Capturing electron-scale effects in tokamak turbulence

J. Candy General Atomics, San Diego, CA

Presented at IPAM Computational Challenges in Magnetized Plasma UCLA Los Angeles, CA 18 April 2012

Drift waves and tokamak plasma turbulence

Role in the context of fusion research

Plasma performance:

In tokamak plasmas, performance is limited by turbulent radial transport of both energy and particles.

Gradient-driven:

This turbulent transport is caused by drift-wave instabilities, driven by free energy in plasma temperature and density gradients.

• Unavoidable:

These instabilities will persist in a reactor.

• Various types (asymptotic theory):

ITG, TIM, TEM, ETG ... + Electromagnetic variants (AITG, etc).

Fokker-Planck Theory of Plasma Transport

Comprehensive series of papers by Sugama and coworkers

The Fokker-Planck (FP) equation provides the **fundamental theory** for **plasma equilibrium**, **fluctuations**, and **transport**:

$$\begin{bmatrix} \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + \frac{e_a}{m_a} \left((\mathbf{E} + \hat{\mathbf{E}}) + \frac{\mathbf{v}}{c} \times (\mathbf{B} + \hat{\mathbf{B}}) \right) \cdot \frac{\partial}{\partial \mathbf{v}} \end{bmatrix} (f_a + \hat{f}_a) = C_a (f_a + \hat{f}_a) + S_a$$

 $f_a \longrightarrow \text{ensemble-averaged distribution}$ $\hat{f}_a \longrightarrow \text{fluctuating distribution}$ $S_a \longrightarrow \text{sources (beams, RF, etc)}$ $C_a = \sum_b C_{ab}(f_a + \hat{f}_a, f_b + \hat{f}_b) \longrightarrow \text{nonlinear collision operator}$

Comprehensive, consistent framework for equilibrium profile evolution

The general approach is to separate the FP equation into **ensemble-averaged**, A, and **fluctuating**, \mathcal{F} , components:

$$\mathcal{A} = \left. \frac{d}{dt} \right|_{\text{ens}} f_a - \langle C_a \rangle_{\text{ens}} - D_a - S_a ,$$

$$\mathcal{F} = \left. \frac{d}{dt} \right|_{\text{ens}} \hat{f}_a + \frac{e_a}{m_a} \left(\hat{\mathbf{E}} + \frac{\mathbf{v}}{c} \times \hat{\mathbf{B}} \right) \cdot \frac{\partial}{\partial \mathbf{v}} (f_a + \hat{f}_a) - C_a + \langle C_a \rangle_{\text{ens}} + D_a ,$$

where

$$\frac{d}{dt}\Big|_{\text{ens}} \doteq \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + \frac{e_a}{m_a} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \frac{\partial}{\partial \mathbf{v}} ,$$
$$D_a \doteq -\frac{e_a}{m_a} \left\langle \left(\hat{\mathbf{E}} + \frac{\mathbf{v}}{c} \times \hat{\mathbf{B}} \right) \cdot \frac{\partial \hat{f}_a}{\partial \mathbf{v}} \right\rangle_{\text{ens}} .$$

 $\triangleright D_a$ is the fluctuation-particle interaction operator.

Space- and time-scale expansion in powers of $\rho_* = \rho_s/a$

Ensemble averages are expanded in powers of ρ_* as

$$\begin{aligned} f_a &= f_{a0} + f_{a1} + f_{a2} + \dots ,\\ S_a &= & S_{a2} + \dots \text{ (transport ordering)},\\ \mathbf{E} &= \mathbf{E}_0 + \mathbf{E}_1 + \mathbf{E}_2 + \dots ,\\ \mathbf{B} &= \mathbf{B}_0 . \end{aligned}$$

Fluctuations are also expanded in powers of ρ_* as

$$\hat{f}_a = \hat{f}_{a1} + \hat{f}_{a2} + \dots ,$$
$$\hat{\mathbf{E}} = \hat{\mathbf{E}}_1 + \hat{\mathbf{E}}_2 + \dots ,$$
$$\hat{\mathbf{B}} = \hat{\mathbf{B}}_1 + \hat{\mathbf{B}}_2 + \dots .$$

Built-in assumption about scale separation hard to escape.

Lowest-order conditions for flow and gyroangle independence

Lowest-order Constraints

The lowest-order ensemble-averaged equation gives the **constraints**

$$\mathcal{A}_{-1} = 0$$
: $\mathbf{E}_0 + \frac{1}{c} \mathbf{V}_0 \times \mathbf{B} = 0$ and $\frac{\partial f_{a0}}{\partial \xi} = 0$

where ξ is the gyroangle.

Large mean flow

The only equilibrium flow that persists on the fluctuation timescale is

$$\mathbf{V}_0 = R\,\omega_0(\psi)\mathbf{e}_arphi$$
 where $\omega_0\doteq -crac{\partial\Phi_0}{\partial\psi}$.

[F.L. Hinton and S.K. Wong, Phys. Fluids 28 (1985) 3082].

Equilibrium equation is a formidable nonlinear PDE

Equilibrium equation

The gyrophase average of the zeroth order ensemble-averaged equation gives the **collisional equilibrium** equation:

$$\int_0^{2\pi} \frac{d\xi}{2\pi} \mathcal{A}_0 = 0: \qquad \left(\mathbf{V}_0 + v'_{\parallel} \mathbf{b} \right) \cdot \nabla f_{a0} = C_a(f_{a0})$$

where $\mathbf{v}' = \mathbf{v} - \mathbf{V}_0$ is the velocity in the rotating frame.

Equilibrium distribution function

The exact solution for f_{a0} is a Maxwellian in the rotating frame, such that the centrifugal force causes the density to vary on the flux surface:

$$f_{a0} = n_a(\psi, \theta) \left(\frac{m_a}{2\pi T_a}\right)^{3/2} e^{-m_a(v')^2/2T_a}$$

Equations for neoclassical transport and turbulence at $\mathcal{O}(
ho_*)$

Drift-kinetic equation

Gyroaverage of first-order A_1 gives expressions for gyroangle-dependent (f_{a1}) and gyroangle-independent (\bar{f}_{a1}) distributions:

$$\int_{0}^{2\pi} \frac{d\xi}{2\pi} \mathcal{A}_{1} = 0: \qquad f_{a1} = \tilde{f}_{a1} + \bar{f}_{a1} , \quad \tilde{f}_{a1} = \frac{1}{\Omega_{a}} \int^{\xi} d\xi \, \widetilde{\mathcal{L}f_{a0}}$$

 \triangleright Ensemble-averaged \overline{f}_{a1} is determined by the drift kinetic equation (NEO).

Gyrokinetic equation

Gyroaverage of first-order \mathcal{F}_1 gives an expression for first-order fluctuating distribution (\hat{f}_{a1}) in terms of the distribution of the gyrocenters, $h_a(\mathbf{R})$:

$$\int_0^{2\pi} \frac{d\xi}{2\pi} \mathcal{F}_1 = 0: \qquad \hat{f}_{a1}(\mathbf{x}) = -\frac{e_a \hat{\phi}(\mathbf{x})}{T_a} + h_a(\mathbf{x} - \rho)$$

 \triangleright Fluctuating \hat{f}_{a1} is determined by the gyrokinetic equation (GYRO).

Drift-Kinetic Equation for Neoclassical Transport

NEO gives complete solution with full kinetic e-i-impurity coupling

$$v_{\parallel}'\mathbf{b}\cdot\nabla\bar{g}_{a} - C_{a}^{L}(\bar{g}_{a}) = \frac{f_{a0}}{T_{a}} \left[-\frac{1}{N_{a}} \frac{\partial N_{a}T_{a}}{\partial\psi} W_{a1} - \frac{\partial T_{a}}{\partial\psi} W_{a2} + c\frac{\partial^{2}\Phi_{0}}{\partial\psi^{2}} W_{aV} + \frac{\langle BE_{\parallel}^{A} \rangle}{\langle B^{2} \rangle^{1/2}} W_{aE} \right]$$

$$\begin{split} \bar{g}_{a} &\doteq \bar{f}_{a1} - f_{a0} \frac{e_{a}}{T_{a}} \int^{\ell} \frac{dl}{B} \left(BE_{\parallel} - \frac{B^{2}}{\langle B^{2} \rangle} \langle BE_{\parallel} \rangle \right) , \\ W_{a1} &\doteq \frac{m_{a}c}{e_{a}} v_{\parallel}' \mathbf{b} \cdot \nabla \left(\omega_{0}R + \frac{I}{B} v_{\parallel}' \right) , \\ W_{a2} &\doteq W_{a1} \left(\frac{\varepsilon}{T_{a}} - \frac{5}{2} \right) , \\ W_{aV} &\doteq \frac{m_{a}c}{2e_{a}} v_{\parallel}' \mathbf{b} \cdot \nabla \left[m_{a} \left(\omega_{0}R + \frac{I}{B} v_{\parallel}' \right)^{2} + \mu \frac{R^{2}B_{p}^{2}}{B} \right] , \\ W_{aE} &\doteq \frac{e_{a}v_{\parallel}'B}{\langle B \rangle^{1/2}} . \end{split}$$

Gyro-Kinetic Equation for Turbulent Transport

GYRO gives complete solution with full $(\phi, A_{\parallel}, B_{\parallel})$ electromagnetic physics.

$$\frac{\partial h_a(\mathbf{R})}{\partial t} + \left(\mathbf{V}_0 + v'_{\parallel}\mathbf{b} + \mathbf{v}_{da} - \frac{c}{B}\nabla\hat{\Psi}_a \times \mathbf{b}\right) \cdot \nabla h_a(\mathbf{R}) - C_a^{GL}\left(\hat{f}_{a1}\right)$$
$$= f_{a0} \left[-\frac{\partial \ln(N_a T_a)}{\partial \psi}\hat{W}_{a1} - \frac{\partial \ln T_a}{\partial \psi}\hat{W}_{a2} + \frac{c}{T_a}\frac{\partial^2 \Phi_0}{\partial \psi^2}\hat{W}_{aV} + \frac{1}{T_a}\hat{W}_{aT}\right]$$

$$\begin{split} \hat{W}_{a1}(\mathbf{R}) &\doteq -\frac{c}{B} \nabla \hat{\Psi}_{a} \times \mathbf{b} \cdot \nabla \psi ,\\ \hat{W}_{a2}(\mathbf{R}) &\doteq \hat{W}_{a1} \left(\frac{\varepsilon}{T_{a}} - \frac{5}{2} \right) ,\\ \hat{W}_{aV}(\mathbf{R}) &\doteq -\frac{m_{a}Rc}{B} \left\langle (\mathbf{V}_{0} + \mathbf{v}') \cdot \mathbf{e}_{\varphi} \nabla \left(\hat{\phi} - \frac{1}{c} (\mathbf{V}_{0} + \mathbf{v}') \cdot \hat{\mathbf{A}} \right) \times \mathbf{b} \cdot \nabla \psi \right\rangle_{\xi} ,\\ \hat{W}_{aT}(\mathbf{R}) &\doteq e_{a} \left\langle \left(\frac{\partial}{\partial t} + \mathbf{V}_{0} \cdot \nabla \right) \left(\hat{\phi} - \frac{1}{c} (\mathbf{V}_{0} + \mathbf{v}') \cdot \hat{\mathbf{A}} \right) \right\rangle_{\xi} .\\ \hat{\Psi}_{a}(\mathbf{R}) &\doteq \left\langle \hat{\phi}(\mathbf{R} + \boldsymbol{\rho}) - \frac{1}{c} (\mathbf{V}_{0} + \mathbf{v}') \cdot \hat{\mathbf{A}} (\mathbf{R} + \boldsymbol{\rho}) \right\rangle_{\xi} \\ &\rightarrow J_{0} \left(\frac{k_{\perp} v_{\perp}'}{\Omega_{a}} \right) \left(\hat{\phi}(\mathbf{k}_{\perp}) - \frac{\mathbf{V}_{0}}{c} \cdot \hat{\mathbf{A}}(\mathbf{k}_{\perp}) - \frac{v_{\parallel}'}{c} \hat{A}_{\parallel}(\mathbf{k}_{\perp}) \right) + J_{1} \left(\frac{k_{\perp} v_{\perp}'}{\Omega_{a}} \right) \frac{v_{\perp}'}{c} \frac{\hat{B}_{\parallel}(\mathbf{k}_{\perp})}{k_{\perp}} \end{split}$$

Gyro-Kinetic Equation for Turbulent Transport

GYRO gives complete solution with full $(\phi, A_{\parallel}, B_{\parallel})$ electromagnetic physics.

Must also solve the electromagnetic field equations on the fluctuation scale:

$$\begin{split} \frac{1}{\lambda_D^2} \left(\hat{\phi}(\mathbf{x}) - \frac{\mathbf{V}_0}{c} \cdot \hat{\mathbf{A}} \right) &= 4\pi \sum_a e_a \int d^3 v \, \hat{h}_a(\mathbf{x} - \boldsymbol{\rho}) \; ,\\ - \nabla_{\perp}^2 \hat{A}_{\parallel}(\mathbf{x}) &= \frac{4\pi}{c} \sum_a e_a \int d^3 v \, \hat{h}_a(\mathbf{x} - \boldsymbol{\rho}) v_{\parallel}' \; ,\\ \nabla \hat{B}_{\parallel}(\mathbf{x}) \times \mathbf{b} &= \frac{4\pi}{c} \sum_a e_a \int d^3 v \, \hat{h}_a(\mathbf{x} - \boldsymbol{\rho}) \mathbf{v}_{\perp}' \; . \end{split}$$

▷ Can one compute equilibrium-scale potential Φ_0 from the Poisson equation? ▷ Practically, no; need higher-order theory and extreme numerical precision. ▷ All codes must take care to avoid **nonphysical potential** at long wavelength ▷ TGYRO gets $\omega_0(\psi) = -c\partial_{\psi}\Phi_0$ from the **momentum transport equation**.

Transport Equations

Flux-surface-averaged moments of Fokker-Planck equation

$$\left\langle \int d^{3} v \,\mathcal{A} \right\rangle_{\theta} \quad \text{density} \\ \left\langle \int d^{3} v \,\varepsilon \mathcal{A} \right\rangle_{\theta} \quad \text{energy} \\ \sum_{a} \left\langle \int d^{3} v \,m_{a} v'_{\varphi} \mathcal{A} \right\rangle_{\theta} \quad \text{toroidal momentum}$$

Only terms of order ρ_*^2 survive these averages

$$\rho_*^{-1} = 10^3 \quad \rho_*^0 = 1 \quad \rho_*^1 = 10^{-3} \quad \rho_*^2 = 10^{-6}$$

Transport Equations

Flux-surface-averaged moments of Fokker-Planck equation to ${\cal O}(
ho_*^2)$

$$n_{a}(r): \qquad \frac{\partial \langle n_{a} \rangle}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial r} \left(V' \Gamma_{a} \right) = S_{n,a}$$

$$T_{a}(r): \qquad \frac{3}{2} \frac{\partial \langle n_{a} T_{a} \rangle}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial r} \left(V' Q_{a} \right) + \Pi_{a} \frac{\partial \omega_{0}}{\partial \psi} = S_{W,a}$$

$$\omega_{0}(r): \qquad \frac{\partial}{\partial t} \left(\omega_{0} \langle R^{2} \rangle \sum_{a} m_{a} n_{a} \right) + \frac{1}{V'} \frac{\partial}{\partial r} \left(V' \sum_{a} \Pi_{a} \right) = \sum_{a} S_{\omega,a}$$

 $S_{n,a} = S_{n,a}^{\text{beam}} + S_{n,a}^{\text{wall}} \text{ and } \Gamma_a = \Gamma_a^{\text{GV}} + \Gamma_a^{\text{neo}} + \Gamma_a^{\text{tur}}$ $S_{W,a} = S_{W,a}^{\text{aux}} + S_{W,a}^{\text{rad}} + S_{W,a}^{\alpha} + S_{W,a}^{\text{tur}} + S_{W,a}^{\text{col}} \text{ and } Q_a = Q_a^{\text{GV}} + Q_a^{\text{neo}} + Q_a^{\text{tur}}$ $\Pi_a = \Pi_a^{\text{GV}} + \Pi_a^{\text{neo}} + \Pi_a^{\text{tur}}$

RED: TGYRO GREEN: NEO **BLUE: GYRO**

Electron-ion Scale Separation

Parameterized by the electron-to-ion mass ratio

• Turbulence extends from electron (ρ_e) scales to ion (ρ_i) scales:

$$\frac{(L_x)_i}{(L_x)_e} \sim \mu \qquad \frac{(L_y)_i}{(L_y)_e} \sim \mu$$

• Characteristic times are **short for electrons** and **long for ions**:

$$\frac{\tau_i}{\tau_e} \sim \frac{a/v_e}{a/v_i} \sim \mu$$

• Critical parameter is the root of the mass-ratio:

$$\mu \doteq \sqrt{\frac{m_i}{m_e}} \simeq 60$$

Coupled ITG/TEM-ETG Transport

Motivation and What's New

- Is energy transport from electron-temperature-gradient (ETG) modes significant?
 - Is it a large fraction of the total χ_e ?
 - Could it account for **residual electron transport** in an ITB?
 - How do we define it, since its only part of χ_e ?
- GYRO is well-suited (scalable, efficient) to study this problem.
- This work was supported by a DOE **INCITE** computer-time award.
- First simulations to resolve both electron-scale and ion-scale turbulence.

Let's define $\chi_e^{\rm ETG}$ as that which arises from $k_{\theta} \rho_i > 1.0$

Multi-scale simulations require spatial grid refinement $\mu = 1, \ k_{\theta}\rho_i \leq 1$

Multi-scale simulations require spatial grid refinement $\mu = 2, \ k_{\theta}\rho_i \leq 2$

Multi-scale simulations require spatial grid refinement $\mu = 4, \ k_{\theta}\rho_i \leq 4$

Multi-scale simulations require spatial grid refinement $\mu = 8, \ k_{\theta}\rho_i \leq 8$

Three Ways to Treat Ion Dynamics

Definitions

1. ETG-ai = adiabatic ion model of ETG (CHEAP)

ion scales do not enter

- 2. ETG-ki = kinetic ion model of ETG (EXPENSIVE) (no ion drive) $\rightarrow a/L_{Ti} = 0.1, \ a/L_{ni} = 0.1$
- 3. **ETG-ITG** = kinetic ion model of ETG (EXPENSIVE) (ion drive) $\rightarrow a/L_{Ti} = a/L_{Te}, \ a/L_{ni} = a/L_{ne}$

Other parameters taken to match the **Cyclone base case**:

$$q = 1.4, s = 0.8, R/a = 2.78, a/L_{Te} = 2.5, a/L_{ne} = 0.8$$

The ETG-ai Model

The minimal model of ETG, but is it sensible?

- Basis of original studies by Jenko and Dorland.
- Take **short-wavelength limit** of the ion response:

$$\delta f_i(\mathbf{x}, \mathbf{v}, t) \to -n_0 F_M(|\mathbf{v}|) \frac{e \,\delta \phi(\mathbf{x}, t)}{T_i}$$

- Nearly isomorphic to usual adiabatic-electron model of ITG.
- Computationally simple ion time and space scales removed.
- The physics of zonal flows is dramatically altered.

Three Ways to Treat Ion Dynamics

Comparison of linear growth rates

 $k_{\theta} = \frac{nq}{r}$ where *n* is the toroidal **eigenmode** number.

Reduced Mass Ratio for Computational Efficiency

A crucial method to cut corners (for ETG-ki and ETG-ITG models)

- Can deduce essential results using $\mu < 60$.
- Fully-coupled simulations, as shown, use light kinetic ions:

$$\mu \doteq \sqrt{\frac{m_i}{m_e}} = 20, 30 .$$

• Simulation cost scales roughly as $\mu^{3.5}$: (

$$\left(\frac{30}{20}\right)^{3.5} \simeq 4.$$

- $\mu = 20$ 5 days on Cray X1E (192 MSPs) $\mu = 30$ 5 days on Cray X1E (720 MSPs)

The failure of the ETG-ai model

Can illustrate the divergence by parameter variation

 $E \times B$ shearing rate: $\gamma_{\rm E}$

The ETG Cyclone Base Case **DOES NOT SATURATE PHYSICALLY**

The failure of the ETG-ai model

A false asymptote occurs if short-wavelength modes are underresolved

Two wrongs don't make a right.

The Effect of Ion Gradients: ETG-ITG versus ETG-ki Finite ion gradients reduce $\chi_e^{\rm ETG}$

The reduction in ETG-ITG short-wavelength transport is not fully understood;

probably the result of strong long-wavelength shearing.

Understanding the Effect of Ion Gradients

What is the dominant physical mechanism for this reduction?

 χ_e is the nonlinear electron heat flux. $a\gamma/v_i$ is the linear growth rate.

Effect of Reduced Perpendicular Box Size

A $32\rho_i \times 32\rho_i$ box is enough to capture the physics for $k_{\theta}\rho_e > 0.1$.

Effect of perpendicular grid refinement

Remove spectral lip (4 days on 1536 XT3 CPUs, courtesy M. Fahey)

Perpendicular Spectral Intensity of Density Fluctations ETG-ITG spectrum is highly isotropic (streamerless) for $k_{\perp}\rho_i > 0.5$

Electron-scale eddies apparent in ETG-ki (left) simulation.

Perpendicular Spectral Intensity of Density Fluctations ETG-ITG spectrum is highly isotropic (streamerless) for $k_{\perp}\rho_i > 0.5$

Mass-ratio Comparison in Electron Units

Curve approaches universal shape at short wavelength ($k_{\theta}\rho_e > 0.1$)

Electron Transport Result Matrix

About 16% (8%) of electron transport comes from $k_{\theta}\rho_i > 1$ ($k_{\theta}\rho_i > 2$)

	μ	$k_{\theta}\rho_i < 1$	$k_{\theta}\rho_i > 1$	$k_{\theta}\rho_i > 2$	$k_{\theta}\rho_e > 0.1$
$\chi_i/\chi_{{ m GB}i}$	20	7.378	0.054	0.011	
	30	7.754	0.043	0.009	
$\chi_e/\chi_{{ m GB}i}$	20	2.278	0.367	0.183	
	30	1.587	0.296	0.157	
$D/\chi_{{ m GB}i}$	20	-0.81	0.134	0.009	
	30	-1.60	0.074	0.010	
$\chi_e/\chi_{ m GB}e$	20				3.67
	30				3.76

Coupled ITG/TEM-ETG Transport

Summary of main results

- The adiabatic-ion model of ETG is poorly-behaved.
 - Transport becomes **unbounded** for some parameters.
 - Using the **kinetic ion response** cures the problem.
- Ion-temperature-gradient (ITG) transport is **insensitive** to ETG.
- Increased ITG drive can reduce ETG transport.
 - Unclear how much of the effect is linear and how much is nonlinear.
- What fraction of χ_e is χ_e^{ETG} ?
 - Only 10% to 20% in the absence of $E\!\times\!B$ shear.
 - Up to 100%, as ITG/TEM is quenched by $E \times B$ shear.

Simulations by Guttenfelder based on MAST parameters

- Strong toroidal flow and flow shear in spherical tokamaks (STs) tend to suppress ion-scale turbulence
- Possibility to use small spatial simulation domains because flow provides physical long-wavelength cut-off
- Artificial mass ratio can be used, subject to certain limitations.
- Adiabatic ions often generate transport collapse and should not be used.
- Guttenfelder and Candy, Phys. Plasmas 18, 022506 (2011)

Must resolve full electron tail: $k_{ heta}
ho_e \sim 1.5$

 $L_y = 260\rho_e, k_{\theta}\rho_e < 0.74$ (solid black) $L_y = 260\rho_e, k_{\theta}\rho_e < 1.5$ (dashed red) $L_y = 130\rho_e, k_{\theta}\rho_e < 1.5$ (dotted blue).

Is reduced mass ratio a viable approach?

Simulations with fixed shearing rate in ion units: $\gamma_E(a/c_s) = 0.9$

Results plotted in ion units (left) and electron units (right).

Electron-scale self-similarity requires fixed shear in e-units

Simulations with fixed shearing rate in ion units: $\gamma_E(a/v_{te}) = 0.015$

Results plotted in electron units.

Massive simulation effort by experimentalist (L. Schmitz)

- Attempt to understand electron transport in DIII-D H-mode
- Low overall transport with spectrum experimentally observed to increase past $k_{\theta}\rho_i = 1.0$ at r/a = 0.6.
- This is in contrast to typical L-mode simulations, which have spectrum decaying rapidly for $k_{\theta}\rho_i > 1.0$
- L. Schmitz, C. Holland, T. Rhodes, *et al.*, Nucl. Fusion **52**, 023003 (2012)

Massive simulation effort by experimentalist (L. Schmitz)

- 90,000 CPU-hours for single run with experimental H-mode profiles/shape
- Huge dynamic range: $0 \le k_{\theta} \rho_s \le 21.3$
- Small radial domain acceptable: $L_x = 39.1 \rho_s = 840 \rho_e$.
- Reduced mass ratio: $\mu = 40$.
- Flow shear stabilizes long-wavelength turbulence

Qualitative agreement with experimental spectral shape

• Results show spectrum increasing up to $k_{ heta}
ho_e \sim 5$

2D (radial-binormal) fluctuation spectrum

L-mode (128915) versus H-mode (131912)

Acknowledgments

Thanks for input, assistance and labour from

Walter Guttenfelder, PPPL Lothar Schmitz, UCLA **Chris Holland**, UCSD **Bill Nevins**, LLNL Mark Fahey, ORNL **David Mikkelsen**, PPPL Ron Waltz, GA Jon Kinsey, GA **Gary Staebler**, GA

