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There are a few curious mathematical questions
underlying some basic issues in hot dense plasma to
which I wish I knew the answer.




Gardener Restacking

Initial energy distribution

Entropy conserving



Free Energy under Phase Space Rearrangement

2
Va1
minimized for:  Ng >Ny >N,
Vg more generally, minimize: E€ =MN"*E
Vig using m-pulse excitations V;;
g

Example: for ny > n, > N4 t=0: n;n, n,
To release free energy, apply 3 (ordered) n-pulses (to exchange densities)



RF Methods of

Heating and
Current Drive
in a Tokamak

Tore Supra LH Coupler
4 MW, 1000 s, 3.7 GHz




Rearrangement of Phase Space in Plasma

/\/\/\/\/\ ) plasma slab

1. Current drive
2. One-way wall

3. Coupled diffusion in position-velocity: “alpha-channeling”



“Bump-on-tail” Instability

74

[ = OO0  “plateau solution”

Free energy 1s due to equalizing population inversion
Not entropy conserving



“Bump-on-tail” Instability

\ /\ plateau solution
O\

4

two-bump-on-tail

multiple steady

V state solutions



Free Energy under constrained Phase Space Rearrangement
minimize: E=n-€

under phase space conservation
for atoms, use m-pulse excitations Vij: solution sequence (Vij1’ Vij2v . )
for plasma, use Hamiltonian forces: “Gardner restacking”

under diffusion constraint the free energy is not so easily found

for example: apply sequence (V1O,V21) under diffusion constraint

€0 €4 €,
Initial Ny n, n,
Step1 (ng +ny)/2 (ng +ny)/2 n,
Step2 ( Ny +ng)/2 ( Ny +ng)l4 + n,/2 ( Ny +ng)4 + n,/2

Fisch and Rax, 1993



Example

€g=0 €1=1 €r=4
Initial W, =22 n,=0 n=>2 n,=5
Stepl W,;=12 5/2 2 5/2
Step2  W,=45/4 5/2 9/4 9/4

€g=0 €1=1 €r=4
Initial  W,=22 0 2 5
Stepl W,;=21 1 1 5
Step2  W,=13 3 1 3
Step3  W;=10 3 2 2

Strategy 1: Diffuse particles first between similar population levels

Apply (vog,V24)

Apply (v49,V20,V21)

Better strategy



Example (continued)

€x=0 €1=1 €,=4
Initial W, =22 0 2 5
Step1 W, =35/2 0 712 712
Step2  W,=21/2 714 712 714
Step2  W;=77/8 21/8 21/8 714

€y=0 €1=1 €,=4
Stepl W, =35/2 0 772 772
Step2  W,=63/4 7/4 7/4 772
Step3  W;=49/4 21/8 714 21/8
Step4 W,=175/16  21/8 35/16 35/16

Strategy 2: Deplete particles first from high energy levels

Apply (v21,v20,V10)

Best strategy

(Va1, V405V20:V21)

Poor strategy



Statement of the Problem

Discrete: Find the sequence {v;} that minimizes: W=n-¢

&f(v t

Continuous: Let

= [k t)[ fO,0-f, t)]
K(v,v )=KW',v,t)
Kiv,v'i,t)=0

W(t)= [ eW)f (v,t)dv

Then find K that minimizes W (f — o).

Note the H-theorem: d 2
o [ fvydvs0




“Bump-on-tail” Instability

\ /\ plateau solution
O\

74

two-bump-on-tail

multiple steady

V state solutions



Get Hot Ion Mode: T, > T,
75% ot o. power to 1ons = P, —2 P;




Extracting Free Energy

Favorable Diffusion Path

Fisch and Rax, 1992

Tokamak center

motivated by:
Wong and Ono, 1984

£ r=a
Tokamak periphery



Diffusion Paths

—>
v, v, + Avy

BX ¢!
NV S 7 e HAV[Q
Q =eB[m
\ ) AE = mvyAvy

X xgc —> xgc + O .
ky

Fisch and Rax, 1992

Herrmann and Fisch, 1997



J

=)

Child-Langmuir Law
(rigorous upper bound)

<€

Electron-emitting

cathode

d

-4

V

steady-state, maximum
current density that can pass
through a diode, Child-
Langmuir Law:




Generalizations of Child-Langmuir

nonzero injection velocity, and Maxwellian distribution
(Langmuir, 1923)

Relativistic (Chetvertkov, 1985)

Time-Varying voltage to reduce transients
(Kadish, Peter, Jones 1985)

Quantum (Y. Y. Lau, 1991)
Multi-Dimensional (Y. Y. Lau, Luginsland, 2002)
Short Pulses (Y. Y. Lau, Valfells 2002)



Time-Dependent Boundary Conditions

0 V(t) < V,

Instantaneous current
Jo(©) . .
leaving the diode can exceed

# the steady-state limit.

But what about the average
current over a long period of
time?

Electron-emitting
cathode



(Unremarkable) Upper Bound for Time-Averaged Current Density

Griswold, Fisch and Wurtele (2010)

0 +V Jo = gmax <245-J,,

min

JO(t) T, IS the minimum transit time of an
l electron across the diode.
Q,..x 1S the maximum charge (per unit
area) that can be injected into the diode

without violating the boundary
condition at the cathode qE(x=0)=0.

x=0+€ > X=

Electron-emitting PIC simulations led us to conjecture
cathode that the time dep.enc.lent limit is equal to
the steady-state limit.



Exception:
Jop exceeded by 13% in few Electron “Coulomb Blockade” Regime

Zhu and Ang (2011)

Here electron does not get pushed

X=X, back into the cathode:
qE(x,) =0
\ discontinuity in the electric field at the
| Single electron electron means the field at the cathode can
fall below zero:
x=0 — qz
gE(x=0)= ——
Electron-emitting 2€ 0 A

cathode

Griswold, Fisch and Wurtele (2012).



Time Dependent Child-Langmuir Limit
with Time Dependent Flux and Voltage

Caflisch and Rosin (2011) arXiv: 1110.2840v1

What is the proper limit to use in this case?

4  [2e V7
Jop = 580 E 7 (steady-state)

Caflisch and Rosin showed that it is
possible to exceed the adiabatic average of

the limit:
— 4 2e /3
J ~—c 1/— V=2 (t
max 9 0 m < ( )>

< > We use the limit defined by the “maximal”
d boundary conditions




Adiabatic Compression of \Waves

AL AL
APZQmU: —2m — = et
At L p
’ U
| I j{pd:v:inv p+ Ap
L_J v O
£=Np*/(2m) x L2 x V2 B i g

« Wave as a number of quanta: E = hw p = hk

EJw=hN =1 jépdwzinv = kL =inv

J=1/V Y

0 J +V - (vg]) =0 €= Nhw= Nhek oc L™ oc V7!




What happens to imbedded waves as plasma 1s compressed?

Regime of adiabatic compression: y <T < y
14 w

comp
VE*

Action conservation: —— ~ CONsSt
)

Example:
Plasma Waves

1/2 —-1/2 -3/4 3/4
wo~n'‘~V ) |~V ~ 7

? 3/2
- =E_ > P V = COnSt
16 L

14
compare: PV = const




2 _ 2
w, = 4w Ne”/m,

Langmuir Wave Compression: Fluid Approach

e Models vary in EOS, or the expression for P,

OUN‘TE + V : (NeVe) — 0

e - 9
D E 2 ‘ ) — (o) I v AR 5 N\
? ‘ 3 OVe+ (V.-V)V.=—(¢/m.)Vp =V -P./(N.m.)
= 2
e Don't assume EOS: instead, derive it from
OPe+ (Ve - VP, +P(V-V.) + [(PV)V.]+ [(P.V)V.]T =0
*n d*n
Ot2 +wpn = Cie dx 8;175_*_

ky
+2 {

o'n [ Q Ow,
Ot

wp Oxy

— + k; Hrjf) 2

) kik\ OCq On
O"Q I — =0
( i T ) dxj Oxy

2
p

w2 = wg + 31321:%6 ~ W

£ =|El/(8m) o« N*/?

Dodin, Geyko, & Fisch, POP, 2009



Compression Perpendicular to k

ol /

Under compression: Less damping,
if collisionless — T,> T,

Under expansion: More damping, T, < T,



Current Drive and Heating

compression perpendicular to £
/ w~n'"?  k~v ~const
L<—— w/ky, ~n'"”
v

Note: under expansion, T, < T

f compression parallel to k
w~n'? k~1/L~n v, ~1/L~n

— (l)/kV” - n—3/2

Vv

Note: under compression, T, < T,

In either case, extra wave energy can accentuate energy difference



Particle Simulations

Schmit et al, 2010
Hard walls

el Ty

<

L = box length

PIC simulation schematic



Plasma wave compression

Longitudinally compressing Langmuir wave — f(x,v)

 x/L



Normalized action and energy

Langmuir Wave “Switch”

W = w’ + 3k*v}, ~ w(n)

|E| o n3/4

kEAp L3/2

Dodin, Geyko, and Fisch, Phys. Plasmas (2010)

1.05

0.95

Schmit, Dodin, and Fisch, PRL (2010)

L
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Chirped Pulse Amplification: stretch, amplify, then recompress

Grating pair:
Pulse compressor

o

Amplifier

Short pulse

Amplified Stretched pulse
stretched pulse

\"\ Amplified

g 1 L . stretched pulse
& Grating pair:
Pulse compressor
Mourou et al.

Gratings for Petawatt (101°W) Laser
Limitations of CPA
Thermal damage to expensive gratings
Requires broad-bandwidth high-fluence amplifiers

103 compression <10 ps

:> TW/cm?2

gratings




Resonant Raman Amplification and Compression

pump beam

‘ \

seed pulse

resonance
condition

amplified pulse

Self-similar “mt-pulse”
Malkin, Shvets, and Fisch (PRL, 1999)

seed pulse \
plasma

depleted pump

pump beam



Moderately under-critical plasma

Pump a

Seed b

plasma
wave f

b
K

C

a; + cqa, = V3fb
by — cpb, = —Vaaf* — irby + iR |b]° b

ft = —V3ab*



Method of Dodin — Generalized Lagrangian Approach

Modeling wave propagation in a dispersive medium: Linear waves

= Asymptotic geometrical-optics, or eikonal methods of modeling wave propagation:

e.g., Runborg (2007), Kravtsov and Orlov (1990)...
Wave kinetic equation

D(w,k;t,x) =0
of of of _

R E——— — 4+ v, - — — Vw- =0

\

D(w, k;t,x) =0 S
Method of momenta

dx dk
i i —V
a0 “ S e -
a — | + V . Vg — =0
Hamilton-Jacobi methods v “

action conservation theorem =
£y, (—at S , VS - T, X) =0 continuity equation for the photon density



Modeling wave propagation in a dispersive medium: Nonlinear waves

= A physical model must be conservative: e wQ Ni + N, = const
Si ) ) o *i\‘\ Ny + N3 = const
* Single wave still conserves its action, or quanta w1 Wi Ny — Ny — const
* Resonant interactions conserve Manley-Rowe integrals
S — : 1, 9
NLSE Z(at@b + VgO ’ V¢) + §VQOZV ¢ — wNL@D = C(’(,b)
\ \
S — p ) 1< —
Wigner-Moyal Ohf + (Voo + Vg - P) - Oxf — wnrsin (5 Ix 3p) f=c(f)
\ 4
\
Method of momenta oOL+V-(v,I)=C(T)
[ 1t x)0(p — Ak)
Vg = Vg0 + Vi - Ak » But... These nonlinear GO envelope equations assume

W = Wy + By - AK + WL,  that the nonlinearity is adequately modeled by the NLSE
 that the underlying medium is homogeneous and stationary



Weakly nonlinear GO waves in inhomogeneous nonstationary medium

» Field-theoretical Lagrangian approach yields equations multiple resonances
that are conservative in general GO medium, at all z and ¢

Whitham (1965), Bretherton and Garrett (1968)...

Lagrangian density:  £(a, w, k) o
dispersion relation: L.=0

envelope equation: KL, — V- -Le=0

Multiple resonant waves

e.g,n="0 —0,—0;

= Included beat phases, £ = £(a;j,w;,k;,n)

2(1]- =0 * Closed set of slow-motion PDEs

o , * Any resonances (linear and nonlinear) and wave self-action included

* Wave action/Manley-Rowe integrals are manifestly conserved

* ...and, in plasma, we also know the nonlinear Lagrangian explicitly!
O = w; —wz — w3

cf. Brizard and Kaufman (1995)




Method of Dodin -- Master Lagrangian: Raman scattering as an example

» The wave Lagrangian can be expressed through (E? — B?)
ensemble-averaged oscillation-center energies L£(a,w, k) =

= Making approximation in the Lagrangian does not
affect the conservative properties of the equations Wy

= Example: N P2 eE[?

om  dmw?

E* = |[E\* + |Eof* + E; - E} + E} - Ey

2 The nonlinear coupling affects the dispersion; e.g,
e“Fi1ly _
L=8L1+L+ L3 ——n cosn
AMmwiwo E, (o) k2c? e2Fyn 0
— e (w1) — — cos” =
16m | =1 w? AMmuwywsy "

E? k22
L1 = —2 €1 (w) —— 5
167 W 119 o /& Ej
k) (dmen’ %\ “
- 167 kg

The nonlinear coupling affects the transport:

£3
cf. Brizard and Kaufman (1995)



Effects due to trapped particle are special. The NILSE does not apply

()
. \_g, = Trapped electrons contribute an E-independent term
N E? mow?
""\]\ Lw,k,B) =€w, k) — +oell + ——
)) ( Y ) ) ( ) ) 167T Qk

vph

= The only self-action not described by NLSE!

1 :
(875 =F Ug() 8I>¢ == 5 ’U;O azm’lp = —szLw

= TPMI theory must be revised

Dodin and Fisch, Phys. Plasmas (2012a,c)

v & Ak vggQpy/S (S —1/2)

(x — vgot)/Ap

O eEk g trapped-e energy flux
B mw? ~ passing-e energy flux
cf. Dewar et al., 1972; Ikezi et al., 1978; Rose, 2005; Rose and 0

Yin, 2008; Istomin and Karpman, 1972; Benisti et al., 2010...

(x — vgot)/Ap

2000 4000 6000 8000

Wyt

(b) 0.44
0.43
~
2
s 0.42
Uy
5 0.41
0.14 0.145 0.15

KEk/\D

0 200 400 600 800

wpt



Nonlinear dispersion of waves with trapped electrons (e.g., BGK modes)

= For any distribution F'(J), £, = 0 yields

trapped passing
1.0F ' ‘ ' |
" 0.5 ‘ .
50 E g~1/2j
2 __ 2 g ( ) F()) dJ D S E
w _ wp g ] < ) = -0.5
a Jo ’
-1.0¢; . . . .
00 05 10 15 20 25 30
(similarly for other waves, e.g., whistlers) Jua ')
303

X
f(v) <—E—> OVon
+ discontinuity
conserved F(J) , —1/2
\ : WL~ a
w/k v

w, m
e(w, k) + Va == | 2L
Wp

Dodin and Fisch, PRL (2011); PoP (2012b)

. : 2 _ 2 2
d-beam: w” =wi — 2w /a

. 2 2 —1 / 2, 2
* flatbeam: w*=w; — [8/(37)|a w, Fy
cf. Manheimer and Flynn, 1971; Dewar, 1972; Winjum et al., 2007;
Khain and Friedland, 2007; Goldman and Berk, 1971; Krasovsky, 2007;

Rose and Russell, 2001; Benisti and Gremillet, 2007; Lindberg et al., 2007



Photon momentum in a dielectric. Resolving the Abraham-Minkowski controversy

» The same Lagrangian approach actually resolves the 100-year-
old "dilemma" about the wave energy-momentum in dielectric

Canonical, or Minkowski EMT
This part is known; cf. Sturrock (1961), Whitham (1965), Dougherty (1970)...

E=Tw Q=v,&
P =kE/w ﬁ=’PvQ

Physical, or Abraham EMT

Dodin and Fisch, submitted to PRA; generalizes Dewar (1977)

from P. Lett ('05)

Barnett (2010); Kemp (2011) ; Milonni
and Boyd (2011); Baxter and Loudon
(2010); Pfeifer et al (2007)...

= We can derive the physical EMT, including striction
effects, without specifying the wave nature

/
Taﬁ _ Aa,uABy ( o) SVg/C )

Evy/c Ekvy/w+U1

e Abraham's formula, p = p,, holds only in resting fluid

* Now we can calculate the fu// ponderomotive force

U is the ponderomotive energy density,
A is the matrix of Lorentz transformation

...could also include these average forces to model the bulk plasma dynamics...







Cylindrical Hall Thruster

Fundamentally different from conventional HT:
Electrons are confined in a hybrid magneto-electrostatic trap.

Ceramic channel { Magnetic

Aane/gas
distributor

Electromagnets

Anode
Annular part Cathode-
neutralizer Céthod,& '
PPPL CHT: P=50-300W
OD=2.6cm

Y. Raitses and N. J. Fisch, Physics of Plasmas, 8, 2579 (2001).
T=2-12mN



Cylindrical Configurations

Ceramic Magnetic circuit Ceramic Magnetic circuit
channel channel

W
/7
Anode |
7y

Magnetic SN
circuit A\

800 G 800 G

Magnetic
circuit

Cusp Geometry Direct Geometry

Cusp Geometry was thought important to produce axial thrust



A. Rotation of Force Vector by Supersonically Rotating Electrons

Fisch, Raitses, Fruchtman (2011)

Force on ions = centrifugal force on electrons

gE =—-eE =m Q’rcos0

:Q Q =eB/m
___________ Y o - — — -

Y k£ nzsinn=ES/En=EcosH=pL L/B cosf
Q, r\ v,
ENVE |
s So rotate 1) by about 6 degrees for sonic

rotation and more for supersonic rotation!

Example: T, =20 eV, P; = T21(;2 / Bloo mm
E, =200 V/cm, a=L=1 cm r ~ 10 mm or 12 degrees for r = Smm



sl S

Summary:

. Free Energy of Plasma under Wave Diffusion

Rigorous upper bound for space-charge limited current
Wave compression in plasma

Lagrangian description of wave propagation including trapped
particles (method of Dodin)

Collimation of 1ons in magnetic fields (self-organization of
supersonically rotating electrons)



