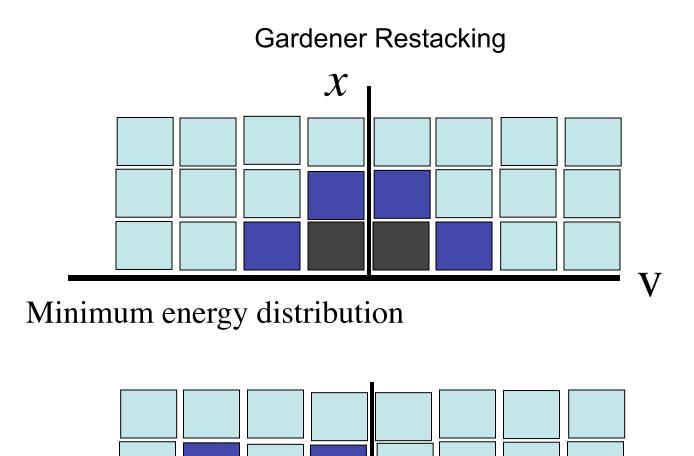
Some Mathematical Challenges in Hot Dense Plasma

Nathaniel J. Fisch Princeton University

IPAM: Institute for Pure and Applied Mathematics Workshop I: Computational Challenges in Hot Dense Plasma March 28, 2012

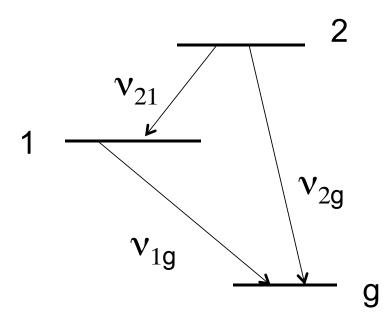
There are a few curious mathematical questions underlying some basic issues in hot dense plasma to which I wish I knew the answer.



Initial energy distribution

Entropy conserving

Free Energy under Phase Space Rearrangement



$$\begin{split} \mathcal{E} &= n_g \mathcal{E}_g + n_1 \mathcal{E}_1 + n_2 \mathcal{E}_2 \\ \text{minimized for:} \quad n_g > n_1 > n_2 \\ \text{more generally, minimize:} \quad \mathcal{E} &= \vec{n} \cdot \vec{\mathcal{E}} \\ \text{using } \pi \text{-pulse excitations } \nu_{ij} \end{split}$$

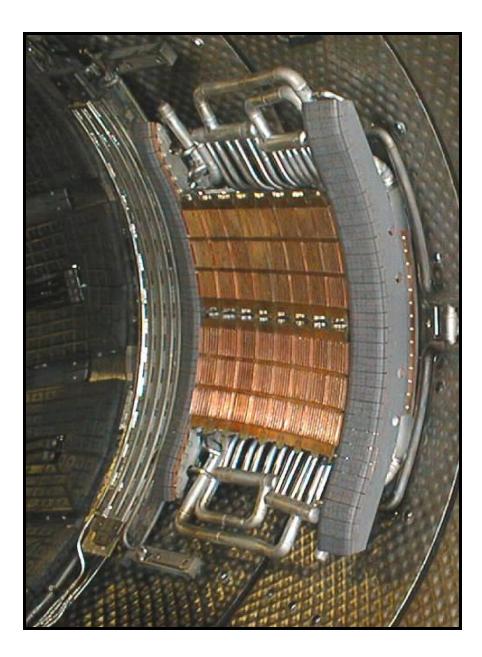
Example: for $n_1 > n_2 > n_3$ t=0: $n_3 n_2 n_1$

To release free energy, apply 3 (ordered) π -pulses (to exchange densities)

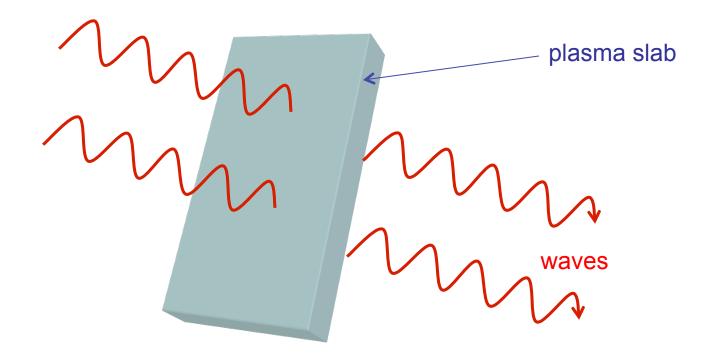
 v_{21} : $n_3 n_1 n_2 v_{1g}$: $n_1 n_3 n_2 v_{21}$: $n_1 n_2 n_3$

RF Methods of Heating and Current Drive in a Tokamak

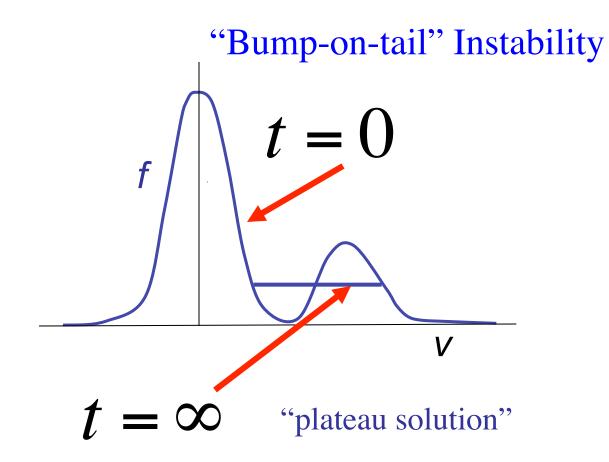
Tore Supra LH Coupler 4 MW, 1000 s, 3.7 GHz



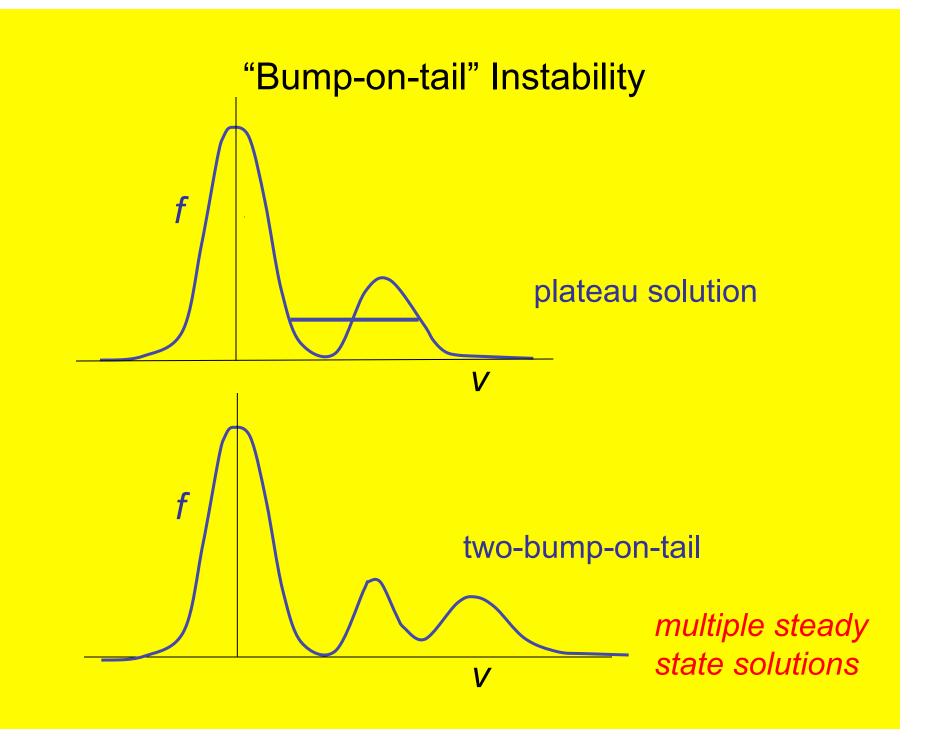
Rearrangement of Phase Space in Plasma



- 1. Current drive
- 2. One-way wall
- 3. Coupled diffusion in position-velocity: "alpha-channeling"



Free energy is due to equalizing population inversion Not entropy conserving



Free Energy under constrained Phase Space Rearrangement

minimize: $\mathcal{E} = \vec{n} \cdot \vec{\mathcal{E}}$

under phase space conservation

for atoms, use π -pulse excitations ν_{ij} : solution sequence $(\nu_{ij1}, \nu_{ij2}, ...)$ for plasma, use Hamiltonian forces: "Gardner restacking"

under diffusion constraint the free energy is not so easily found

for example: apply sequence (v_{10}, v_{21}) under diffusion constraint

	ϵ_0	ϵ_1	ϵ_2
Initial	n _o	n ₁	n ₂
Step1	(n ₁ +n ₀)/2	(n ₁ +n ₀)/2	n ₂
Step2	(n ₁ +n ₀)/2	(n ₁ +n ₀)/4 + n ₂ /2	(n ₁ +n ₀)/4 + n ₂ /2

Fisch and Rax, 1993

			Example		
		$E_0 = 0$	ε ₁ = 1	$\epsilon_2 = 4$	
Initial	$W_0 = 22$	$n_0 = 0$	n ₁ = 2	n ₂ = 5	
Step 1	$W_1 = 12$	5/2	2	5/2	Apply (v_{20}, v_{21})
Step 2	$W_2 = 45/4$	5/2	9/4	9/4	
		$E_0 = 0$	ε ₁ = 1	$\epsilon_2 = 4$	
Initial	$W_0 = 22$	0	2	5	Apply (v_{10}, v_{20}, v_{21})
Step 1	$W_1 = 21$	1	1	5	Better strategy
Step 2	$W_2 = 13$	3	1	3	
Step 3	$W_3 = 10$	3	2	2	

Strategy 1: Diffuse particles first between similar population levels

		Exan	nple (continued)		
		$\varepsilon_0 = 0$	$\epsilon_1 = 1$	$\epsilon_2 = 4$	
Initial	$W_0 = 22$	0	2	5	Apply (v_{21}, v_{20}, v_{10})
Step 1	$W_1 = 35/2$	0	7/2	7/2	Best strategy
Step 2	$W_2 = 21/2$	7/4	7/2	7/4	
Step 2	$W_3 = 77/8$	21/8	21/8	7/4	
		$\epsilon_0 = 0$	ε ₁ = 1	$\epsilon_2 = 4$	$(v_{21}, v_{10}, v_{20}, v_{21})$
Step 1	$W_1 = 35/2$	0	7/2	7/2	(*21, *10,*20,*21)
Step 2	$W_2 = 63/4$	7/4	7/4	7/2	Poor strategy
Step 3	$W_3 = 49/4$	21/8	7/4	21/8	
Step 4	W ₄ =175/16	21/8	35/16	35/16	

Strategy 2: Deplete particles first from high energy levels

Statement of the Problem

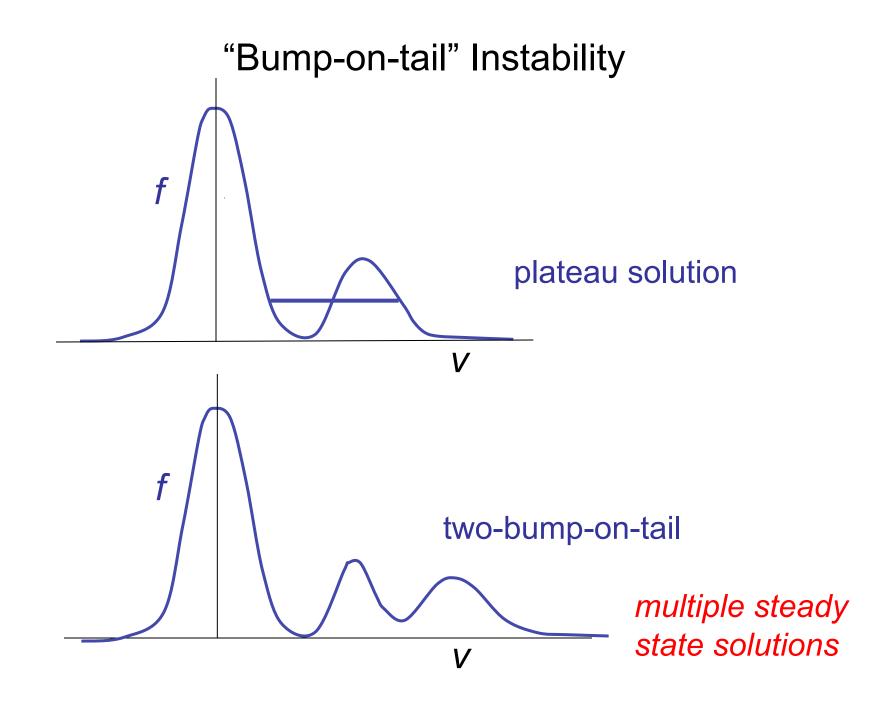
Discrete: Find the sequence $\{v_{ij}\}$ that minimizes: $W = \vec{n} \cdot \vec{\epsilon}$

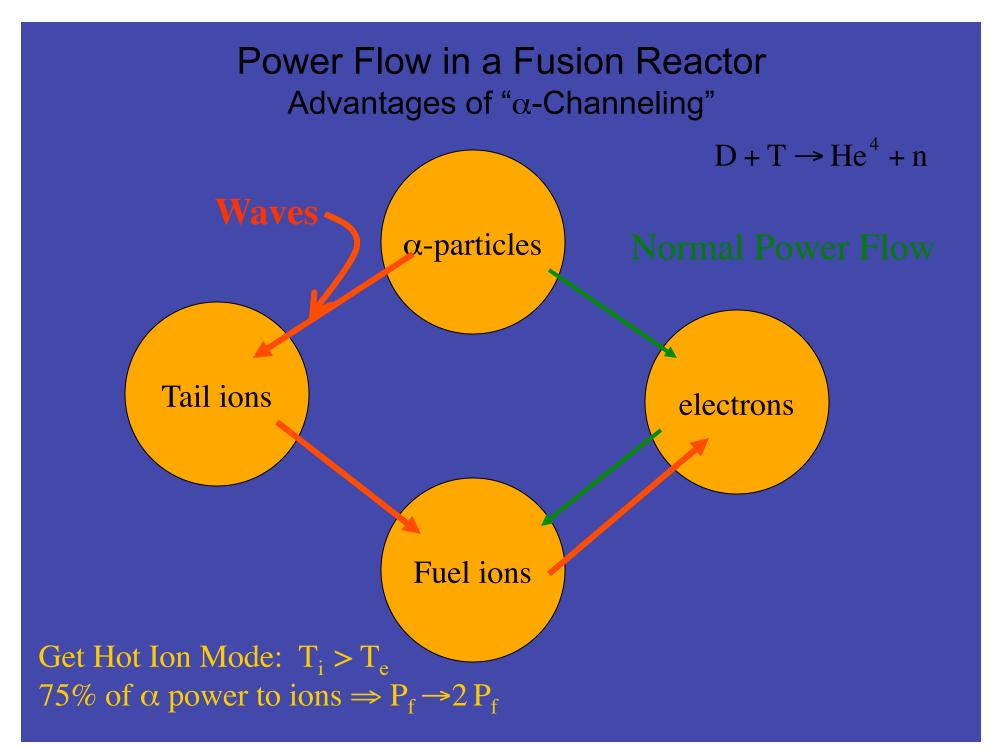
Continuous: Let
$$\frac{\partial f(v,t)}{\partial t} = \int K(v,v',t) \Big[f(v',t) - f(v,t) \Big]$$
$$K(v,v',t) = K(v',v,t)$$
$$K(v,v',t) \ge 0$$
$$W(t) = \int \varepsilon(v) f(v,t) dv$$

Then find K that minimizes $W(t \rightarrow \infty)$.

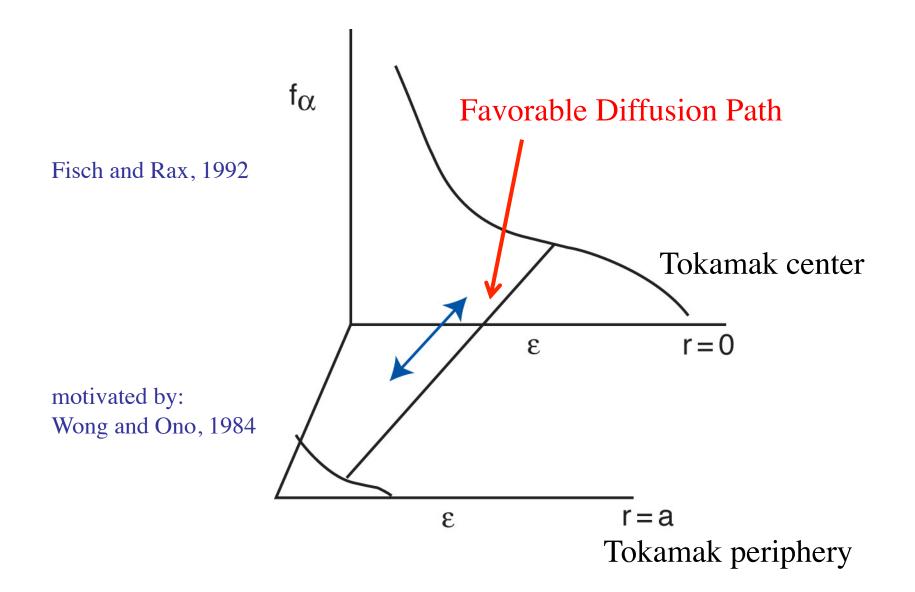
Note the H-theorem:

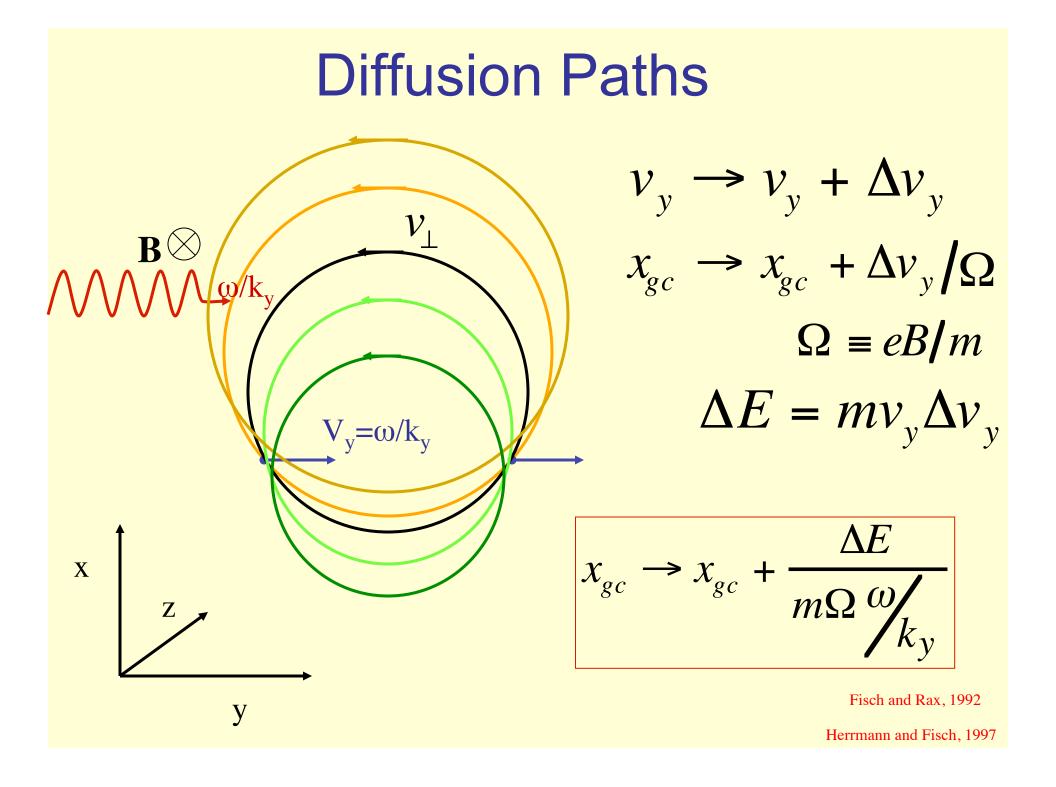
$$\frac{d}{dt}\int f(v,t)^2 dv \le 0$$



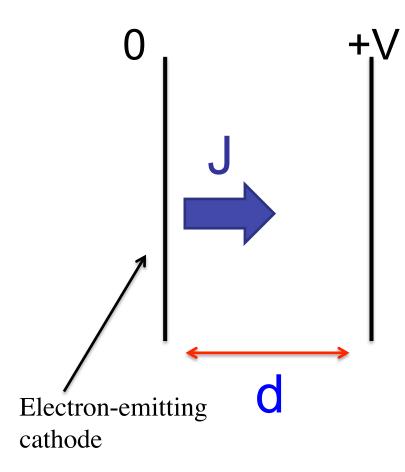


Extracting Free Energy





Child-Langmuir Law (rigorous upper bound)



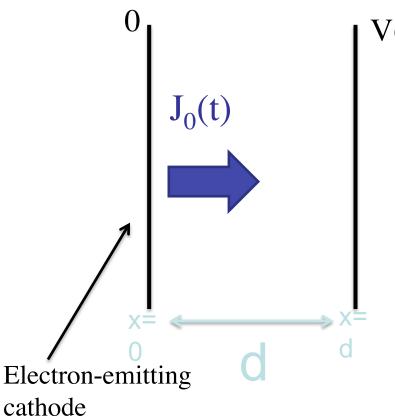
steady-state, maximum current density that can pass through a diode, Child-Langmuir Law:

$$J_{CL} = \frac{4}{9} \varepsilon_0 \sqrt{\frac{2e}{m}} \frac{V^{3/2}}{d^2}$$

Generalizations of Child-Langmuir

- nonzero injection velocity, and Maxwellian distribution (Langmuir, 1923)
- Relativistic (Chetvertkov, 1985)
- Time-Varying voltage to reduce transients (Kadish, Peter, Jones 1985)
- Quantum (Y. Y. Lau, 1991)
- Multi-Dimensional (Y. Y. Lau, Luginsland, 2002)
- Short Pulses (Y. Y. Lau, Valfells 2002)

Time-Dependent Boundary Conditions

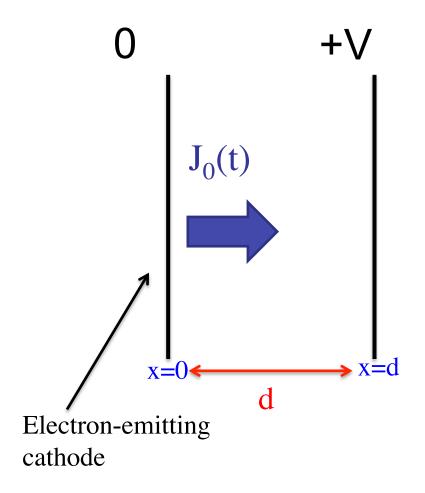


$$V(t) < V_0$$

Instantaneous current leaving the diode can exceed the steady-state limit.

But what about the average current over a long period of time? (Unremarkable) Upper Bound for Time-Averaged Current Density

Griswold, Fisch and Wurtele (2010)



$$J_{CL} \leq \frac{Q_{\max}}{\tau_{\min}} \leq 2.45 \cdot J_{CL}$$

 τ_{min} is the minimum transit time of an electron across the diode.

 Q_{max} is the maximum charge (per unit area) that can be injected into the diode without violating the boundary condition at the cathode qE(x=0)≥0.

PIC simulations led us to conjecture that the time dependent limit is equal to the steady-state limit.

Exception: J_{CL} exceeded by 13% in few Electron "Coulomb Blockade" Regime

Zhu and Ang (2011)

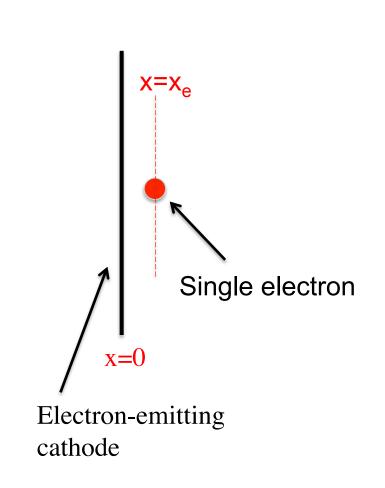
Here electron does not get pushed back into the cathode:

$$qE(x_e) \ge 0$$

discontinuity in the electric field at the electron means the field at the cathode can fall below zero:

$$qE(x=0) \ge \frac{-q^2}{2\varepsilon_0 A}$$

Griswold, Fisch and Wurtele (2012).



Time Dependent Child-Langmuir Limit with Time Dependent Flux and Voltage

Caflisch and Rosin (2011) arXiv: 1110.2840v1

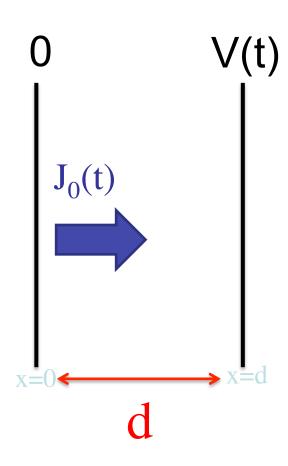
What is the proper limit to use in this case?

$$J_{CL} = \frac{4}{9} \varepsilon_0 \sqrt{\frac{2e}{m}} \frac{V^{3/2}}{d^2} \quad \text{(steady-state)}$$

Caflisch and Rosin showed that it is possible to exceed the adiabatic average of the limit:

$$\overline{J}_{\max} \sim \frac{4}{9} \varepsilon_0 \sqrt{\frac{2e}{m}} \langle V^{3/2}(t) \rangle$$

We use the limit defined by the "maximal" boundary conditions

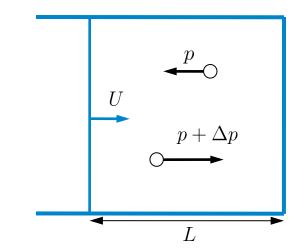


Adiabatic Compression of Waves

$$\Delta p = 2mU = -2m\frac{\Delta L}{\Delta t} = -\frac{\Delta L}{L}p$$

$$\int p \, dx = \text{inv}$$

$$\mathcal{E} = Np^2/(2m) \propto L^{-2} \propto V^{-2}$$



• Wave as a number of quanta:

$$\mathcal{E}/\omega = \hbar N = I$$
$$J = I/\mathcal{V}$$
$$\partial_t J + \nabla \cdot (\mathbf{v}_g J) = 0$$

$$E = \hbar \omega \qquad p = \hbar k$$
$$\oint p \, dx = \text{inv} \qquad \Rightarrow \qquad kL = \text{inv}$$
$$\omega = kc$$
$$\mathcal{E} = N\hbar\omega = N\hbar ck \propto L^{-1} \propto V^{-1}$$

What happens to imbedded waves as plasma is compressed?

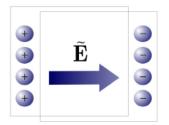
Regime of adiabatic compression:
$$\frac{1}{\sqrt{v}} < \tau_{comp} < \frac{1}{\omega}$$

Action conservation: $\frac{VE^2}{\omega} \sim const$
Example:
Plasma Waves $\omega \sim n^{1/2} \sim V^{-1/2} \longrightarrow E \sim V^{-3/4} \sim n^{3/4}$
 $P_{pw} = \frac{E^2}{16\pi} \longrightarrow P_{pw} V^{3/2} = const$
compare: $PV^{\gamma} = const$ $3D: \gamma = \frac{5}{3} \qquad \gamma = \frac{m+2}{m}$
 $D: \gamma = 3$

Langmuir Wave Compression: Fluid Approach

$$\omega_p^2 = 4\pi N e^2 / m_e$$

- Models vary in EOS, or the expression for $\hat{\mathbf{P}}_e$



$$\partial_t N_e + \nabla \cdot (N_e \mathbf{V}_e) = 0$$
$$\partial_t \mathbf{V}_e + (\mathbf{V}_e \cdot \nabla) \mathbf{V}_e = -(e/m_e) \nabla \varphi - \nabla \cdot \hat{\mathbf{P}}_e / (N_e m_e)$$

• Don't assume EOS; instead, derive it from

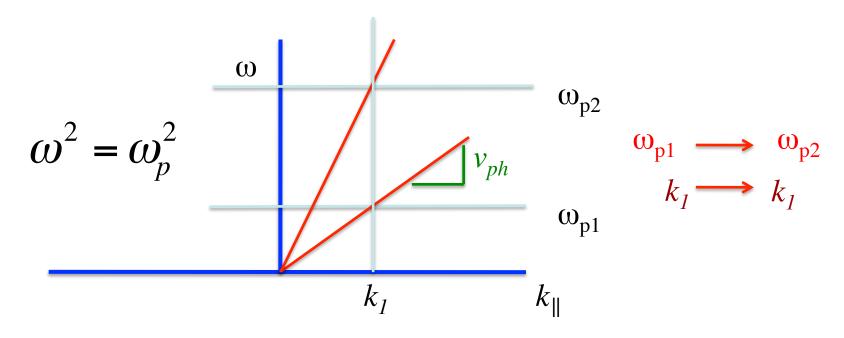
$$\partial_t \hat{\mathbf{P}}_e + (\mathbf{V}_e \cdot \nabla) \hat{\mathbf{P}}_e + \hat{\mathbf{P}}_e (\nabla \cdot \mathbf{V}_e) + [(\hat{\mathbf{P}}_e \nabla) \mathbf{V}_e] + [(\hat{\mathbf{P}}_e \nabla) \mathbf{V}_e]^{\mathsf{T}} = 0$$

$$\begin{aligned} \frac{\partial'^2 n}{\partial t^2} + \omega_p^2 n - C_{j\ell} \frac{\partial^2 n}{\partial x_j \partial x_\ell} + \\ + 2 \frac{\partial' n}{\partial t} \left(\frac{\Omega}{\omega_p} \frac{\partial \omega_p}{\partial x_\ell} + k_j W_{j\ell} \right) \frac{k_\ell}{k^2} - \left(\delta_{js} + \frac{k_j k_s}{k^2} \right) \frac{\partial C_{s\ell}}{\partial x_j} \frac{\partial n}{\partial x_\ell} = 0 \end{aligned}$$

 $\omega^2 = \omega_p^2 + 3k^2 v_{Te}^2 \approx \omega_p^2 \qquad \qquad \mathcal{E} = |E|^2 / (8\pi) \propto N^{3/2}$

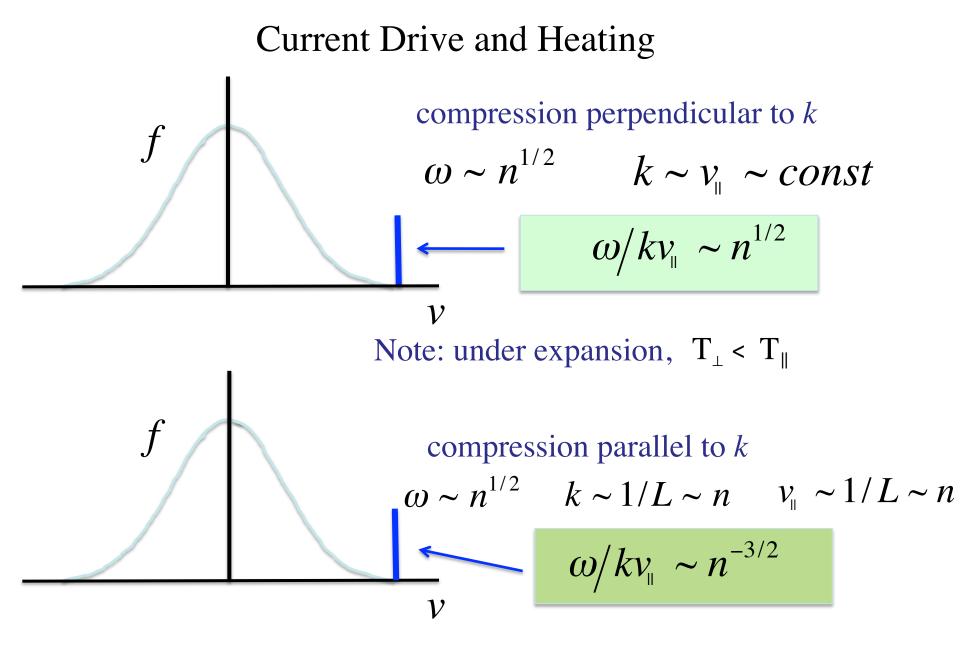
Dodin, Geyko, & Fisch, POP, 2009

Compression Perpendicular to k



Under compression: Less damping,

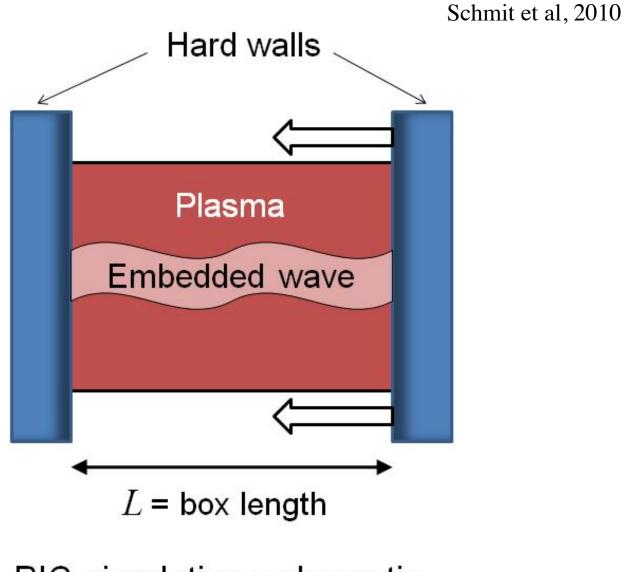
if collisionless \longrightarrow $T_{\perp} > T_{\parallel}$ Under expansion: More damping, $T_{\perp} < T_{\parallel}$



Note: under compression, $T_{\perp} < T_{\parallel}$

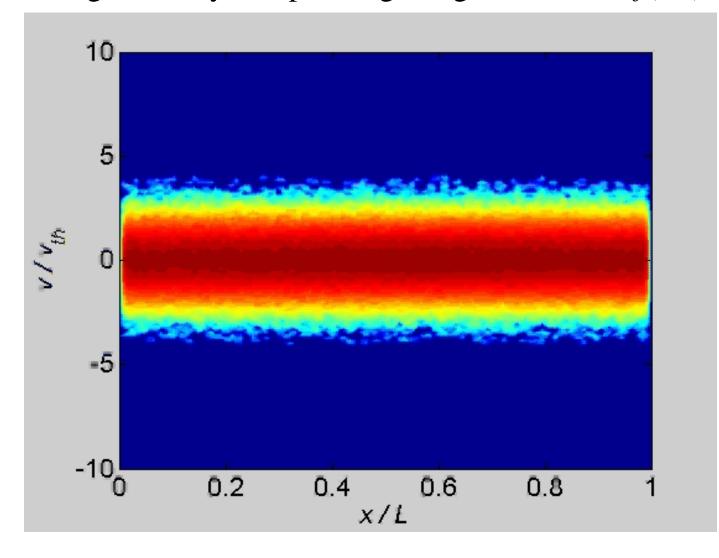
In either case, extra wave energy can accentuate energy difference

Particle Simulations



PIC simulation schematic

Plasma wave compression Longitudinally compressing Langmuir wave -f(x,v)



Langmuir Wave "Switch"

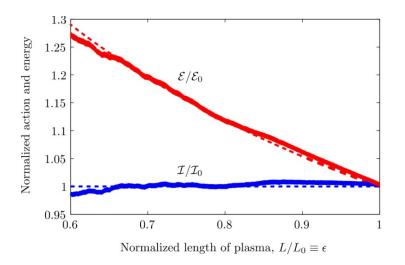
$$\omega^2 = \omega_p^2 + 3k^2 v_{Te}^2 \approx \omega_p^2(n)$$

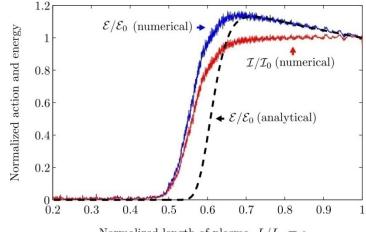
$$|E| \propto n^{3/4}$$

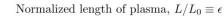
 $k\lambda_{\rm D} \propto L^{-3/2}$

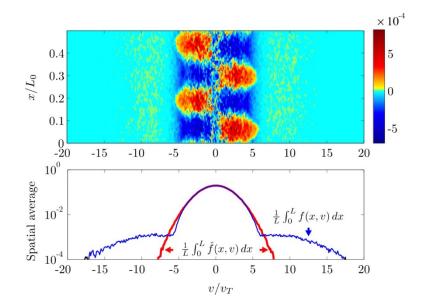
Dodin, Geyko, and Fisch, Phys. Plasmas (2010)

Schmit, Dodin, and Fisch, PRL (2010)

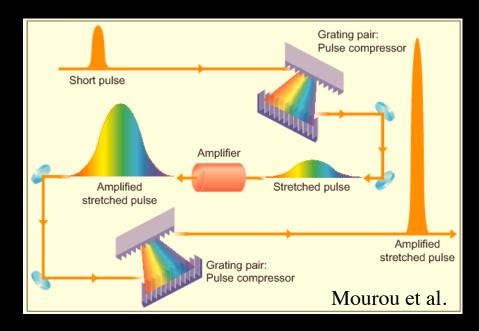




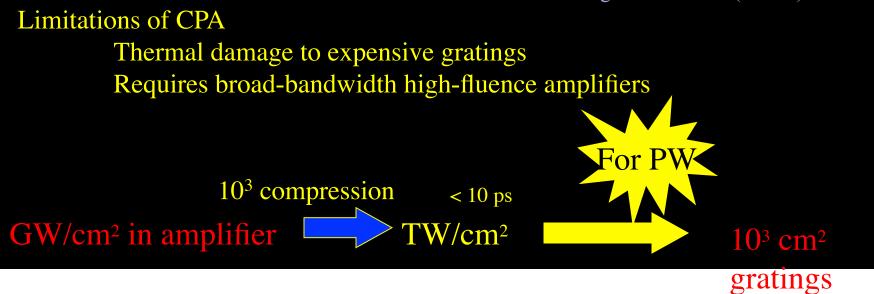


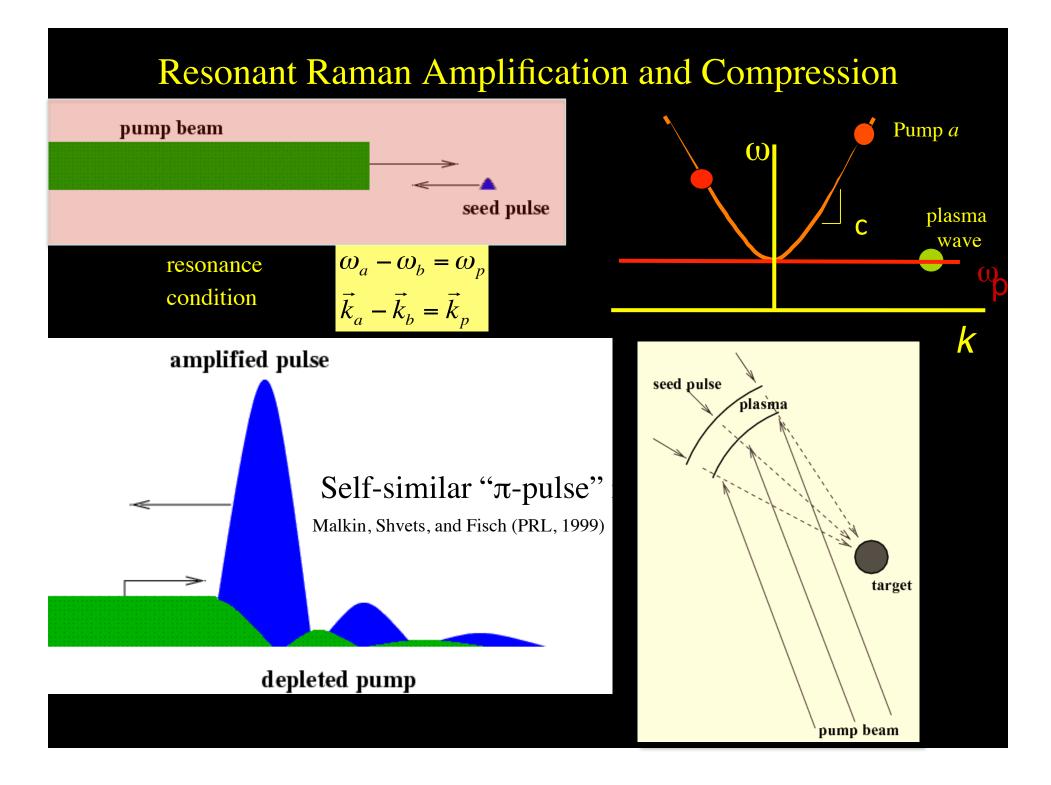


Chirped Pulse Amplification: stretch, amplify, then recompress

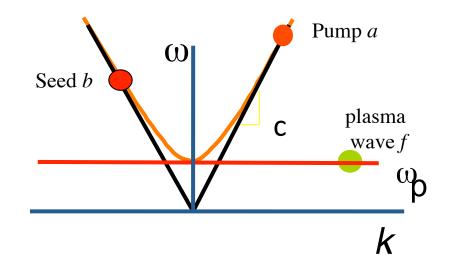


Gratings for Petawatt (10¹⁵W) Laser





Moderately under-critical plasma



$$a_t + c_a a_z = V_3 f b$$

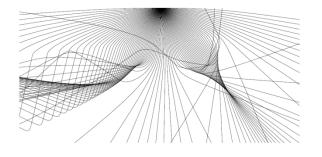
$$b_t - c_b b_z = -V_3 a f^* - i\kappa b_{tt} + iR |b|^2 b$$

$$f_t = -V_3 a b^*$$

Method of Dodin – Generalized Lagrangian Approach

Modeling wave propagation in a dispersive medium: Linear waves

Asymptotic geometrical-optics, or eikonal methods of modeling wave propagation:
 e.g., Runborg (2007), Kravtsov and Orlov (1990)...



Ray tracing

$$\mathfrak{D}(\omega, \mathbf{k}; t, \mathbf{x}) = 0$$

$$\frac{d\mathbf{x}}{dt} = \mathbf{v}_g, \quad \frac{d\mathbf{k}}{dt} = -\nabla\omega$$

Hamilton-Jacobi methods

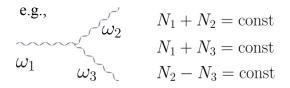
$$\mathfrak{D}(-\partial_t S, \, \nabla S; \, t, \mathbf{x}) = 0$$

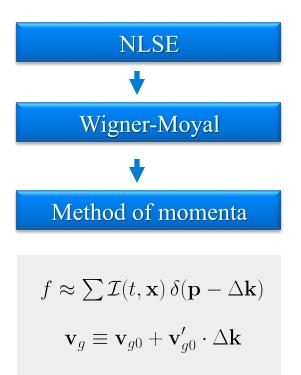
Wave kinetic equation
$\mathfrak{D}(\omega,\mathbf{k};t,\mathbf{x})=0$
$\frac{\partial f}{\partial t} + \mathbf{v}_g \cdot \frac{\partial f}{\partial \mathbf{x}} - \nabla \omega \cdot \frac{\partial f}{\partial \mathbf{k}} = 0$
◆
Method of momenta
$\frac{\partial}{\partial t} \left(\frac{\mathcal{E}}{\omega} \right) + \nabla \cdot \left(\mathbf{v}_g \frac{\mathcal{E}}{\omega} \right) = 0$

action conservation theorem = continuity equation for the photon density

Modeling wave propagation in a dispersive medium: Nonlinear waves

- A physical model must be conservative:
 - Single wave still conserves its action, or quanta
 - Resonant interactions conserve Manley-Rowe integrals





 $\omega = \omega_0 + \partial_{\mathbf{k}}\omega_0 \cdot \Delta \mathbf{k} + \omega_{\rm NL}$

$$i(\partial_t \psi + \mathbf{v}_{g0} \cdot \nabla \psi) + \frac{1}{2} \mathbf{v}'_{g0} : \nabla^2 \psi - \omega_{\rm NL} \psi = C(\psi)$$

$$\partial_t f + (\mathbf{v}_{g0} + \mathbf{v}'_{g0} \cdot \mathbf{p}) \cdot \partial_\mathbf{x} f - \omega_{\rm NL} \sin\left(\frac{1}{2} \overleftarrow{\partial}_\mathbf{x} \overrightarrow{\partial}_\mathbf{p}\right) f = C(f)$$

$$\mathbf{v}$$

$$\partial_t \mathcal{I} + \nabla \cdot (\mathbf{v}_g \mathcal{I}) = C(\mathcal{I})$$

$$\partial_t \mathbf{k} + \nabla \omega = 0$$

- But... These *nonlinear* GO envelope equations assume
 - that the nonlinearity is adequately modeled by the NLSE
 - that the underlying medium is homogeneous and stationary

Weakly nonlinear GO waves in inhomogeneous nonstationary medium

• Field-theoretical Lagrangian approach yields equations that are conservative in *general* GO medium, at all *z* and *t*

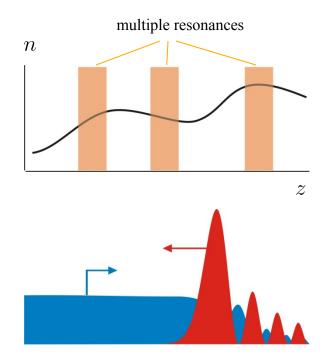
Single wave

Whitham (1965), Bretherton and Garrett (1968)...

- Lagrangian density: $\mathfrak{L}(a, \omega, \mathbf{k})$
- dispersion relation: $\mathfrak{L}_a = 0$

envelope equation:

$$\partial_t \mathbf{\mathfrak{L}}_\omega - \nabla \cdot \mathbf{\mathfrak{L}}_{\mathbf{k}} = 0$$



Multiple resonant waves

e.g., $\eta = \theta_1 - \theta_2 - \theta_3$ $\begin{aligned} \mathbf{\mathfrak{L}}_{a_j} &= 0\\ \partial_t \mathbf{k}_j &= -\nabla \omega_j\\ \partial_t \mathbf{\mathfrak{L}}_{\omega_j} - \nabla \cdot \mathbf{\mathfrak{L}}_{\mathbf{k}_j} &= \pm \mathbf{\mathfrak{L}}_{\eta}\\ \partial_t \eta &= \omega_1 - \omega_2 - \omega_3 \end{aligned}$

- Included beat phases, $\mathfrak{L} = \mathfrak{L}(a_j, \omega_j, \mathbf{k}_j, \eta)$
 - Closed set of slow-motion PDEs
 - Any resonances (linear and nonlinear) and wave self-action included
 - Wave action/Manley-Rowe integrals are manifestly conserved
 - ...and, in plasma, we also know the nonlinear Lagrangian explicitly!

cf. Brizard and Kaufman (1995)

Method of Dodin -- Master Lagrangian: Raman scattering as an example

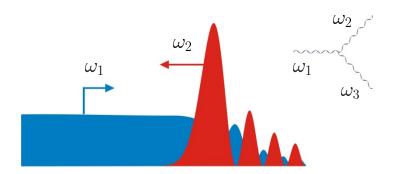
- The wave Lagrangian can be expressed through ensemble-averaged oscillation-center energies
- Making approximation *in the Lagrangian* does not affect the conservative properties of the equations
- Example: $\mathcal{H} \approx \frac{P^2}{2m} + \frac{e^2 |\mathbf{E}|^2}{4m\omega^2}$

$$|\mathbf{E}|^2 = |\mathbf{E}_1|^2 + |\mathbf{E}_2|^2 + \mathbf{E}_1 \cdot \mathbf{E}_2^* + \mathbf{E}_1^* \cdot \mathbf{E}_2$$

$$\mathfrak{L} = \mathfrak{L}_1 + \mathfrak{L}_2 + \mathfrak{L}_3 - \frac{e^2 E_1 E_2}{4m\omega_1\omega_2} \tilde{n} \cos \eta$$

$$\mathfrak{L}_{1,2} = \frac{E_{1,2}^2}{16\pi} \left[\epsilon_{\perp}(\omega) - \frac{k^2 c^2}{\omega^2} \right]_{1,2}$$
$$\mathfrak{L}_3 = \frac{\epsilon_{\parallel}(\omega_3, \mathbf{k}_3)}{16\pi} \left(\frac{4\pi e \tilde{n}}{k_3} \right)^2$$

$$\mathfrak{L}(a,\omega,\mathbf{k}) = \frac{\langle E^2 - B^2 \rangle}{8\pi} - \sum_s n_s \langle \mathcal{H}_s \rangle_f$$



• The nonlinear coupling affects the dispersion; e.g,

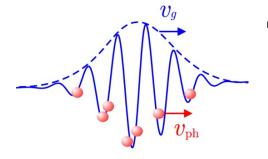
$$\frac{E_1}{16\pi} \left[\epsilon_{\perp}(\omega_1) - \frac{k_1^2 c^2}{\omega_1^2} \right] - \frac{e^2 E_2 \tilde{n}}{4m\omega_1 \omega_2} \cos \eta = 0$$

• The nonlinear coupling affects the transport:

$$\frac{\partial}{\partial t} \left(\frac{\mathcal{E}_j}{\omega_j} + \Delta \mathfrak{L}_{\omega_j} \right) + \nabla \cdot \left(\mathbf{v}_g \frac{\mathcal{E}_j}{\omega_j} - \Delta \mathfrak{L}_{\mathbf{k}_j} \right) = \pm \mathfrak{L}_\eta$$

cf. Brizard and Kaufman (1995)

Effects due to trapped particle are special. The NLSE does not apply



• Trapped electrons contribute an *E*-independent term

$$\mathfrak{L}(\omega,k,E) = \epsilon(\omega,k) \frac{E^2}{16\pi} + \sigma e E + \frac{m\sigma\omega^2}{2k}$$

• The only self-action *not* described by NLSE!

$$(\partial_t + v_{g0} \,\partial_x)\psi + \frac{1}{2} \,v_{g0}' \,\partial_{xx}^2 \psi = -i\omega_{\rm NL}\psi$$

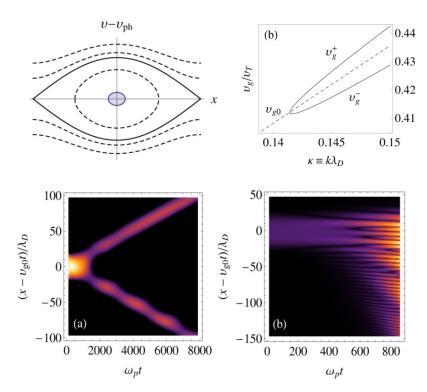
• TPMI theory must be revised

$$\gamma \approx \Delta k \, v_{g0} \Omega_E \sqrt{S \left(S - 1/2\right)}$$

$$\Omega_E = \sqrt{\frac{eEk}{m\omega_p^2}} \qquad S = \frac{\text{trapped-}e \text{ energy flux}}{\text{passing-}e \text{ energy flux}}$$

cf. Dewar et al., 1972; Ikezi et al., 1978; Rose, 2005; Rose and Yin, 2008; Istomin and Karpman, 1972; Benisti et al., 2010...

Dodin and Fisch, Phys. Plasmas (2012a,c)

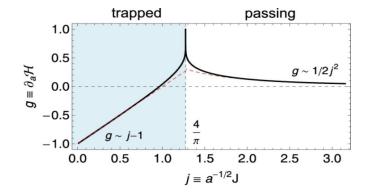


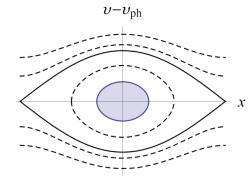
Nonlinear dispersion of waves with trapped electrons (e.g., BGK modes)

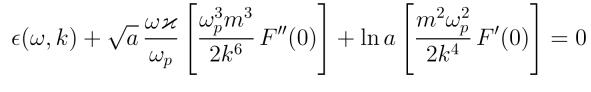
• For any distribution F(J), $\mathfrak{L}_a = 0$ yields

$$\omega^2 = \omega_p^2 \; \frac{2}{a} \int_0^\infty g(j) F(\mathsf{J}) \, d\mathsf{J}$$

(similarly for other waves, e.g., whistlers)



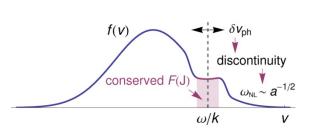




Dodin and Fisch, PRL (2011); PoP (2012b)

- δ -beam: $\omega^2 = \omega_L^2 2\omega_b^2/a$
- flat beam: $\omega^2 = \omega_L^2 [8/(3\pi)]a^{-1/2}\omega_p^2 F_b$

cf. Manheimer and Flynn, 1971; Dewar, 1972; Winjum et al., 2007; Khain and Friedland, 2007; Goldman and Berk, 1971; Krasovsky, 2007; Rose and Russell, 2001; Benisti and Gremillet, 2007; Lindberg et al., 2007...



Photon momentum in a dielectric. Resolving the Abraham-Minkowski controversy

• The same Lagrangian approach *actually* resolves the 100-yearold "dilemma" about the wave energy-momentum in dielectric

Canonical, or Minkowski EMT

This part is known; cf. Sturrock (1961), Whitham (1965), Dougherty (1970)...

$$\left(\begin{array}{c|c} \mathcal{E} = \mathcal{I}\omega & \mathbf{Q} = \mathbf{v}_g \mathcal{E} \\ \hline \mathcal{P} = \mathbf{k} \mathcal{E}/\omega & \hat{\Pi} = \mathcal{P} \mathbf{v}_g \end{array}\right)$$

$$\mathbf{p}_{\mathrm{M}} = \hbar \mathbf{k}$$
$$\mathbf{p}_{\mathrm{A}} = \hbar \omega \mathbf{v}_{g} / c^{2}$$
$$\Delta \boldsymbol{\mathcal{V}} = ?$$
$$\hbar \omega$$
From P. Lett ('05)

Barnett (2010); Kemp (2011); Milonni and Boyd (2011); Baxter and Loudon (2010); Pfeifer *et al* (2007)...

Physical, or Abraham EMT

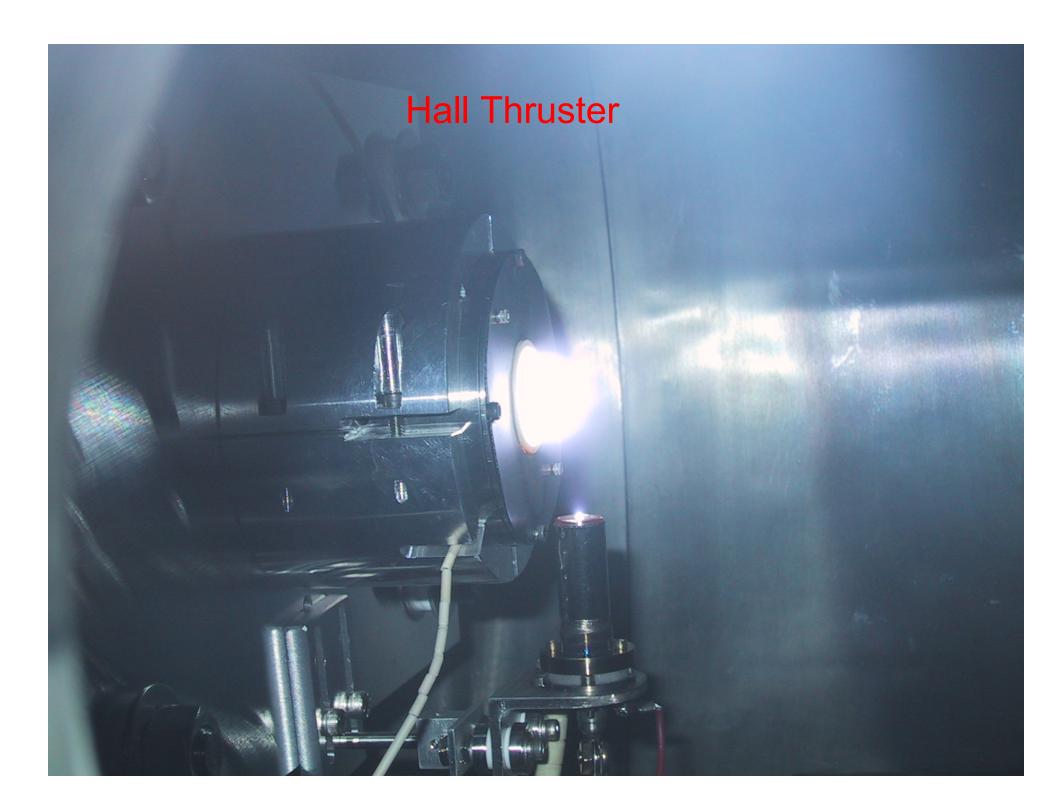
Dodin and Fisch, submitted to PRA; generalizes Dewar (1977)

- We can derive the physical EMT, *including* striction effects, without specifying the wave nature
 - Abraham's formula, $p = p_A$, holds only in resting fluid
 - Now we can calculate the *full* ponderomotive force

$$\tau^{\alpha\beta} = \Lambda^{\alpha}{}_{\mu}\Lambda^{\beta}{}_{\nu} \begin{pmatrix} \mathcal{E} & \mathcal{E}\mathbf{v}_g/c \\ \mathcal{E}\mathbf{v}_g/c & \mathcal{E}\,\mathbf{k}\mathbf{v}_g/\omega + \mathcal{U}\,\hat{\mathbf{1}} \end{pmatrix}'$$

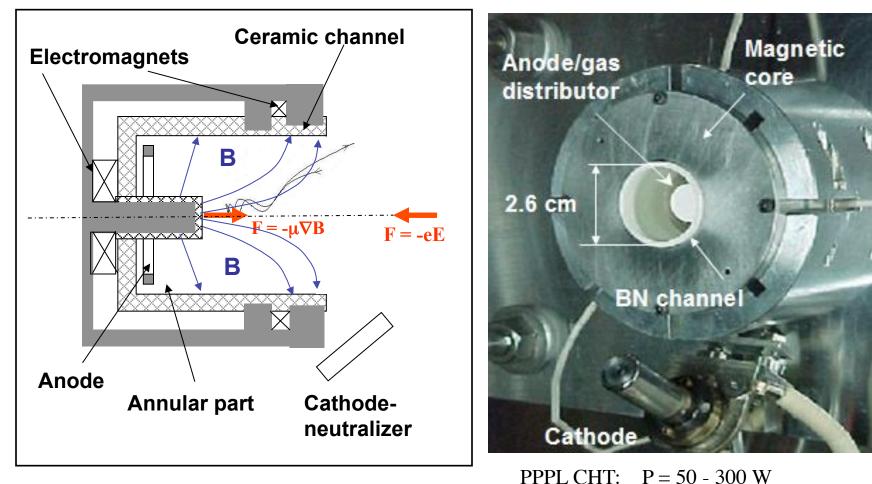
U is the ponderomotive energy density, Λ is the matrix of Lorentz transformation

...could also include these average forces to model the bulk plasma dynamics...



Cylindrical Hall Thruster

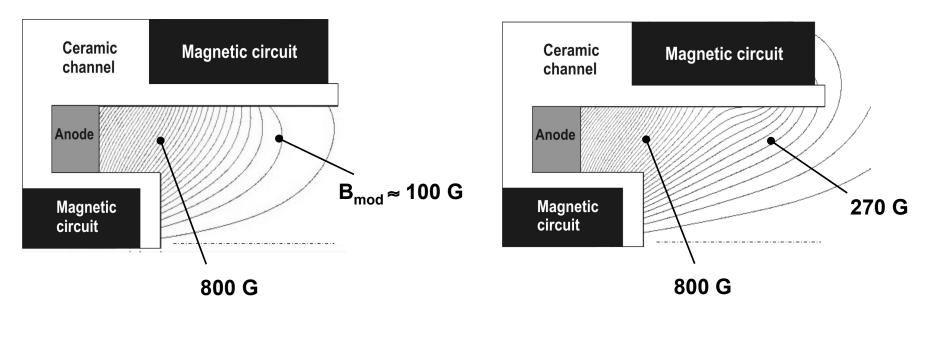
Fundamentally different from conventional HT: Electrons are confined in a hybrid magneto-electrostatic trap.



Y. Raitses and N. J. Fisch, Physics of Plasmas, 8, 2579 (2001).

OD = 2.6 cmT = 2 - 12 mN

Cylindrical Configurations



Cusp Geometry

Direct Geometry

Cusp Geometry was thought important to produce axial thrust

A. Rotation of Force Vector by Supersonically Rotating Electrons

Fisch, Raitses, Fruchtman (2011) Force on ions = centrifugal force on electrons $qE_s = -eE_s = m_e \Omega^2 r \cos \theta$ $\Omega_e = eB/m$ $M \approx \sin \eta = E_s/E_n = \frac{\Omega}{\Omega} \cos \theta = \frac{\rho_L}{r} \left(\frac{E/B}{v_{\pi}}\right) \cos \theta$

 ηE $E_n E_s$

So rotate η by about 6 degrees for sonic rotation and more for supersonic rotation!

Example: $T_e = 20 \text{ eV}$, $E_n = 200 \text{ V/cm}$, a=L=1 cm $\rho_L \approx T_{20}^{1/2} / B_{100} mm$ r ~ 10 mm or 12 degrees for r = 5mm

Summary:

- 1. Free Energy of Plasma under Wave Diffusion
- 2. Rigorous upper bound for space-charge limited current
- 3. Wave compression in plasma
- 4. Lagrangian description of wave propagation including trapped particles (method of Dodin)
- 5. Collimation of ions in magnetic fields (self-organization of supersonically rotating electrons)