Bottom-up Integrated Theoretical-Experimental Science for the Plasma-Material Interface

Predrag Krstić

JICS,
University of Tennessee
&
Physics Division,
ORNL
&
DBA TheoretiK

Support from: US DOE (OFES and OBES) and ORNL LDRD program

IPAM, April 2012
Our thanks to John Hogan (FED, ORNL)

Close collaborators:

Theory:
- CMD
- Mat.
- PWDF
- TBDFT modeling

Carlos Reinhold (PD, ORNL)
Steve Stuart (Clemson U.)
Paul Kent (ORNL)
Alain Allouche (CNRS, Fr)
K. Morokuma, J. Jakowski, H. Witek

Experiment:

Fred Meyer (PD, ORNL)
Eric Hollmann (UCSD)
JP Allain (Purdue)
Chase Taylor (Purdue)
Jae (ORISE) PhD
Jonny (UTK) PhD
Chris (MTSU) PhD

Students

Stephan Irle, Nagoya U

Stephan Irle, Nagoya U

Chase Taylor, Purdue

Students

IPAM, April 2012
Why PLASMA-MATERIAL INTERFACE is such an important problem?
All energy from D-T fusion reactions passes through first wall

- Flux of (particles + heat + 14 MeV neutrons) \(\sim 10 \text{ MW/m}^2\)

Schematic magnetic fusion reactor

Unlike nuclear fission where energy is volume-distributed

- Plasma-material interactions limit performance in present non-DT experiments

TORE SUPRA (France)

IR image of wall, \(T_{\text{max}} \sim 600^\circ \text{ C}\)
How to build an effective science of PMI?

Guiding principle:

If Edison had a needle to find in a haystack, he would proceed at once with the diligence of the bee to examine straw after straw until he found the object of his search... I was a sorry witness of such doings, knowing that a little theory and calculation would have saved him 90% of his labor.

–Nikola Tesla, New York Times, October 19, 1931

The traditional trial-and-error approach to PMI for future fusion devices by successively refitting the walls of toroidal plasma devices with different materials and component designs is becoming prohibitively slow and costly.
Why bottom-up science?
Probing the PMI requires integration of many experimental and theoretical techniques spanning orders of magnitude in time, length, and energy scales. For example, Rutherford backscattering, elastic recoil detection, low energy ion scattering, x-ray photoelectron spectroscopy, secondary neutral mass spectrometry, quartz crystal microbalance, and Rutherford backscattering, elastic recoil detection are some of the experimental techniques used. Computational modeling, such as Monte-Carlo techniques, and surface modeling, bulk modeling, and diffusion to bulk transport are some of the theoretical techniques used. Surface techniques such as low energy ion scattering, x-ray photoelectron spectroscopy, and Rutherford backscattering, elastic recoil detection are also employed. The integration of these techniques allows for a comprehensive understanding of the PMI.
What does flux of 10^{25} particles/m2s mean (ITER) for a typical atomistic (MD) simulation?

At a box of surface of 3 nm lateral dim? a few thousands atoms (carbon)

The flux is 0.01 particle/nm2ns

1) 1 particle at the interface surface of the cell each 100 ps.

But for deuterium with impact energy less then 100 eV: Penetration is less than 2 nm, typical sputtering process takes up to 50 ps

Each impact independent, uncorrelated!

In effect interaction of an impact particle with nanosize macromolecule functionalizes it!

News is that each particle will change the surface for the subsequent impact!
PMI simulations: Erosion, sputtering, retention, redeposition, reflection, displacement… originated from atomic processes

- Atomistic approaches therefore natural starting point
 - Quantum computational chemistry:
 - Individual chemical reactions (and dynamics) for a few tens of atoms; electronic excitations.
 - Quantum (DFTB) and Classical Molecular dynamics (CMD):
 - Processes with hundreds and thousands of atoms; classical dynamics on a predefined potential surface; as good as the potential is good
 - DFTB parameterized QMD, 1000x slower than CMD, 1000x faster than DFT based QMD
 (a good fit to current supercomputers, we already parameterized DFTB for all fusion materials)
 - Binary collision approximation:
 - Good for physical sputtering cascades, elastic processes (TRIM), displacement damage
 - Kinetic Monte Carlo (KMC):
 - For long time-scale processes
 - Diffusion of impurities in surfaces and bulk; depends on the probability rates for individual processes determined by atomistic approaches above

... Material science: Continuum approaches

- Since irradiation creates dynamical surface (a modified interface), cumulative bombardment is the key for modeling experiment (learned from previous PMI work)
Classical MD is only as good as the interatomic potential model used

Most advanced: hydro-carbon potential developed for chemistry

- Brenner, 1990, 2002: REBO, short range, 0.2nm
- more sophisticated AIREBO (Stuart, 2000, 2004, 1.1 nm)
- > 400 semi-empirical parameters, “bond order”, chemistry

\[E = \sum_{i,j} V_{rep}(r_{ij}) - b_{ij}(r_{ij})V_{attr}(r_{ij}) \]

EX: MD calc. of reflection coeff.

- Significant sensitivity to changes in potential model for some processes
- Experimental validation essential to establish credible MD simulation.
- Interatomic potentials for W and Be are less mature than for carbon and require more experimental validation.

Reinhold & Krstic, 2008
Simulation is computationally intensive and multi-scale

Creation of the surface; “damaging”, annealing, hydrogenation

Short-time scale MD simulation
H collisional cascade; chemical processes

Short-time products
sputtering, reflection, implantation

Probability rates:
diffusion, reactions

Long-time scale transport equation
(sources and sinks) for various particles

Monte Carlo simulation

Total erosion, sputtering yield, retention
Surface desorption

FAST
ps-ns nm

Terascale-petascale challenge

SLOW
ms-s μm

Development of damage,
Diffusion of damage

Diffusion of hydrogen,
sputtering products
Why is PMI so difficult problem?

Interfacial physics, “when the two worlds meet” : traditionally the most challenging areas of science

Dynamical surface communicates between two worlds: Plasma and Material
PMI has many fundamental processes & synergies

When an ion or neutral arrives at a surface it undergoes a series of elastic and inelastic collisions with the atoms of the solid.

Drivers: Plasma
Multi -T, -n, -species, plasma irradiation, neutrons
sheath acceleration

Damage Effects:
Vacancies, bubbles, blisters, dislocations, voids, neutrons?

Re-deposition
Co-deposition
Erosion
Ablation
Melting (metals)

Give rise to synergistic effects

IPAM, April 2012
- Type (H, H\(_2\), Ar, N, He)
 - Impinging projectile energy (1-100 eV), angle
 - Internal state of the projectile
 - Isotopic effect (D, T)
 - Flux density (10\(^{21}\)-10\(^{25}\) m\(^{-2}\)s\(^{-1}\))

- Surface microstructure
 - Crystalline, amorphous a-C, polycrystalline); Doping (Si, B)
 - Hydrogenation level (H/C ratio)
 - Hybridization level (sp/sp\(^2\)/sp\(^3\) ratio)
 - Surface morphology; preparation
 - Surface temperature (300-1500K)

- Predefined classical potentials (Brenner, REBO, AIREBO (Stuart))
 Limit to < 100 eV (D-D,D-C); <30 eV (C-C)

Possible mechanism: Swift bond breaking
PMI strategy is evolving thru ITER towards DEMO reactor

ITER (> 2020) uses multi-matl walls
Pulses ~ hundreds of sec
~Be Main chamber wall (700 m²)
Low Z + oxygen getter
~W Baffle/Dome (100 m²)
Funnels exhaust to divertor chamber
Low erosion, long lifetime
~ C Divertor Target (50 m²) (Graphite)
Minimize high-Z impurities
(which lead to large radiative losses)

DEMO (> 2030?):
• Steady-state, power flux ~ 10 MW/m²
• Hot walls (>600 C)
• Refractory metals
• Neutron irradiation 14.1 MeV (> 100 dpa)
Parameter range inaccessible in present devices
.valid extrapolation needed!
Materials exposed to plasma are modified, resulting in a “dynamical” surface.

Amorphization depends on penetration depth rather than on deposited energy.

Chemical sputtering of hydrocarbons

Surface morphology

Reaching “steady state”

Counts of R-CD_x moieties, x=1,2,3

Fluence (10^{20} m^{-2})

H density

C density
How to validate theory with experiments (and vv)?
What have we learned from the “next door” beam-surface experiments?

Beam-surface exp’t: precision control of projectiles & targets . . .

. . . enabled development & validation of MD approach

Remarkable agreement of theory & exp’t when simulation mimics exp’t. No fitting parameters!

Key: simulation prepares surface by bombardment!
- Fluence (not flux) like that in experiment
- Type, internal state, energy, angle as in exp’t

Chemical sputtering creates a dynamic, evolving surface

- Competition between beam induced C=C bond breaking, H passivation, HC precursor formation, and H loss, HC product emission

- At steady state dynamic equilibrium between H loading and H$_2$ loss has been reached

Time evolution of methane signal

Vergara et al., 2006

Steady state methane yield/D

Evolution of the density profile

IPAM, April 2012
New physics from theory-experiment cannot reach hydrocarbon chemistry in plasma!

Approximate thermalization indicated
Functions of hydrocarbon mass and impacting D energy

Ejection energy
Ejection temperature

3) Angular distributions $dn/d\Omega$

Angular moments L follow a sin law or are isotropic.

CM velocities follow a cos-law.

4) Isotope effects increase with the mass of the projectile.
 - Bond-breaking threshold are nearly mass independent and are dominated by associative-dissociative reactions.

Where MD Fails?

Do we need better potentials?
Do we need direct line of sight experiments?

Open problem: simulations overestimates the yield of large molecules
- Erosion of carbon oversized at higher energies

We have developed a new hydrocarbon potential which includes ZBL corrections for higher impact energies and additional hydrocarbon params

Example: Where MD fails?
Dependence of Carbon erosion on the surface temperature

Time scale of thermal D-release longer than ps-ns scale

Legend
- MD C yield
- Exp Balden
- MD C yield with red D

15 eV D impact at deuterated a-C

Dadras et al, 2010
Lithium wall conditioning improves confinement! Why?

• Controlled experiments on many thoroidal devices demonstrated reduced recycling, improved energy confinement time τ_E, and a reduction of edge instabilities known as edge localized modes (ELMs).

• Initially the experimentalists conjecture was that there was some "functionality" that governed the behavior of the Li-C-O-H system observed indirectly by analyzing the O(1s) and C(1s) peaks. For "some reason" the Li(1s) peaks didn't show much information.

Lithium dynamics is difficult to study theoretically because Li polarizing features when interacting with other elements.

Consequence: Bonding between Li and other atoms covalent and polar:
Long-range nonbonding:
Coulomb : $1/R$
Lenard-Jones : $1/R^6$, $1/R^{12}$
Goals:

- Chemistry and sputtering/reflection dynamics in lithiated carbon material, bombarded by slow deuterium atoms is studied.

- The objectives of this research are two-fold:

 1) To develop the realistic methods for computational simulation of the Li-C-H-O, validated by experiments.

 2) To explain the specifics of the chemistry of deuterium bonding in lithiated carbon. Experiments from Purdue indicate that bonded C-Li-O? sites are preferable for H bonding:
Quaternary system Li-C-O-H

Currently our biggest efforts in th!! (6 members of the team on it):

• Li-C, Li-H and Li-O are of very different electronegativities and therefore these could be considered as ionic solids.
• The implication is that, as a result of partial charge transfer from one element to the other, the dominant long-distance binding force between particles is the Coulombic attraction between opposite charges.

Total energy in LiXY mixture

\[E_{tot} = E_{bound} + E_{nobound} \]

\[E_{nobound} = E_{coul} + E_{vdW} \]

\[E_{coul} = \sum_{i \neq j} \sum_{j>i} \frac{q_i q_j}{r_{ij}} \]

\[E_{vdW} = \sum_{i \neq j} \sum_{j>i} D_{ij} \left[(\frac{\sigma_{ij}}{r_{ij}})^{12} - 2(\frac{\sigma_{ij}}{r_{ij}})^6 \right] \]
Charging changes at each simulation step: Quantum-Classical Molecular dynamics a must

Electrons: Quantum mechanically at each step, resulting in charges and forces
Nuclei: Classical motion

Employed the Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) method (developed by Bremen Center for Computational Materials Science, Germany)

It is an approximation to the DFT method in which only valence orbitals are considered, and difficult Integrals parameterized in advance.
In comparison to other TB methods: Improved self-consistent interaction of electronic charges

This enables computational efficiency about 1,000 time faster than ab initio quantum methods (and about 1,000 time slower than Classical Molecular Dynamics)

Parameterization for Li-C-H-O provided by K. Morokuma group (Kyoto-ORNL-Emory)
Inclusion of Mo and He in parameterization: H. Witek (Taiwan U.)

Simulation of deuterium impact to lithiated and oxidated carbon surface

- Cell of a few hundreds of atoms of lithiated and oxidated amorphous carbon (~30% of Li, < 10% of O), at 300K
- By random seed of Li and O in amorphous carbon and energy minimization, followed by thermalization
- Bombarded by 5 eV D atoms and 2.5 eV H, perpendicularly to the shell interface
- 5004 random trajectories

The cell swelled during the structure optimization

5004 processors of Cray XT5 (Jaguar, Kraken), Time step 0.2-1fs, 24 hours: 200-400 fs.
One run over 120,000 CPU hours (TeraGrid project)
Slabs studied: Periodicity in x-y

C-Li-O

Only C+H
Quantum-mechanical, PWDFT “static” calculations of Alain Allouche of CNRS (Marseille) finger -point in the same direction:

- **graphene bilayer with Li and H on the surface**

 When a lithium atom is co-adsorbed on surface bonding energy of H grows up to values ranging from -2.2 to -2.5 eV, with decreasing the Li-H distance. (compared with -1.9 eV for pure graphite)

 Another remarkable finding of Allouche: With inclusion of defects the energy shows similar shift like in XPS exper.

- **graphene 4-layers, Li inside the slab, H on surface**

 The bonding E enhancement is also observed when Li is sandwiched 1 layer below the surface layer, but disappears when Li is 2 layers below the surface.

 A. Allouche, Carbon (2012)
Surface contains much more Oxygen than expected

Our quantum-classical molecular dynamics predictions showed that if there is comparable quantity of oxygen in the surface, O takes over and dominates the Retention chemistry

Here comes the experiment J.P. Allain, C. Taylor, Purdue U):
1) At most 5% oxygen content on the surface of NON-LITHIATED graphite... AS EXPECTED.

2) With lithium it increases to 10% of Oxygen

3) With LOW-ENERGY IRRADIATION over 20-40% oxygen AT the surface.

It is not Lithium that suppresses erosion of C, and increases retention of H

OXYGEN plays the key role in the binding of hydrogen.

Lithium is the oxygen getter

If there is a SIGNIFICANT amount of oxygen on surface with lithium present in the graphite matrix, OXYGEN becomes the main player; NOT LITHIUM!!!

... consistent with the XPS data!!

Submitted to Nature Communications (2012)
Is the PMI phenomenology with plasma irradiation different than with a beam irradiation?

Can we derive plasma-irradiated PMI from the beam-PMI?

Can we model plasma irradiation?

Answer is: Yes, No, Yes…
Synergies in tungsten: dramatic effects in plasma experiments

"Fuzz" nanostructures on W irradiated by He high W temperatures (>1000K)

Blistering related to D, H retention
• Sparser for T > 600 K

H implantation (2-20 nm)
H accumulation @ grain boundaries

> 1 μm
Dome-like blisters grain ejection

He suppresses H retention
• He penetrates deeper than H
• Strong dependence on energy
• He bubbles: barrier to H diffusion?

Ueda et al, 2008

He: 0.1%
He: 0%

T=653 K

Managed by UT-Battelle
for the Department of Energy

IPAM, April 2012
Goal: Study synergy in the evolution of surface irradiated by plasma

Experiments with Ar+ and H:
- Sputtering = (chemical) + (physical)
- Surface preparation by H impact for chemical sputtering
- Impurity atoms in plasma are efficient precursors for erosion
- PM processes very dependent on inventory of H in the material

Exposure of pyrolytic graphite to 5 MeV C+ simulates NEUTRON DAMAGE:
- more nucleation \Rightarrow enhanced erosion
- sites for H retention
- increased HC density?
- increased ejection probability?

Ion flux = 3.5×10^{12} cm$^{-2}$ s$^{-1}$
H flux = 1.4×10^{15} cm$^{-2}$ s$^{-1}$

Hopf & von Keudell, 2003

B.I. Khripunov et al. 2009
Simulations of the plasma irradiation (D atoms)

Impact energy of D (eV)

Yield

D ejected
D$_2$ sputtered
plasma
beam

With plasma irradiation: Reflection significantly higher than beam, sputtering suppressed !!!

Krstic et al, 2009

CONCLUSIONS:

• PMI extremely difficult interfacial problem (Material mixing create SURFACE entity; its scale depends on impact energy: for sub-100eV => nm-ns scales

• PMI science can be built from bottom-up recognizing its multiscale character and building from shortest time/spatial scales (fs/Angstrom) up

• Theory&modeling of PMI has to be validated by experiment (and v.v.)

• Irradiation create dynamical surface, changing interface, cumulative bombardment is the key for agreement with experiment

• Surface responds to synergy in plasma irradiation (angles, energies, particles), NOT following linear superposition principle; NEED plasma irradiation modeling and experiments; dedicated plasma devices a must

• Oxygen is doing D chemistry in lithiated carbon surfaces