Propagation of Reconnection Energy Away from the X-line and its Relationship to Onset

Michael Shay

Univ. of Delaware/Bartol Research Institute

Shay, Drake, Eastwood, Phan, *Physical Review Letters*, Super-Alfvenic propagation of substorm reconnection signatures and Poynting flux, Vol. 107, 065001, 2011. • So, Ignoring my better judgement...

Magnetic Reconnection Generalized to Turbulent Systems

Michael Shay Department of Physics and Astronomy University of Delaware

Collaborators

Paul Cassak	West Virginia University
Bill Matthaeus	Univ. of Del.
Sergio Servidio	Italy
Tai Phan	Berkeley
Jonathan Eastwood	Imperial College, London
Homa Karimabadi	Sciber Quest
Bill Daughton	Los Alamos
Others	

Overview

- Basic Magnetic Reconnection
- Asymmetric Magnetic Reconnection
- Turbulent Magnetic Reconnection
- Conclusions

Overview

- Basic Magnetic Reconnection
- Asymmetric Magnetic Reconnection
- Turbulent Magnetic Reconnection
- Conclusions

Space Weather

- The nature of changing environmental conditions in space.
- Plasma: A gas of charged particles.

Magnetic Reconnection: Simplistic 2D

- Reconscious Rate at V in $\sim (\delta/\ell) c_A \delta$ Conscious at log control as $E_{out} \delta$ for $V_{in} B^2 \delta$ Conscious the control of the contr

Complex Reconnection

- Reconnection not so simple
 - Not quasi-steady
 - Not 2D

Retino et al., 2007

Dorelli et al., 2007

Trace Data

Overview

- Basic Magnetic Reconnection
- Asymmetric Magnetic Reconnection
- Turbulent Magnetic Reconnection
- Conclusions

Asymmetric Magnetic Reconnection

Asymmetric Diffusion Region V_{in2} B_2 Vout √ out V_{in1} B_1

- Use conservation equations again
 - Integrate MHD equations over area.

Formalize Conservation Laws

• Write MHD in conservative form ($\rho = \text{mass density}$, $\nu = \text{flow velocity}$, B = magnetic field, P = pressure, E = electric field,

$$\mathcal{E} = \frac{1}{2}\rho v^2 + \frac{P}{\gamma - 1} + \frac{B^2}{8\pi}$$

- = total energy)
- Integrate over closed surface.

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\vec{\nabla} \cdot \left(\rho \vec{v}\right) \\ \frac{\partial}{\partial t} \left(\rho \vec{v}\right) &= -\vec{\nabla} \cdot \left[\rho \vec{v} \vec{v} + \left(P + \frac{B^2}{8\pi}\right) \vec{I} - \frac{\vec{B} \vec{B}}{4\pi}\right] \\ \frac{\partial \mathcal{E}}{\partial t} &= \vec{\nabla} \cdot \left[\left(\mathcal{E} + P + \frac{B^2}{8\pi}\right) \vec{v} - \frac{\left(\vec{v} \cdot \vec{B}\right)}{4\pi} \vec{B}\right] \\ \frac{\partial \vec{B}}{\partial t} &= -\mathbf{c} \vec{\nabla} \times \vec{E} \end{aligned}$$

$$\int d\vec{S} \cdot \left(\rho \vec{v}\right) = \mathbf{0}$$
$$\int d\vec{S} \cdot \left[\rho \vec{v} \vec{v} + \left(P + \frac{B^2}{8\pi}\right) \vec{I} - \frac{\vec{B}\vec{B}}{4\pi}\right] = \mathbf{0}$$
$$\int d\vec{S} \cdot \left[\left(\mathcal{E} + P + \frac{B^2}{8\pi}\right) \vec{v} - \frac{\left(\vec{v} \cdot \vec{B}\right)}{4\pi} \vec{B}\right] = \mathbf{0}$$
$$\int d\vec{S} \times \vec{E} = \mathbf{0}$$

General Diffusion Region

- Steady state diffusion relation (not L = D)
- Integrate conservation relations

Conservation of mass Conservation of momentum Conservation of Energy $\partial B/\partial t = 0$

$$(\rho_1 v_1 + \rho_2 v_2) L \sim (\rho_{out} v_{out}) 2\delta$$

Pressure Balance $\left(\frac{B_1^2}{8\pi}v_1 + \frac{B_2^2}{8\pi}v_2\right)L \sim \left(\frac{1}{2}\rho_{out}v_{out}^2\right)v_{out} 2\delta$

 $\boldsymbol{v}_1 \boldsymbol{B}_1 \sim \boldsymbol{v}_2 \boldsymbol{B}_2$

Asymmetric Scaling Relations

- Assume reconnected flux tubes mix and conserve total volume.
 - Each flux tube contains same amount of flux:

• $B_1A_1 \sim B_2A_2$

$$\rho_{out} \sim \frac{M}{V} \sim \frac{\rho_1 A_1 L + \rho_2 A_2 L}{A_1 L + A_2 L}$$
$$\Rightarrow \quad \rho_{out} \sim \frac{\rho_1 B_2 + \rho_2 B_1}{B_1 + B_2}$$

$$v_{out}^2 \sim \frac{B_1 B_2}{4\pi\rho_{out}}$$
 and $E \sim \frac{1}{c} \left(\frac{2B_1 B_2}{B_1 + B_2}\right) v_{out} \frac{\delta}{L}$

Verification of Scaling

• Scaling laws for outflow speed v_{out} and reconnection rate E in terms of geometry and upstream parameters tested

- Very good agreement
- Other studies find agreement:
 - Borovsky and Hesse, 2007 (anomalous resistivity MHD)
 - Birn et al., 2008 (Anomalous resistivity MHD)
 - Borovsky et al., 2008 (Global MHD)
 - Pritchett, 2008 (Kinetic PIC)

Overview

- Basic Magnetic Reconnection
- Asymmetric Magnetic Reconnection
- Turbulent Magnetic Reconnection
- Conclusions

Laboratory Flux Ropes

- Large Plasma Device (LAPD)
 Gekelman, Carter, et al., 2012
- Measurements of magnetic flux ropes

Solar Structure

Solar Turbulence

Hinode (G-band 430nm and Ca II H 397nm)

- Granules
 - 1000km across
 - Convection cells across entire sun

The Solar Wind

- Continuous wind
 - Supersonic
 - Magnetic Field

STEREO Spacecraft 630-730nm

Plasma Heating - Magnetic Dissipation?

• Something is heating the solar corona

Model of Photosphere/Corona Transition "Physics of the Solar Corona," Aschwanden, 2005.

• Something is heating the solar wind

Wang et al., JGR, 106, 29401, 2001

Turbulent Reconnection

- System-sized current sheets with turbulence generated or added.
 - Matthaeus et al., 1986, 2003.
 - Malara et al., 1992
 - Kliem, 1995
 - Lazarian and Vishniac, 1999
 - Lapenta, 2008
 - Loureiro, 2009
- Typically see increases in reconnection rate due to turbulence (externally imposed and generated locally)
- Question: What are the properties of magnetic reconnection in a fully turbulent system?

Current

Dmitruk et al., 2003

Turbulent Reconnection

- Not well understood
- What is the nature of reconnection in turbulence?
- How do we describe it?
- How fast is turbulent reconnection?
- Different from Self-Generated Reconnection During Turbulence
 - This turbulence generates the reconnection.

2D MHD Turbulence Simulations $\frac{\partial \omega}{\partial t} = -(\mathbf{v} \cdot \nabla) \omega + (\mathbf{b} \cdot \nabla) j + R_{\nu}^{-1} \nabla^{2} \omega$ $\frac{\partial a}{\partial t} = -(\mathbf{v} \cdot \nabla) a + R_{\eta}^{-1} \nabla^{2} a$

where: $b = \nabla a \times \hat{z}$, $v = \nabla \phi \times \hat{z}$, $j = -\nabla^2 a$, $\omega = -\nabla^2 \phi$

- Dealiased (2/3 rule) pseudo-spectral code.
- Resolution up to 8192² grid points
- $R_{\eta} = R_{v} = 5000.$
- Total Energy: $E = (\frac{1}{2}) < v^2 + b^2 > \sim 1$

2D MHD: Direct Numerical Simulations

Current and Enstrophy

• Energy is initially in $5 \le k \le 30$ (k in units of $1/L_0$)

2D MHD Turbulence Simulations

Color: J Contours: a (gray: a>0, black: a<0) Note: a = A (out of page)

(Only 1/40 of the box is shown)

- Intermittent J structures
- Magnetic dissipation
 - Plain Diffusion
 - Magnetic Reconnection
 - Notice x-lines!
- Magnetic Topology
 - Extremum (critical points) of a
 - O-lines:
 - Minimum and Maximum
 - X-lines:
 - Saddle points

Hessian Theory

Study the Hessian of a to find extremum(critical points)

D. Biskamp, *Magnetic Reconnection in Plasmas* (Cambridge Univ. Press, Cambridge, 2000).

S. Rana, Surface *Topological Data Structures* (John Wiley & Sons, Chichester, England, 2004).

Critical Points in Turbulence

Magnetic potential *a* and critical points

a > 0	
a < 0	
maximum	*
minimum	\diamond
X-point	X

Distribution of Reconnection Rates

$$\dot{a} = R_{\mu}^{-1} \nabla^2 a \mid_{\times -\text{point}} = -E_{\times}$$

Normalized to the root mean-square magnetic fluctuation δb^{2}_{rms}

- Reconnection rates are broadly distributed
- Turbulence can be viewed as a sea of reconnecting islands with different reconnection rates.

Statistics of the Electric Field

How much of electric field *contributes* to reconnection?

$$E = -\frac{v}{c} \times b + \eta j$$

PDF(E_{v×b}) is typical of solar wind plasmas

> Milano *et al. PRE* (2002), Breech *et al.* JGR(2003)

 $E_{\mathbf{v}\times\mathbf{b}} > E_{\mathbf{x}} > E_{ni}$

In General: Convection > Reconnection > Diffusion

R. Rate Geometry Dependence

 Highest R. Rates scale with diffusion region geometry

$$\lambda_R \equiv \frac{\lambda_{max}}{\lambda_{min}}$$

Since
$$\frac{\delta}{D} \equiv \frac{\delta}{\ell} \approx \sqrt{\frac{1}{\lambda_R}}$$

 $E_{\times} \sim \frac{D}{\delta}$

- At first glance:
 - Opposite of normal Reconnection prediction!

Complexity of Reconnection

- How do we characterize this complex reconnection?
 - Hessian Eigenvalues

- Examine each x-line
 - Determine δ , ℓ , and B
 - → E_x(th.) vs. E_x (exp.)

Dimensions of the Diffusion Region

- Hessian eigenvectors
 - Fit determines δ , B_{up1} , B_{up2}

 $\ell \simeq \delta \sqrt{\frac{\lambda_{max}}{\lambda_{min}}}$

$$J_{z} = A_{1} \operatorname{sech}^{2}\left(\frac{s-s_{0}}{\delta_{1}}\right) \quad \{s \ge s_{0}\}$$
$$J_{z} = A_{2} \operatorname{sech}^{2}\left(\frac{s-s_{0}}{\delta_{2}}\right) \quad \{s < s_{0}\}$$

Coherence Key for Reconnection

- Randomize $a \rightarrow slower$ reconnection

- Reconnection in turbulence not described by random phases.
 - Could lead to errors in testparticle calculations.

Coherence Key

- Intermittency
 - Current sheets
 - Non-gaussian pdfs
- Phases in k-space very important!

 Borovosky et al., 2007, Cassak and Shay, 2007, 2008, Swisdak et al., 2007, Pritchett et al., 2008.

Reconnection Rate in Turbulence

$$E_{\times} = \sqrt{\frac{b_1^{3/2} b_2^{3/2}}{R_{\mu} D}}$$

- Asymmetric Reconnection model organizes data
 - Only coherent current sheet x-lines
 - Turbulence determines
 SP parameters
 - Bup
 - D

Servidio et al., Phys Rev. Lett. (2009).

- Very Surprising:
 - Remember:
 - MHD smashing islands together much faster than reconnection.
 - Sweet-Parker assumes Steady-State!
 - > Yet, somehow it works.

How can quasi-steady theory be valid?

- We have limited ourselves to very actively reconnecting islands.
- What does it take to get "fast" reconnection?
 - Continuous pushing for a "long" time.
 - A quick bounce between islands won't do it.
 - Continuous pushing => "Quasi-steady" reconnection.
- Examine time dependence of reconnection rates.

Only Scratched the Surface

Velocities

- Properties
- Viscous damping?
- Dynamic time behavior of x-lines?
 - Typical time scale for reconnection?
 - Onset, fast, decay
 - Quasi-steady assumption okay?
- Collisionless plasma
 - Hall term: Donato et al., Submitted, 2012.
- Three-dimensional simulations
- Kinetic PIC Simulations

Numerical Issues

- Even harder than "simple" reconnection simulations.
 - Regular MHD:
 - $\delta_{dissipation} << L_{eddy} << L_{driving}$
 - Kinetic PIC (forget it)
 - $\delta_e << \delta_i << L_{eddy} << L_{driving scale}$
- MHD
 - Direct numerical simulations expense
 - Very careful to resolve dissipation
 - Will still get Energy spectra with unphysical dissipation.
- Kinetic

Hall MHD Turbulence (2D)

- Initial Study of Hall MHD Reconnection
 - Donato et al.,submitted,2012.
- Hall MHD
 - Stronger
 current sheets
 - Higher Rates

Kinetic PIC Smulation

- Two Dimensional Kelvin Helmholtz
 Simulations
 - Karimabadi et al, In Preparation, 2012.

Do We Care?

- So we need current sheets for the reconnection.
 - So?
- Key Question:
 - Are current sheets and magnetic reconnection critical to understand the dissipation in turbulence?
 - Yes! (says a believer in reconnection)
 - However
 - Dissipation in turbulence often characterized through wave analysis (random phases).

Conclusions

- Self-organization processes in turbulence produce coherent current sheets
- Hessian analysis of extrema
 - Broad range of reconnection rates
- Asymmetric Sweet-Parker analysis
 - Organizes coherent x-line current sheets
 - Very surprising (Quasi-steady theory works!)
- Robustly Reconnecting current sheets are strongly coherent
 - Random phase approximation not necessarily valid.