Centrum voor Plasma-Astrofysica KU Leuven

The challenge of multiphysics: federation or unification?

Giovanni Laor

INTEGRATED

Funding from: BOF & GOA (KU Leuven), EC (Swiff, Soteria), NASA (MMS Mission), Intel Exascience Lab.

ExaScience Lab Intel Labs Europe EXASCALE COMPUTING

Space Weather

Co-Design and space weather at KU Leven KATHOLIEKE UNIVERSITEIT **HPC** Space Weather projects projects • First ever EC-FP7 funded project on space SEVENTH FRAMEWORK MEWORK weather Soteria DEEP Started 2008 IDEEF • End this year · Cordinator: G. Lapenta **ExaScience Lab** Intel Labs Europe EXASCALE COMPUTING SEVENTH FRAMEWORK FP7 project on the KATHOLIEKE UNIVERSITEIT Intel space weather call Swiff Exascience • To run till 2014 Lab · Cordinator: G. Lapenta • FP7 project • From the 2011 call SEVENTH FRAMEWORK PROGRAMME eHeroes Hybrid Kick-off in Rome in March 2012 Computing • To run till 2015 · Cordinator: G. Lapenta CASSI **SPACE**CÍ **e**sa space situational awareness

Outline

Challenges of space weather:

- multiscale
- Multiphysics

Federation of models

Unification of models

Ongoing efforts at KU Leuven

Outline

Challenges of space weather:

- multiscale
- multiphysics

Federation of models

Unification of models

Ongoing efforts at KU Leuven

Importance of Space Weather Simulation

KATHOLIEKE UNIVERSITEIT

Societal Impact:

Technology in Space

Threats to communication infrastructure, GPS

Humans in Space

Threats to life and missions

Impact on Earth Climate

Relative importance of CO2 and solar

Approx. size of Earth → 🕲

Challenges

Multiple scales

Multiple physics

Space weather: Chain of events

NTEGRATE

VENTH FRAM

Multiple scales are present in many plasmas

Multiscale: Example of scales involved

katholieke universiteit LEUVEN

Overall event duration: hours to days

 $AU = 150 \text{ million Km} (1.49 \ 10^8 \text{ km})$

Solar Radius = 6.9 10⁵ km

Earth Radius = $6.4 \ 10^3 \text{ km}$

Magnetospheric multiscale mission

NASA

Multiphysics: A plasma and its models

KATHOLIEKE UNIVERSITEIT

Kinetic approach: study the distribution function (probability of finding a particle with a given velocity in a given point at a given time):

 $\{x_p, v_p\}$ $f(\mathbf{x}, \mathbf{v}, t)$

Motion of charged particles without magnetic field.

Motion of charged particles with magnetic field.

Fluid approach: study local averages (density, average speed, temperature,) $n(\mathbf{x},t), \mathbf{U}(\mathbf{x},t), T(\mathbf{x},t)$

Different physics models at different scales

Outline

Challenges of space weather:

- multiscale
- Multiphysics

Federation of models

Unification of models

Ongoing efforts at KU Leuven

Federation of Models

TRACE September 2005

LASCO September 2002

IMAGE July 2000

Software-based federation

- US efforts: CISM amd SWMF (see Gombosi – next talk)
- EU: the SSA initiative

Toth et al., JGR, 110, A12226 (2005)

User Interface	Web based Graphical User Interface		
Laver	configuration, problem setup, job submission		
2290	job monitoring, result visualization		
Superstructure Layer	Framework Services		
	component registration, input/output		
	execution control, coupling toolkit		
	Component Interface		
	component wrappers and couplers		
Physics Module	SC SP IM		
Layer	BATSRUS Kota BCM		
In franciscus da una	Utilities		
infrastructure	physics constants, time and date conversion		
Layer	coordinate transformation, field line tracing parameter reading, I/O units, profiling		
	bergererer ingenität no grund brounda		

Need to understand coupling before plugging two codes

Understanding coupling first

Lessons: critical points to address

Critical points: reconnection, shocks, need multiphysics approach Ionosphere-Magnetosphere: different physics and different resolution

Federation of models: a common problem in simulation **LEUVEN** Claude Archer – Belgian Naval Research

High Level Architecture (HLA) - IEEE/NATO standards

Outline

Challenges of space weather:

- multiscale
- Multiphysics

Federation of models

Unification of models

Ongoing efforts at KU Leuven

Unification approach: the moment method

Moment method: From theory to practice

Multiscale – Multiphysis: Unification approach

Unification: The core mathematical idea

Macro: Fields and Fluids

Micro: Particles and Fields

Mathematical and Software connection: Implicit moment method

Implicit Moment Method: FLUID to KINETIC

Explicit vs. Implicit

EXPLICIT

Operations:

- 1. Solve Newton equations in previous electromagnetic fields
- 2. Solve Maxwell equations with previous particle positions

IMPLICIT

Operations:

Over each time step, iteratively solve the two coupled equations until convergence

Advantages of the Implicit Approach

Explicit stability constraints

$$\omega_{fastest} \Delta t < 2$$
$$\Delta x < \lambda_{smallest}$$
$$c \Delta t < \Delta x$$

Implicit stability constraints

Implicit Moment Method

Performances of iPIC3D on Pleiades

Simulations at fixed initial load per core, done increasing the system size at constant resolution

Example: simulations for the MMS mission

Ζ

 $\mathbf{B} = B_0 \tanh(y/L)\hat{\mathbf{x}} + B_g \hat{\mathbf{z}}$

$$p = p_b + p_0 \operatorname{sech}^2(y/L)$$
$$\beta = \frac{p}{B^2/8\pi} \to \beta(z=0) = \frac{p_b + p_0}{B_g^2/8\pi}$$

2D runs to focus on current aligned modes

No initial perturbation, Bg=0

Timing considerations for 3D fully kinetic simulations -Implicit vs Explicit

	Explicit	Implicit	Gain
Dx	λ_{De} =100 m	d _e =10 Km	100
Dy	λ_{De} =100 m	d _e =10 Km	100
Dz	λ_{De} =100 m	d _e =10 Km	100
Dt	$\omega_{pe}\Delta t=0.1$ or 10^{-5} s	$\omega_{pe}\Delta t$ =100 or 10 ⁻³ s	1000
Tot			10 ⁹

An implicit run that takes **1 day** would take: **2,800,000 years** with an explicit code

The reconnection jets are deflected

NTEGRATE

Separatrix regions are focus of instability

Strong electron flows cause parallel structures

ΔY

Z

View from above

Electron Phase Space Dynamics for Bipolar Fields **ELEUVEN** $(B_g = 0.1B_0)$

But there is another instability

Je

Eperp

And perpendicular structures

VENTH FRAME

Outline

Challenges of space weather:

- multiscale
- Multiphysics

Federation of models

Unification of models

Ongoing efforts at KU Leuven

MultiLevel – MultiDomain Approach

M.E. Innocenti et al.: A Multi Level Multi Domain Method for Particle In Cell Plasma Simulations, Journal of Computational Physics, submitted, Dec. 2011, http://arxiv.org/abs/1201.6208.

Reference case: Earth Environment

Real Earth needs

Box:

 $100 R_{E} \times 100 R_{E} \times 100 R_{E}$

Max load per processor: 16x16x16 cells 144 + 144 particles per cell(electron populations) 144 +144 particles per cell (ion populations)

Coupled with heliospheric models and observations

Example: Mercury (S. Markidis with iPic3D)

Earth Environment - State of the Art

Explicit PIC

- Resolution needed: electrostatic processes at electron scales: 100m (Debye length)
- Cells per dimension:
 6,353,000
- Total processors needed:
 6.2600e+16
- 63 million billions

Moment Implicit PIC

- Resolution needed: electromagnetic processes at electron scales: 10Km (inertial length)
- Cells per dimension:
 63,530
- Total processors needed:
 6.2600e+10
- 63 billions

Summary of the current state of affairs for the Earth

KATHOLIEKE UNIVERSITEIT

Resolution needed only in small areas

CCMC – NASA (Lapenta)

MultiLevel approach

MultiLevel – MultiDomain Approach

M.E. Innocenti et al.: A Multi Level Multi Domain Method for Particle In Cell Plasma Simulations, Journal of Computational Physics, submitted, Dec. 2011, http://arxiv.org/abs/1201.6208.

MLMD: Some details

Each domain is an exact replica of the others, but scaled.

The operations are identical for the same physics module

Algorithm designed to minimize exchange of information

No global operation, all solvers operate on each domain

1D and 2D versions implemented on massively parallel computers

M.E. Innocenti et al.: A Multi Level Multi Domain Method for Particle In Cell Plasma Simulations, Journal of Computational Physics, submitted, Dec. 2011, http://arxiv.org/abs/1201.6208.

Example 1: AMR Kinetic Modeling of the Earth Magetotail

KATHOLIEKE UNIVERSITEIT

- ✓ Year 1 Profiling/ Parallel Performance
- □ Year 1 Optimisation, with WP2
- □ Year 1-3 Visualization, with WP4
- Year 2 PIC for exascale (continuing)
- Year 3 AMR PIC (50% done)

Example 2: shock collision

AMR eff 1280

Regular 128

The need for Codesign

Co-Design and space weather at KU Leven KATHOLIEKE UNIVERSITEIT **Space Weather HPC** projects projects • First ever EC-FP7 funded project on space SEVENTH FRAMEWORK MEWORK weather Soteria DEEF DEEP Started 2008 • End this year · Cordinator: G. Lapenta **ExaScience Lab** Intel Labs Europe EXASCALE COMPUTING SEVENTH FRAMEWORK FP7 project on the KATHOLIEKE UNIVERSITEIT Intel space weather call Swiff Exascience • To run till 2014 Lab · Cordinator: G. Lapenta • FP7 project • From the 2011 call SEVENTH FRAMEWORK PROGRAMME eHeroes Hybrid Kick-off in Rome in March 2012 Computing • To run till 2015 · Cordinator: G. Lapenta CASS **SPACE**CÍ **esa** space situational awareness

SWIFF: Space Weather Integrated Modelling Framework

Collaborative Project FP7- Space

Create a mathematical-physical framework to integrate multiple-physics (fluid with kinetic)

Focus on coupling small-large scales

Federation of models based on physical and amthematical understanding of the coupling

Physics-based rather than software-based

Founding approach: implicit, adaptivity and multilevel

Science Lead	Participant organisation name	Country
Coordinator: G. Lapenta	Katholieke Universiteit Leuven	Belgium
V. Pierrard	Belgian Institute for Space Aeronomy	Belgium
F. Califano	Università di Pisa	Italy
A. Nordlund	Københavns Universitet	Denmark
A. Bemporad	Astronomical Observatory Turin - Istituto Nazionale di Astrofisica	Italy
P. Travnicek	Astronomical Institute, Academy of Sciences of the Czech Republic	Czech Republic
C. Parnell	University of St Andrews	UK

Intel Exascience Lab (exascience.com)

iwī

Vrije Universiteit Brussel

Goal of our effort

We want to bridge the micro-macro gap by unifying in a single mathematical approach fluid and kinetic physics

Scales in extragalactic Jets

Jet in 3C303 (VLA: radio)

Kronberg, Lovelace, Lapenta, Colgate, ApJ Lett, 741, L15 (2011)

Typical Scales in 3C303

- Bulk speed $v_{bulk} \approx 0.7c$
- Plasma $\beta = 10^{-5}$
- Alfven speed $V_A \approx c$
- Thermal plasma: $T \approx 10^8$ K, $n = 3 \cdot 10^{-5}$ cm⁻³
- Jet length 60 kpc.
- Classical particles: $\rho_e \approx 10^{-13} \text{pc},$ $d_e \approx 8 \cdot 10^{-13} \text{pc},$ $\lambda_D \approx 4 \cdot 10^{-12} \text{pc}$
- Relativistic particles: $ho_e pprox 10^{-2} {
 m pc}, \ d_e pprox 3 \cdot 10^{-7} {
 m pc}$

Example 2: AMR Modeling of Reconnection

Keppens et al, JCP, 2012

The 3D flow is much more interesting

NTEGRATE

MLMD: Some details

Each domain is an exact replica of the others, but scaled.

The operations are identical for the same physics module

Algorithm designed to minimize exchange of information

No global operation, all solvers operate on each domain

1D and 2D versions implemented on massively parallel computers

M.E. Innocenti et al.: A Multi Level Multi Domain Method for Particle In Cell Plasma Simulations, Journal of Computational Physics, submitted, Dec. 2011, http://arxiv.org/abs/1201.6208.

