118164)




Oval stationary state has many islands
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Summary

« 3D MHD in a highly magnetized high temperature plasma

— Multiple timescales (ideal, reconnection, transport) demand implicit time
advance

— Implicit matrix contains large range of eigenvalues associated with the 3
different MHD wave types

« 3-step physics based preconditioner employed

— Split implicit method reduces matrix size by 2 and makes matrix near
symmetric and diagonally dominant

— Annihilation operators approximately split matrix into 3 diagonal blocks,
each with a greatly reduced condition number

— Block Jacobi preconditioner dramatically reduces the condition number of
each of the diagonal blocks

— Final preconditioned matrix given to GMRES converges in 10s of
iterations for fine zoned problem
e Recent Results

— Repeating sawtooth demonstrate multiple timescale calculations
— Stationary helical state can exist for some transport parameters 50



Extra Viewgraphs
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Hinetic Energy

In low viscosity S=10°> p=1x10%
runs, the
periodic
sawtooth dies
out and a helical
steady state is
formed

In higher
VISCOSity runs,
the periodic
sawtooth
remains
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Low viscosity run settles down to stationary state where KE is constant in time

Kinetic Energy




Large region in center where q ~ 1

Poincare plots are very similar at peak and valley of kinetic energy.

Two magnetic axes.
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¢=0 o=m/2 O=T ¢=3m/2

N N

Poloidal velocity (top) and toroidal velocity(bottom) form stationary helical structures



Comparison of sawtooth cycles for S=10° and S=10°

Kinetic Energy

S=105 p=3x10*4 n/u constant
Period:
~ 20007,
Period: i
~ 90001,
8/4/2011



Form of the Vector Fields (R.4.7) z

We express magnetic field in terms of two scalar fields such
that VeB =0 and it reduces to the standard form in 2D

A =R¥W¢xVf +yVg—F,InRZ

B=ng><V¢—VL2—;+(FO+R2Vif)V¢

Field from TF coils:

F = Mol

:VWXV¢—V8—¢+(FO+R2V2f)V¢

Gauge condition:

1 9, « 1
J:V(szzf)><v¢+szL a‘;—A WV RV oo A =0
%)
In a standard tokamak, these satisfy the orderings: V, =V- V¢8_¢
f <y <k

This ordering is used, not to neglect terms, but to devise efficient
and accurate numerical methods.
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Momentum Equation Projections

Recall the form of the momentum equation we are using:

n+1/2
(ME) {1 — 6% (5t)? L} v {1 — 62 (5t)? L} \'% +%{—Vp +ﬂi(v x B) x B} L
0

To apply the Galerkin method we take the following annihilation projections,
multiply by v, ,the i finite element basis function, and integrate over the domain

”d% vVpeV, xR*(ME) — Hdsr R*V v, x V p+(ME)

[[d*z viR*V p+(ME) - [[d°rvR*Vp+(ME)

~[[d*z vV, +R*(ME) - [[d°*z R?V,1,+(ME)

Comparing expressions on right with the velocity field, we see that this is

equivalent to multiplying by each term in the velocity.
1

V=R’VU xV¢+ szv¢+?vﬂ [VeL=0ow
Leads to (1) Discrete energy conserving equations, (2) Two energy conserving

subsets (reduced MHD). Also, orthogonality property leads to (3) Separation of 59
incompressible physics and (4) Well conditioned, diagonally dominant matrices.
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