
Numerical Linear Algebra Techniques for Fusion
Applications

Ed D’Azevedo

Computer Science and Mathematics Division

Managed by UT Battelle, LLC under Contract No. DE-AC05-00OR22725
for the U.S. Department of Energy.

April 19, 2012

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 1 / 48

Outline

1 AORSA

2 Anderson Acceleration

3 Kronecker Products

4 Extremescale Computing

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 2 / 48

AORSA

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 3 / 48

All Orders Spectral Algorithm (AORSA)

Spectral calculations of wave propagation and heating in tokamak
plasmas

Main developers are Fred Jaeger, Lee Berry, Don Batchelor, David
Green at ORNL

SciDAC-1 fusion project, Numerical Calculations of Wave-Plasma
Interactions in Multi-dimensional Systems, Don Batchelor as PI

SciDAC-2 fusion project, Controlling Fusion Plasmas:
Electromagnetic Wave Effects Center for Simulation of Wave-Plasma
Interactions (CSWPI), Paul Bonoli as PI

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 4 / 48

AORSA

Models the response of plasma to radio-frequency (RF) waves by
solving the inhomogeneous wave equation, or Helmholtz equation

−∇×∇×E+
ω2

c2

(
E+

i

ωε0
JP

)
= −iωµ0Jant

where JP is plasma wave current computed as an integral operator on
E and Jant is antenna source current
Assume weakly non-linear, time average distribution function f0(v, t)
evolves slowly as

f(x,v, t) = f0(x,v, t) + f1(x,v)e
−iωt

where f1(x,v) exp(−iωt) evolves on a fast RF time scale
Fluctuating plasma current JP due to wave

JP (x) =

∫
dx′σ(x,x′ − x) ·E(x′)

where x is position vector, σ(x,x− x′) is the plasma conductivity
kernel

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 5 / 48

Fourier Harmonics

The RF electric field is expanded in Fourier harmonics

E(x, y, ϕ) =
∑
n,m,`

En,m,`e
i(knx+kmy+`ϕ)

where x = R−R0, y = Z, n,m, ` are Fourier mode numbers.

In the limit of a spatially homogeneous plasma

JP (x, y, ϕ) =
∑
n,m,`

σ(kn, km, `) ·En,m,`e
i(knx+kmy+`ϕ)

where σ(kn, km, `) is the plasma conductivity tensor.

For tokamak geometry with symmetry about the toroidal axis, the ϕ
harmonics can be uncoupled and calculated separately.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 6 / 48

Linear Equations

Collocation method on a 2D rectangular grid is used to generate the
large (dense) system of linear equations.

System size N = 3 ∗Mx ∗My where Mx and My are the number of
Fourier modes used.

For Mx =My = 256, system size N is 196, 608, which requires about
618 GBytes of memory and about 20 ∗ 1015 flops of computation.

Problem size N = 3M2, storage scales as O(N2) or O(M4) and work
scales as O(N3) or O(M6).

Complex*16 system solved using ScaLAPACK LU solver.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 7 / 48

Performance Optimization

Reduced system size by considering only points inside the plasma.(
A11 A12

I

)(
x1
x2

)
=

(
b1
b2

)
where x1 are variables inside plasma and x2 are variables outside
plasma

Roughly about 1/3 of points outside plasma, so solving with (2/3N)
requires about 1/3 amount of time

Requires formulation in configuration space (not in Fourier space) to
identify points outside plasma.

Require Fourier transform of entire row of matrix and data
redistribution for ScaLAPACK

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 8 / 48

2D Block Cyclic Distribution

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 9 / 48

Load Imbalance

Computation in narrow vertical region near mode conversion layer
may lead to load imbalance

Randomize reordering to redistribute work.

Reuse LU factorization as preconditioner for a range of parameters

Reduced precision (complex*8) LU factorization with iterative
refinement in some cases

Difficult to find effective preconditioner for iterative method

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 10 / 48

High Performance Linpack (HPL) Benchmark

Reduced scalability and efficiency of ScaLAPACK over 5000 processors

HPL benchmark used in TOP500 ranking of world’s fastest
supercomputers

Solves real*8 dense linear system in 2D block cyclic distribution, rhs is
column (N + 1)

Multiple options and enhancements with look-ahead to reduce length
of critical path, options for performing broadcasts, recursive
left-looking or right-looking factorization methods

Conversion to use complex*16 and complex*8, modify storage layout,
return pivot vector, correct pivoting in lower triangular part

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 11 / 48

Scalability

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 12 / 48

Mixed Precision HPL

Need storage for extra copy of complex*8 matrix

Not too ill-conditioned, condition number less than 107

Run times and Gflop rates per core for complex matrix size of 60,000
(Jaguar XT4)

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 13 / 48

Out-of-core Factorization on GPU

Bottleneck in data transfer between CPU/GPU

MAGMA 1.0 limited to matrix in GPU memory

Out-of-core approach to solve large problems

(
L11

L21 L22

)(
U11 U12

U22

)
=

(
A11 A21

A12 A22

)
1 Factor diagonal block, L11U11 = A11

2 Solve for lower triangular part,
L21U11 = A21 → L21 = A21/U11

3 Solve for upper triangular part,
L11U12 = A12 → U12 = L11 A12

4 Update and solve for lower part,
L22U22 = A22 − L12U21

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 14 / 48

Out-of-core Factorization on GPU

MKL (12 CPU) MAGMA 1.0 Out-of-core algorithm

N=25,000 121 Gflops/s 271 Gflops/s 200 Gflops/s
N=35,000 123 Gflops/s Out of memory 214 Gflops/s

Table: Comparison of MAGMA 1.0 to out-of-core LU factorization (DGETRF)
using only 1 GBytes out of 5 GBytes of Nvidia M2070.

MKL (12 CPU) MAGMA 1.0 Out-of-core algorithm

N=25,000 122 GFlops/s 266 GFlops/s 246 GFlops/s
N=35,000 123 GFlops/s Out of memory 263 GFlops/s

Table: Comparison of MAGMA 1.0 to out-of-core Cholesky factorization
(DPOTRF) using only 1 GBytes out of 5 GBytes of Nvidia M2070.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 15 / 48

Parallel Out-of-core Matrix Factorization on GPU

Parallel out-of-core complex*16 LU factorization on 15 nodes of GPU
cluster.

Each node has 12 cores (AMD 2.6 GHz) and two Nvidia M2050 GPU
(only 1 used).

Each M2050 GPU has 4.3 GBytes of device memory.

Computation used 180 MPI tasks (one MPI task per core).

Narrow panel factored using ScaLAPACK on CPU.

Parallel BLAS was used for communication.

Communication requires moving data between CPU/GPU since MPI
has access to only CPU memory.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 16 / 48

ScaLAPACK Out-of-Core

MB processor grid GFLOPs GFLOPs

64 12× 15 1103 1813
128 12× 15 1104 1633
64 15× 12 1043 1714

128 15× 12 885 1554

Table: Comparison of the performance of ScaLAPACK PZGETRF with an
out-of-core factorization method implemented on both the CPU and GPU for
N = 90, 000 on 180 MPI processes.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 17 / 48

Anti-aliasing in AORSA

Anti-alias filter in AORSA for modeling ICRF heating of DT plasmas
in ITER by Lee Berry, Don Batchelor, Fred Jaeger, and RF SciDAC
Team, presented at 53rd Annual Meeting of the APS Division of
Plasma Physics Salt Lake City, Utah, November 14-18, 2011

Aliasing is a distortion caused in analog-to-digital conversion by a too
low rate of data sampling.

TORIC eliminates aliasing by “over-sampling” in the evaluation of
convolutions where the σ is evaluated for twice as many modes as
required by the solution

JP (ρ, ϑ) =
∑
m

[∑
n

σnm−n(ρ) ·En

]
eimϑ

=
∑
m

Jme
imϑ, Jm =

∑
n

σnm−n(ρ) ·En

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 18 / 48

Antialiasing in AORSA

AORSA uses collocation

JP (x`) =

N∑
j=−N

σ(x`, kj) ·Ekje
ikjx` ,

where ` denotes the spatial point (matrix row), and j denotes the
mode number (matrix column).

Fourier transform of the columns of this matrix, the m-th component
of J looks like

Jm =

N∑
n=−N

σ(kn − km, kn) ·Ekn ,

which is similar to the convolution in TORIC.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 19 / 48

AORSA Matrix Viewed in Fourier Space

There are “bad” regions in the matrix where the σ’s are aliased

Jm =

N∑
n=−N

σ(kn − km, kn) ·Ekn ,

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 20 / 48

De-aliasing by over-samples on fine grid, an filtering modes

Fourier transform columns of the large matrix

Reduce the matrix size by eliminating extra rows and columns that
have “bad σ’s”

Fourier transform back to configuration space

Apply boundary conditions in configuration space for the small
problem

Solve this small ”de-aliased” matrix.

In 2D, it is more difficult and currently solving the large matrix and
eliminating the high modes from the solution (very expensive)

Working on generating and solving the small de-aliased matrix
directly rather than solving a larger problem and throwing out half of
the solution.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 21 / 48

200 modes vs 400 modes with de-aliasing

Short wavelengths close to the edge are better resolved and noise is
eliminated.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 22 / 48

Anderson Acceleration

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 23 / 48

Anderson Acceleration

Acceleration of fixed point iteration xk+1 = g(xk) for solving mildly
non-linear problem, f(x) = x− g(x) = 0

Rediscovered under different names, also known as vector
extrapolation, vector ε-algorithm or Anderson mixing in electronic
structure computations

Iteration to self-consistent solution, e.g. AORSA computes global
wave solution and velocity distributions, which is passed to CQL3D
Fokker-Planck code to compute quasi-linear diffusion coefficients,
which are passed back to AORSA and iterate until self-consistency
between wave electric field and resonant ion distribution function

Idea: find weights αi such that 1 =
∑k

i αi, ‖
∑k

i αif(xi)‖ is
minimized, then accelerated solution is a weighted combination of
previous solutions x∗ =

∑k
i αixi

The method is simple to implement, and does not require Jacobian
information

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 24 / 48

Anderson Acceleration

If g(x) is linearized as g(x) = J ∗ x+ b then the method is equivalent
to applying GMRES to (I − J)x = b

Note that GMRES finds xk in Krylov subspace
(Span(b, Ab,A2b, . . . , Ak)) that minimizes the residual ‖b−Axk‖2.

The acceleration is restarted after k iterations since computing
weights αi become more ill-conditioned

D. G. Anderson, Iterative procedures for nonlinear integral equations,
J. Assoc. Comput. Machinery, 12 (1965), 547-560

Avram Sidi, Methods for Acceleration of Convergence
(Extrapolation) of Vector Sequences. Wiley Encyclopedia of
Computer Science and Engineering 2008

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 25 / 48

Kronecker Products

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 26 / 48

Kronecker Products

Kronecker products commonly arise from variable separable
formulation, e.g. f(r, z) = g(r)h(z) or approximation on logically
rectangular or tensor product grids.

Let matrix A be mA× nA and B be mB × nB. For convenience, let
them be indexed as A(ia, ja) and B(ib, jb). Let C = A⊗B (or
kron(A,B) in MATLAB notation), then matrix C is size
(mA ∗mB)× (nA ∗ nB). If matrix A is 3× 3, then

C =

 a11B a12B a13B
a21B a22B a23B
a31B a32B a33B


Matrix C can be interpreted as a 4-index array
C([ib, ia], [jb, ja]) = A(ia, ja) ∗B(ib, jb), where the composite index
[ib, ia] = ib+(ia− 1) ∗mB is the index in Fortran column-wise order.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 27 / 48

Kronecker Product

Matrix-vector multiply Y = (A⊗B) ∗X can be written as very
efficient matrix-matrix operations1,

Y ([ib, ia]) = C([ib, ia], [jb, ja]) ∗X([jb, ja])

= A(ia, ja) ∗B(ib, jb) ∗X([jb, ja])

= B(ib, jb) ∗X(jb, ja) ∗A(ia, ja)

Y = (B ∗X) ∗At

If A and B are N ×N , then C = A⊗B is N2 ×N2. Kronecker
product reduces the work of computing Y = C ∗X = (B ∗X) ∗At

from O(N4) to O(2N3).

If A and B are sparse matrices, then work is
O(nnz(X)(nnz(A) + nnz(B)).

1We blur the distinction between the matrix X(jb, ja) and vector X([jb, ja]) with
composite index.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 28 / 48

Coding Y = kron(A,B)*X

Deeply nested loops

do j a =1,nA
do j b =1,nB
do i a =1,mA
do i b =1,mB
! r e c a l l C ([ib , i a] , [jb , j a]) = A(i a , j a)∗B(ib , j b)
! Y ([ib , i a]) = C ([ib , i a] , [jb , j a]) ∗ X ([jb , j a])
!

Y(ib , i a) += B(ib , j b) ∗ X(jb , j a) ∗ A(i a , j a)
enddo ; enddo ; enddo ; enddo

Use array Z(ib,ja) to hold common sum over jb loop

Z (1 :mB, 1 : nA)=matmul (B (1 :mB, 1 : nB) ,X (1 : nB , 1 : nA))
Y (1 :mB, 1 :mA)=matmul (Z , t r a n s p o s e (A (1 :mA, 1 : nA)))

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 29 / 48

Properties of Kronecker Products

Other interesting properties of Kronecker products are summarised
below,

(A+B)⊗ E = A⊗ E +B ⊗ E
(A⊗B)⊗ E = A⊗ (B ⊗ E)

(A⊗B)t = (At ⊗Bt)

Reduction of work from O(N6) to O(N3).

(A⊗B) ∗ (E ⊗ F) = (A ∗ E)⊗ (B ∗ F)
eig(A⊗B) = eig(A)⊗ eig(B)

det(A⊗B) = det(A)n det(B)m, where A is m×m, B is n× n.

(A⊗B)−1 = (A−1 ⊗B−1)

If N = 1000, N6 = 1018 requires petascale computing, whereas
N3 = 109 can be performed in seconds on a desktop computer.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 30 / 48

1D Interpolation

Approximate function f(x) ≈
∑n

j=1 cjφj(x).

Basis function φj(x) may be Chebyshev polynomials, B-splines,
wavelets or Fourier basis.

Interpolation condition of tabulated values is used to find cj ’s,
f(xi) =

∑n
j=1 cjφj(xi).

Coefficient cj ’s are obtained by solving the linear system
[f(xi)] = Tx ∗ [cj].
Note Tx may be sparse if {φj(x)} have compact support

Tx =

 φ1(x1) · · · φn(x1)
...

. . .
...

φ1(xn) · · · φn(xn)

 .

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 31 / 48

1D Interpolation

Evaluation at new set of points [f(x̃i)] is computed as matrix
multiply, [f(x̃i)] = Tx̃ ∗ [cj],

Tx̃ =

 φ1(x̃1) · · · φn(x̃1)
...

. . .
...

φ1(x̃m) · · · φn(x̃m)

 .

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 32 / 48

2D Interpolation

Tabulated values f(xi, yj) on a rectangular grid is approximated as
f(x, y) ≈

∑
k,` ck`φk(x)φ`(y) (variable separable).

Interpolation conditions lead to

vec(F) = (Ty ⊗ Tx) vec(C)

vec(C) =
(
T−1y ⊗ T−1x

)
vec(F)

C = T−1x FT−ty ,

where F = [f(xi, yj)] C = [ck`].

Evaluation at new points (x̃i, ỹj) is computed as[
F̃ij

]
= (Tỹ ⊗ Tx̃) [ck`] = Tx̃CTỹ

t .

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 33 / 48

Higher Dimensions

Interpolate tabulated values of 4-index function on rectangular (tensor
product) grid,

f(w, x, y, z) ≈
∑
ijk`

cijk`φi(w)φj(x)φk(y)φ`(z) .

Coefficients computed efficiently as

vec(F) = (Tz ⊗ Ty ⊗ Tx ⊗ Tw) vec(C)

vec(C) =
(
T−1z ⊗ T−1y ⊗ T−1x ⊗ T−1w

)
vec(F) .

Evaluation at new points is computed as

vec(F̃) =
(
Tz̃ ⊗ Tỹ ⊗ Tx̃ ⊗ Tw̃

)
vec(C) .

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 34 / 48

Nearest Kronecker Product

Given mn×mn matrix C, find m×m matrices A, n× n matrix B
to minimise ‖C −A⊗B‖F .

Let matrix C̃ be a rearrangement of entries of matrix C

C̃([ia, ja], [ib, jb]) = C([ib, ia], [jb, ja])

Equivalent to reshaping C as 4 index array, then permuting the axis
C̃= permute(reshape(C, [mB,mA, nB,nA]), [2, 4, 1,3]);

The matrices A, B are obtained from the singular vectors (optimal
rank-1 approximation) of matrix C̃([ia, ja], [ib, jb]) ≈ σ1abt

C([ib, ia], [jb, ja]) ≈ A([ia, ja]) ∗B([ib, jb])

C̃([ia, ja], [ib, jb]) ≈ σ1abt

≈ A([ia, ja]) ∗B([ib, jb])

C. van Loan, The Ubiquitous Kronecker Product, Journal of
Computational and Applied Mathematics, 1(123), pages 85-100,
2000.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 35 / 48

Generalized Result

Idea: Rewrite sum of Kronecker products in decreasing importance of
Kronecker products.

Given a sum of Kronecker products, C =
∑r

k Ak ⊗Bk, we can
rewrite the same expression as C =

∑r
k σkÃk ⊗ B̃k where

σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 and ‖Ãk‖F = ‖B̃k‖F = 1.

Result follows from Singular Value Decomposition (SVD) of
rearranged matrix E, which has rank r.

C̃ = [A1(:)| . . . |Ar(:)] [B1(:)| . . . |Br(:)]
t = ABt

= QARA(QBRB)
t = QA(RAR

t
B)Q

t
B

= QA(UDV
t)Qt

B = (QAU)D(QBV)t = ÃDB̃t

C̃ =
[
Ã1(:)| . . . |Ãr(:)

]
diag(σ1, . . . , σr)

[
B̃1(:)| . . . |B̃r(:)

]
where QR factorization (or Gram-Schmidt orthogonalization) of A
and B gives QA, QB with orthogonal columns with RA and RB are
r × r upper triangular matrices

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 36 / 48

Nearest Kronecker Product

If Ak or Bk have prescribed sparsity pattern (say Ak is tridiagonal
and C is block tridiagonal), we can restrict SVD to non-zero entries

For example, let A be an m×m tridiagonal matrix, and A(:) = Pa
where (3m− 2)× 1 vector a holds the non-zero entries of A, and
matrix P (m2 × (3m− 2)) consists of columns of identity matrix that
correspond to tridiagonal positions in A. Note that P tP is the
identity matrix of size (3m− 2)× (3m− 2).

Idea: Compute SVD of P tC̃ ((3m− 2)× nnz(B)), then expand
Ã(:) = Pa

Adding or removing a Kronecker product is related to up-dating or
down-dating the QR factorization of A and B.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 37 / 48

Preconditioning by Kronecker Products

If C ≈ A⊗B, then (A⊗B)−1 = (A−1 ⊗B−1) may be an effective
preconditioner.

If C ≈ A1 ⊗B1 +A2 ⊗B2, then consider a fast solver for sum of 2
Kronecker products.

If C ≈
∑r

k Ãk ⊗ B̃k, then rewrite sum in decreasing order of
importance and use first few terms as preconditioner.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 38 / 48

Fast Solver for Sum of 2 Kronecker Products

Fast solver for C = A1 ⊗B1 +A2 ⊗B2 by computing the QZ
decomposition of A1, A2.

Find common matrices UA, VA to simultaneously transform
UA ∗A1 ∗ VA = DA1 , UA ∗A2 ∗ VA = DA2 to diagonal matrices.

Solve Cx = r by transforming system to diagonal matrices
U = UA ⊗ UB, V = VA ⊗ VB, to solve UC(V y) = (Ur), x = V y,

UCV = (UA ⊗ UB)C(VA ⊗ VB)
= (UA ⊗ UB)(A1 ⊗B1 +A2 ⊗B2)(VA ⊗ VB)
= (UAA1VA)⊗ (UBB1VB) + (UAA2VA)⊗ (UBB2VB)

= (DA1 ⊗DB1) + (DA2 ⊗DB2), is diagonal.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 39 / 48

QZ Decomposition

QZ(A,B) generalized eigen decomposition to produce eigenvectors
V , triangular A, B, and orthogonal Q, Z, such that α = diag(A),
β = diag(B), λ = α/β,

A = QAZ, B = QBZ, AV diag(β) = BV diag(α)

Let U = Ũ−1 where

Ũ(:, i) =

{
AV (:, i) if |αi| ≥ |βi|
BV (:, i) otherwise

then UAV is diagonal, U(BV diag(α)) = U(AV diag(β)) is also
diagonal.

Problem if V (or Ũ) is not full rank or ill-conditioned.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 40 / 48

General Sum of Kronecker Products

No (known) general fast solver for sum of 3 or more Kronecker
products.

Finite difference method for incompressible Navier-Stokes equations
on staggered rectangular grid

L = C` ⊗ Cn ⊗Am + C` ⊗Bn ⊗ Cm + E` ⊗ Cn ⊗ Cm

where Am, Bn, E`, and C matrices are tridiagonal. Derive
transformations so that (I ⊗ UA ⊗ UB)L(I ⊗ VA ⊗ VB) is tridiagonal.

Kamm and Nagy considered the approximation
C =

∑r
k Ak ⊗Bk ≈ UDV ′, for where U = UA ⊗ UB, V = VA ⊗ VB,

are obtained from SVD A1 = UADAV
′
A, B1 = UBDBV

′
B and

D = diag(U ′(C)V).

Ford and Tyrtyshnikov considered a discrete wavelet transform on a
sum of Kronecker products (D =W ′CW , W is wavelet transform) to
obtain a sufficiently sparse representation so that a sparse direct
solver can be applied.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 41 / 48

Resources about Kronecker Products

The Ubiquitous Kronecker Product by C. Van Loan, Journal of
Computational and Applied Mathematics, 123(2000), pp. 85-100.

Approximation with Kronecker Products by C. Van Loan and N.
Pitsianis in Linear Algebra for Large Scale and Real Time
Applications, M. S. Moonen and G. H. Golub, eds., Kluwer
Publications, 1993, pp. 293-314. (See also
http://www.cs.duke.edu/~nikos/KP/home.html).

The Kronecker product and stochastic automata networks by Amy N.
Langville and William J. Stewart, J. Comput. Appl. Math.,
167(2004) 429-447.

Computational Frameworks for the Fast Fourier Transform by C. Van
Loan, SIAM, 1992.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 42 / 48

http://www.cs.duke.edu/~nikos/KP/home.html

Combining Kronecker product approximation with discrete wavelet
transform to solve dense function-related linear systems by J. M. Ford
and E. E. Tyrtyshnikov, SIAM J. Sci. Comput., 25(3):861-981, 2003.

A fast Poisson solver for the finite difference solution of the
incompressible Navier-Stokes equations by G. H. Golub, L. C. Huang,
H. Simon, W.-P. Tang, SIAM J. Sci. Comput., 19(5):1606-1624,1998.

Kronecker product and SVD approximations in image restoration by
J. Kamm and J. G. Nagy, Linear Algebra and its Applications,
284:177-192, 1998.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 43 / 48

Extremescale Computing

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 44 / 48

Challenges in Exascale (1018)Computing

The major issue is energy.

Moving data is the largest cost of energy.

It is not about FLOPS. It is about data movement.

Exascale machine may have only 64 PBytes of memory

Need massive amounts (O(109) threads) of parallelism. Global
synchronization will be very expensive.

Need to use vectorization (AVX, SSE4 instructions, GPU/MIC
accelerator).

Need attention on fault-tolerance or resilience.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 45 / 48

Algorithm Needs

Low order FV/FEM, unstructured mesh, incomplete LU
preconditioner, classic Krylov with many synchronizations for dot
products may not fully exploit future machine

May need reformulation in

regular refinement on grid cells, variables on boundaries of cells
high-order discretization
parallel in time method
relaxed synchronization (asynchronous global sums and dot products)
reduce data movement by computing in blocks (e.g. out-of-core
algorithm)

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 46 / 48

Resources on Exascale Computing

Workshop reports on exascale applications http://science.

energy.gov/ascr/news-and-resources/program-documents/

Scientific Grand Challenges: Fusion Energy Sciences and the Role of
Computing at the Extreme Scale, http://science.energy.gov/~/
media/ascr/pdf/program-documents/docs/Fusion_report.pdf

International exascale software project,
http://www.exascale.org/iesp/Main_Page

Peter M. Kogge (editor), ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems, Univ. of Notre Dame, CSE
Dept. Tech. Report TR-2008-13, Sept. 28, 2008,
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

Extreme-Scale Solvers Workshop,
http://www.orau.gov/extremesolvers2012/

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 47 / 48

http://science.energy.gov/ascr/news-and-resources/program-documents/
http://science.energy.gov/ascr/news-and-resources/program-documents/
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Fusion_report.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Fusion_report.pdf
http://www.exascale.org/iesp/Main_Page
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf
http://www.orau.gov/extremesolvers2012/

Summary

AORSA wave code uses Fourier basis and requires the parallel
solution of large dense complex linear system.

Current development on 2D anti-aliasing.

Anderson acceleration (vector extrapolation) for fixed-point iteration
using weighted combination of previous iterates.

Variable separable formulation on rectangular grids commonly leads
to Kronecker products.

Preconditioner based on sum of Kronecker products.

Extremescale computing will place emphasis on reducing data
movement instead of flops.

Ed D’Azevedo (ORNL) Numerical Linear Algebra April 19, 2012 48 / 48

	AORSA
	Anderson Acceleration
	Kronecker Products
	Extremescale Computing

