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For magnetic confinement, there are 4 classes of major 
simulation codes, each addressing different phenomena
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• 3D MHD equations are a mixed system:  hyperbolic + parabolic
• This leads to multiple timescales in a magnetized plasma

• The hyperbolic terms are associated with ideal MHD wave propagation 
and global instabilities.   

• These are the shortest timescales:  typically micro-seconds

• The parabolic terms are associated with diffusion and transport of the 
magnetic field, current, pressures, and densities

• These are the longest timescales:  typically 100s of milliseconds

• To calculate both phenomena in a single simulation requires a highly 
implicit formulation so that the time step is determined by accuracy 
requirements only

• not by numerical stability requirements such as Courant condition

• The implicit solution procedure is complicated by the fact that the 
multiple timescales present in the physics lead to a very ill-conditioned
matrix equation that needs to be solved each time step.

• Here we describe the techniques we use to deal with this in M3D-C1

Summary and Overview:



4

2-Fluid 3D MHD Equations:
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The objective of the M3D-C1 project is to solve these equations as 
accurately as possible in 3D toroidal geometry with realistic  B.C. 
and optimized for a low-β torus with a strong toroidal field.

Contain ideal MHD, reconnection, and transport timescales
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Slow Wave Alfven Wave Fast Wave

Three types of wave solutions in ideal MHD
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• only propagates 
parallel to B
• only compresses fluid 
in parallel direction
• does not perturb 
magnetic field

• only propagates 
parallel to B
• incompressible
• only bends the 
field, does not 
compress it

• can propagate 
perpendicular to B
• only compresses fluid 
in ⊥ direction
• compresses the 
magnetic field

B
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Plasma instabilities grow 
out of these two waves

•This is the wave that 
makes equations stiff!
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Wave speed diagram for ideal MHD.  
Intersection points show wave velocity for 
given propagation direction.

fast wave:  VF

Alfvén wave: VA

slow wave: VS

The three ideal MHD waves have widely 
separate velocities for propagation with  0k Bi ∼

F A SV V V� �

For tokamak geometry and 
parameters, the three wave 
velocities satisfy the inequalities:

This leads to  multiple time-
scales, even within ideal MHD
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The advantage of an implicit solution is that the time step can be 
very large and still be numerically stable  (no Courant condition) 

If we discretize in space (finite difference, finite element, or 
spectral) and linearize the equations about the present time level, 
the implicit equations take the form:

1
11 12 13 1

21 22 23 2

31 32 33 3

n n

p

+
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A A A V r
A A A B r
A A A r

i

Implicit solution requires evaluating the 
spatial derivatives at the new time level.

Very large,  ~ (107 x 107)               
non-diagonally dominant,              
non-symmetric, ill-conditioned sparse 
matrix  (contains all MHD waves)
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The advantage of an implicit solution is that the time step can be 
very large and still be numerically stable  (no Courant condition) 

If we discretize in space (finite difference, finite element, or 
spectral) and linearize the equations about the present time level, 
the implicit equations take the form:

How best to solve this?

Preconditioned iterative method
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Preconditioning

bXA =•

Left preconditioning multiplies by a matrix from the left:

bPXAP •=••
Right preconditioning multiplies by a matrix from the right:

)or ( YP XXPY
bYPA

1 •=•=

=••
−

…preconditioning is a procedure of an application of a transformation, called 
the preconditioner, that conditions a given problem into a form that is more 
suitable for numerical solution.                        …..Wikipedia

The preconditioner P is chosen so that P A or A P has better properties 
than the original matrix A.  Most of the differences between the  different 
3D MHD codes is due to a difference in the preconditioning techniques.  
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Right preconditioning multiplies by a matrix from the right:

)or ( YP XXPY
bYPA

1 •=•=

=••
−

…preconditioning is a procedure of an application of a transformation, called 
the preconditioner, that conditions a given problem into a form that is more 
suitable for numerical solution.                        …..Wikipedia

The preconditioner P is chosen so that P A or A P has better properties 
than the original matrix A.  Most of the differences between the  different 
3D MHD codes is due to a difference in the preconditioning techniques.  

Here we use a 3-level preconditioner that is motivated by the physics of 
MHD phenomena in tokamaks.



“In ending this book with the subject of preconditioners, we find 
ourselves at the philosophical center of the scientific computing of 
the future…

Nothing will be more central to computational science in the next 
century than the art of transforming a problem that appears 
intractable into another whose solution can be approximated 
rapidly. 

For Krylov subspace matrix iterations, this is preconditioning.”

From:
L. N. Trefethen and D. Bau, III, Numerical Linear Algebra (SIAM) 1997

More on Preconditioning



“ Direct solvers are often the best option for 2‐dimensional 
problems, but not for 3‐dimensional problems.

Generally speaking, preconditioning attempts to improve the 
spectral properties of the coefficient matrix. For symmetric 
positive definite problems, the rate of convergence of the CG 
method depends on the spectral radius.

For non‐symmetric problems, the situation is more complicated 
and the eigenvalues may not describe the convergence 
properties.   Nevertheless, a clustered spectrum (away from 0) 
often results in rapid convergence, particularly when the 
preconditioned matrix is close to normal.  “

FROM:  Michele Benzi, “Preconditioning Techniques for Large Linear 
Systems:  A Survey”, J. Comput. Phys. 182, 418‐477 (2002)

Still more on Preconditioning
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Make the matrix 
(close to) symmetric

Reduce the spectral radius (using 
2D direct solves if needed)+

max

min

( )A
λ

ρ
λ

≡
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Original matrix 
multiplying

Vn+1, Bn+1, pn+1

• non-symmetric,
• non-diagonally 
dominant &  
• large range of 
eigenvalues

(1) Split implicit 
formulation

Smaller matrix 
multiplying Vn+1 only, 
• nearly symmetric 
• closer to diagonal
• still with large 
range of eigenvalues

(2) Apply 
annihilation 
operators

Matrix  now 
consists of 3 
dominant diagonal 
blocks, each with 
narrower range of 
eigenvalues.

(3) Apply block-Jacobi 
preconditioner by using 
SuperLU_dist on each 
poloidal plane independently

Now, range of 
eigenvalues in 
each block is 
greatly reduced. 

G
M

R
E

S

3 step physics-based preconditioner greatly improves 
iterative solve

Preconditioned 
system converges 
in 10’s of iterations 
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(1) Split implicit formulation eliminates Bn+1 and pn+1 in favor of Vn+1

2 2
2

2 2 0

V pc
V Vt x c

p V t xc
t x

∂ ∂ ⎫= ⎪ ∂ ∂⎪∂ ∂ − =⎬∂ ∂ ∂ ∂⎪=
⎪∂ ∂ ⎭

1 1 1
1/2 1/2

1 1 1
1/2 1/2 1

n n n n
j j j j

n n n n
j j j j

V V p p
c

t x

p p V V
c

t x

δ δ

δ δ

+ + +
+ −

+ + +
+ + +

⎛ ⎞− −
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− −

= ⎜ ⎟⎜ ⎟
⎝ ⎠

As an example, consider the 
simple 1D wave equation for 
velocity V and pressure p

Implicit FD time advance 
evaluates spatial derivatives 
at the new time level
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(1) Split implicit formulation eliminates Bn+1 and pn+1 in favor of Vn+1

2 2
2

2 2 0

V pc
V Vt x c

p V t xc
t x

∂ ∂ ⎫= ⎪ ∂ ∂⎪∂ ∂ − =⎬∂ ∂ ∂ ∂⎪=
⎪∂ ∂ ⎭

( )

1 1 1
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2
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j j j j

V V V p p
V V tc tc

x x

tcp p V V
x

δ δ
δ δ

δ
δ

+ + +
+ − + −+

+ + +
+ + +

⎛ ⎞ ⎛ ⎞− + −
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= + −

As an example, consider the 
simple 1D wave equation for 
velocity V and pressure p

Implicit FD time advance 
evaluates spatial derivatives 
at the new time level

1 1 1
1/2 1/2

1 1 1
1/2 1/2 1

n n n n
j j j j

n n n n
j j j j

V V p p
c

t x

p p V V
c

t x

δ δ

δ δ

+ + +
+ −

+ + +
+ + +

⎛ ⎞− −
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− −

= ⎜ ⎟⎜ ⎟
⎝ ⎠

Now, algebraically eliminate new time pressure in favor of velocity

These equations will give exactly the same answers, but can be solved sequentially!

Symmetric & 
diagonally 
dominant!
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2N

N

N

Substitution takes us from having to invert a 2N x 2N anti-symmetric system 
that has large off-diagonal elements to sequentially inverting a    N x N 
symmetric system that is diagonally dominant + the identity matrix.

Mathematically equivalent same answers! (but much better conditioned)

Schematic of difference in matrices to be inverted 
after applying split implicit formulation

1c tS
x

δ
δ

= �

Coupled system 
multiplying Vn+1 & pn+1

Un-coupled system multiplying 
Vn+1 & pn+1 separately



Relation of split implicit method to Schur Complement
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1n n+
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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A B V R
C D P Q
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1 1/2

1/2

1 3/2

, , , .
j j

T
j j
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s s s s V p
s s s s V p

s s s s V p
s

− −

+

+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = = =− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B C B V P

… … " "

" " " "

1n n+′ ′=A V R 1−′ = −A A B D C
1n n n−′ = −R R B D Q

The original system can be written as:

Here, A and D are diagonal matrices, and

Solve first for Pn+1 in terms of Vn+1:   Pn+1 = - D-1 C Vn+1 + D-1 Qn

Next, eliminate Pn+1:

known RHS

In this example, A’
is symmetric
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Now apply this technique to the basic 3D MHD equations:

Ideal MHD Equations for velocity, 
magnetic field, and pressure:

Symmetric Hyperbolic System

7-waves

Taylor Expand in Time 

Substitute from 2nd and 3rd equation into first, finite difference in time:

MHD Operator:



22

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥→ → → →⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

Original matrix 
multiplying

Vn+1, Bn+1, pn+1

• non-symmetric,
• non-diagonally 
dominant &  
• large range of 
eigenvalues

(1) Split implicit 
formulation

Smaller matrix 
multiplying Vn+1 only, 
• nearly symmetric 
• closer to diagonal
• still with large 
range of eigenvalues

(2) Apply 
annihilation 
operators

Matrix  now 
consists of 3 
dominant diagonal 
blocks, each with 
narrower range of 
eigenvalues.

(3) Apply block-Jacobi 
preconditioner by using 
SuperLU_dist on each 
poloidal plane independently

Now, range of 
eigenvalues in 
each block is 
greatly reduced. 

G
M

R
E

S

3 step physics-based preconditioner greatly improves 
iterative solve

Preconditioned 
system converges 
in 10’s of iterations 
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(2) Apply annihilation operators to separate 
eigenvalues into diagonal blocks

2 2
2

1R
R

UR ωφ φ χ⊥= ∇ ×∇ + ∇ + ∇V

φ

Z

R

Associated mainly with 
the shear Alfven wave: 
does not compress the 
toroidal field

Associated mainly with 
the slow wave:  also 
does not compress the 
toroidal field

Associated mainly with 
the fast wave: does
compress the toroidal 
field

To obtain scalar equations, we apply annihilation projections to isolate the 
physics associated with the different wave types in different blocks in the matrix

2

2

2

R

R

R

φ

φ

⊥

−
⊥

∇ ∇ ×

∇

− ∇

i

i

i

( )21 ( )

1

i
GV

t L
t

p
nM μ

θ δ ∂
− + • ∇

∂

⎡ ⎤= −∇ + × ∇−⎣ ⎦∇ −

V V

J Π

V

B Π ii

Alfven wave:

slow wave:

fast wave:

Velocity vector written in terms of 3 scalar fields (Helmholtz decomposition):

Code can be run with 1,2 (reduced MHD) 
or 3 (full MHD) velocity variables

ˆ ˆR Z
R Z⊥

∂ ∂
∇ ≡ +

∂ ∂



Aside on the form of the Vector Fields
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Because the externally imposed toroidal field in a tokamak is very 
strong, any plasma instability will slip through this field and not 
compress it.  We need to be able to model this motion very 
accurately because of the weak forces causing the instability.

2 2
2

1R
R

UR ωφ φ χ⊥= ∇ ×∇ + ∇ + ∇V

( )

( )
[ ]

2
0

0

0

t

R U F

F U

φ

φ φ φ

φ

∂⎡ ⎤∇ = ∇× ×⎢ ⎥∂⎣ ⎦
⎡ ⎤= ∇ ∇× ∇ ×∇ × ∇⎣ ⎦

= − ∇ ∇ ×∇

=

B V Bi

i

i

In M3D-C1, we express the 
velocity  field as shown    

Consider now the action of the first 
term in V on the external toroidal field:

• Any unstable motion 
will mostly consist of the 
velocity component U….

• Analytic elimination of 
this potentially 
stabilizing term greatly 
increases accuracy.

The velocity field U does not 
compress the external toroidal field!

2
0F R Uφ φ= ∇ = ∇ ×∇B V

φ

Z

R

All components orthogonal !
2 2

4
22 22 1Ud R R d

R
τ τω χ⊥ ⊥

⎡ ⎤= ∇ + + ∇⎢ ⎥⎣ ⎦∫ ∫V
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Fast Wave
λMAX/λMIN =7.3 E4

Alfven Wave
λMAX/λMIN =9.9 E4

Slow Wave
λMAX/λMIN =1.46 E6

[ ]
[ ]

[ ]

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ → ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

Original matrix: 
λMAX/λMIN= 1013

M3D-C1 can be run with 1, 2, or 3 velocity variables.   Tracking the 
eigenvalues shows how they separate into 3 groups in a cylinder

U ω+ U ω χ+ +

E
ig

en
va

lu
e

U
Number of velocity variables

Annihilation 
operators split this 
into 3 loosely 
connected matrices, 
each with a condition 
number much less 
than original matrix
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[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥→ → → →⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

Original matrix 
multiplying

Vn+1, Bn+1, pn+1

• non-symmetric,
• non-diagonally 
dominant &  
• large range of 
eigenvalues

(1) Split implicit 
formulation

Smaller matrix 
multiplying Vn+1 only, 
• nearly symmetric 
• closer to diagonal
• still with large 
range of eigenvalues

(2) Apply 
annihilation 
operators

Matrix  now 
consists of 3 
dominant diagonal 
blocks, each with 
narrower range of 
eigenvalues.

(3) Apply block-Jacobi 
preconditioner by using 
SuperLU_dist on each 
poloidal plane independently

Now, range of 
eigenvalues in 
each block is 
greatly reduced. 

G
M

R
E

S

3 step physics-based preconditioner greatly improves 
iterative solve

Preconditioned 
system converges 
in 10’s of iterations 
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M3D-C1 uses a triangular wedge high order finite element

(3) Apply block-Jacobi preconditioner by using 
SuperLU_dist on each poloidal plane independently   

Block Jacobi Preconditioner: greatly reduces condition number 

Top view:  16-32 
toroidal prisms

Slice view: 
~ 104 nodes/plane

• Continuous 1st derivatives in all directions … C1 continuity
• Unstructured triangles in (R,Z) plane
• Structured in toroidal direction ( ϕ )

Triangular wedge 
integration volume

Because of the small zone size within the plane, and hence 
strong coupling, we precondition the matrix by directly inverting 
the components within each poloidal plane simultaneously.
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(3) Apply block-Jacobi preconditioner by using 
SuperLU_dist on each poloidal plane independently   (cont)

• All the nodes on each poloidal plane are coupled only to their nearest 
neighbors.  This leads to block triangular structure

1
1 1 1

.

.

.

n n+
⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1

j-1 j-1

j jj j j

j+1 j+1

N NN N N

V yB C A
.

V y
V yA B C
V y

.

.
V yC A B

i i i
i i i

i
i i i

i i i
i i i

Block Jacobi preconditioner corresponds to 
multiplying each row by inverse of diagonal block                  

PETSc now has the capability of doing this using 
SuperLU_Dist or MUMPS concurrently on each plane

-1
jB

, ,j j jA B C

are 2D sparse 
matrices at plane j 

jV denotes all the 
velocity variables 
on plane j
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NUMVAR=1
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Eigenvalues of A=3 3D Matrix
Before and After Preconditioning

New modes 
in this range

New 
modes 

2.09 E-9 Reduced by factor 2.0 

U U ω+ U ω χ+ +



Extensive benchmarking for ideal,  
resistive, and two fluid modes

Ideal MHD Resistive MHD 2-Fluid 
Reconnection
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Weak Scaling Study

Number of Processors
100 1000 10000

C
yc

le
 T

im
e

100

200

300

400

500

600
700
800
900

1000

.08

.04 

.03 

.02 
Ideal Scaling

.08 .02

8 16
16 32

40 60

16 24 32 64

Number of 
toroidal planes 
varied from 8 
to 64

Parallel Scaling Studies have been performed from 96  to 12288 p 

Triangle linear 
dimension 
varied by 
factor of 4

Time increased by 
1.7 as # of zones 
increased by 130
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Resistivity:
Thermal Conductivity:

Viscosity: uniform (~η)

Current controller provides loop 
voltage to maintain plasma current 
at initial value.

Loop voltage provides thermal 
energy through Ohmic heating

Current density periodically peaks, 
becomes unstable, reconnects, 
and broadens…periodic cycle  
(sawtooth)

Transport Timescale simulations in 
which stability is important:       
with Δt = 40 τA

3/2 1/2

610

n pκ

κ κ

−
⊥

⊥

=

=&

3/2 3/2n pη −=

Specify a transport model:



Generic sawtooth studies are now 
underway



Typical result:   1st sawtooth event depends on initial conditions.    
After many events, system reaches steady-state or periodic behavior

Repeating 
sawtooth cycle

Precursor phase Crash phase



40 45 50 60 70

75 80 85 90 100

10040 7055 85

Poincare plots during a single sawtooth cycle
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Kinetic Energy in the three velocity components

t / t Alfven

0 2000 4000 6000 8000 10000
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U
ω
χ

2 2
2

1R U R
R

ωφ φ χ⊥= ∇ ×∇ + ∇ + ∇V

The poloidal velocity decomposition used in M3D-C1 is 
very effective in capturing most of the poloidal flow in U.
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Stationary States with Flow

In lower viscosity cases, the sawtooth 
behavior stops after a few cycles, and a 
central helical (1,1) structure forms with flow.

This flow is such as to flatten the central 
pressure and temperature.  This flattening 
causes the current density to also flatten 
near the center, keeping q0 ~ 1 in the central 
region.



Sawtoothing discharge
Non-sawtoothing discharge

ϕ=0o ϕ=90o ϕ=180o ϕ=270o

Central poloidal velocity vectors 
for steady-state equilibrium

K
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0B

2 /2
)

Time (τAlfvén)
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2D

minor radius
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3D
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Exact same case was run with M3D-C1 in 2D and in 3D.
• In 2D, q0 drops to about 0.7.   
• In 3D, it is clamped at 1.0

Comparison of 3D Sawtooth Free Helical Stationary State 
(SFHSS) with 2D configuration with same transport parameters
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toroidal
current 
density

toroidal
current 
density

In 3D, pressure and toroidal current density are much less peaked.

Comparison of 3D Sawtooth Free Helical Stationary State 
(SFHSS) with 2D configuration with same transport parameters



Close up of central toroidal velocity contours (top) and poloidal velocity vectors for 
stationary state at different toroidal angles:    VT(max) ~ 0.0004,   VP(max) ~ 0.0002

φ = 0 φ = 90o φ = 180o φ = 270o



DIII-D shot 118164 DIII-D shot 118162

Differences in sawtooth behavior for bean-shaped and elliptical-
shaped plasmas has been well documented experimentally   
(Lazarus, Tobias, …)



DIII-D shot 118164 DIII-D shot 118162

We have imported these equilibria from geqdsk files, and inferred the 
transport properties from the plasma properties…simulations in 
progress
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Stationary Pressure for DIII-D Oval (shot 118164)
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ϕ = 0o ϕ = 90o ϕ = 180o ϕ = 270o
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Stationary Current Density for DIII-D Oval (shot 118164)

ϕ = 0o ϕ = 90o ϕ = 180o ϕ = 270o
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Stationary velocity stream function for DIII-D Oval (shot 118164)

ϕ = 0o ϕ = 90o ϕ = 180o ϕ = 270o



Oval stationary state has many islands
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Poloidal Flux
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Summary
• 3D MHD in a highly magnetized high temperature plasma

– Multiple timescales (ideal, reconnection, transport) demand implicit time 
advance

– Implicit matrix contains large range of eigenvalues associated with the 3 
different MHD wave types

• 3-step physics based preconditioner employed
– Split implicit method reduces matrix size by 2 and makes matrix near 

symmetric and diagonally dominant
– Annihilation operators approximately split matrix into 3 diagonal blocks, 

each with a greatly reduced condition number
– Block Jacobi preconditioner dramatically reduces the condition number of 

each of the diagonal blocks
– Final preconditioned matrix given to GMRES converges in 10s of 

iterations for fine zoned problem

• Recent Results
– Repeating sawtooth demonstrate multiple timescale calculations
– Stationary helical state can exist for some transport parameters 50



Extra Viewgraphs
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8/4/2011 52

S=105 μ=1x10-4

S=105 μ=3x10-4

In low viscosity 
runs, the 
periodic 
sawtooth dies 
out and a helical 
steady state is 
formed

In higher 
viscosity runs, 
the periodic 
sawtooth 
remains



297 298

Low viscosity run settles down to stationary state where KE is constant in time



297 298

Poincare plots are very similar at peak and valley of kinetic energy.   
Two magnetic axes.   Large region in center where q ~ 1



ϕ=0 ϕ=π/2 ϕ=π ϕ=3π/2

Helical distortion in central pressure (top) and toroidal current density 



Poloidal velocity (top) and toroidal velocity(bottom) form stationary helical structures

ϕ=0 ϕ=π/2 ϕ=π ϕ=3π/2
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S=105 μ=3x10-4

S=106 μ=3x10-5

Period:
~ 2000τA

Period:
~ 9000τA

Comparison of sawtooth cycles for S=105 and S=106

η/μ constant



Form of the Vector Fields
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In a standard tokamak, these satisfy the orderings:

This ordering is used, not to neglect terms, but to devise efficient 
and accurate numerical methods.

2
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2 2
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2 2
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2 2 *
2

ˆln

( )
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F R

F R
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φ φ

φ φ
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φ φ
φ

φ ψ φ
φ
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= ∇ ×∇ + ∇ −
∂

= ∇ ×∇ − ∇ + + ∇ ∇
∂

∂
= ∇ ×∇ − ∇ + + ∇ ∇

∂
∂

= ∇ ∇ ×∇ + ∇ − Δ ∇
∂
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B

J

We express magnetic field in terms of two scalar fields such 
that                   and it reduces to the standard form in 2D

φ

Z

R

2
2

1 0R
R

φ
φ

⊥

⊥

∇ =

∂
∇ ≡ ∇ − ∇

∂

Ai

0f Fψ� �

0∇ ≡Bi

0
0 2

TFIF μ
π

=

Field from TF  coils:

Gauge condition:



Momentum Equation Projections
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3 2 3 2(ME) (ME)i id R d Rτ ν ϕ τ ν ϕ⊥ ⊥∇ ∇ × → ∇ × ∇∫∫ ∫∫i i

3 2 3 2(ME) (ME)i id R d Rτ ν ϕ τ ν ϕ∇ → ∇∫∫ ∫∫i i

3 2 3 2(ME) (ME)i id R d Rτ ν τ ν− −
⊥ ⊥− ∇ → ∇∫∫ ∫∫i i

Recall the form of the momentum equation we are using:

(ME)

2 2
2

1UR R L W
R

φ φω δχ⊥= ∇ ×∇ + ∇ + ∇ =∫V Vi

To apply the Galerkin method we take the following annihilation projections, 
multiply by     ,the ith finite element basis function, and integrate over the domain 

Comparing expressions on right with the velocity field, we see that this is 
equivalent to multiplying by each term in the velocity.

Leads to (1) Discrete energy conserving equations, (2) Two energy conserving 
subsets (reduced MHD).   Also, orthogonality property leads to (3) Separation of 
incompressible physics and  (4) Well conditioned, diagonally dominant matrices.

{ } { }
1/2

2 2 1 2 2

0

1( ) ( ) ( )
n

n n tt L t L pδθ δ θ δ
ρ μ

+

+ ⎧ ⎫
− = − + −∇ + ∇× × +⎨ ⎬

⎩ ⎭
I V I V B B "

iν
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