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There are a few curious mathematical questions 
underlying some basic issues in hot dense plasma to 
which I wish I knew the answer. 	





Gardener Restacking 
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Minimum energy distribution	



Entropy conserving	


Initial energy distribution	





Free Energy under Phase Space Rearrangement 
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ε = ngεg + n1ε1 + n2ε2

€ 

ε = n ⋅ε
minimized for:    ng  > n1 > n2 	



using π-pulse excitations νij  

Example: for n1 > n2 > n3   

more generally,  minimize:	



t=0:   n3 n2  n1   

ν21:  n3 n1  n2  	

 ν1g:  n1 n3  n2  	

 ν21:  n1 n2 n3  	



To release free energy, apply 3 (ordered) π-pulses (to exchange densities) 



RF Methods of 
Heating and 

Current Drive���
in a Tokamak	



Tore Supra LH Coupler	


4 MW, 1000 s, 3.7 GHz	





Rearrangement of Phase Space in Plasma 

1.  Current drive 

2.  One-way wall 

3.  Coupled diffusion in position-velocity: “alpha-channeling” 

plasma slab 

waves 



“Bump-on-tail” Instability	
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Free energy is due to equalizing population inversion	


Not entropy conserving	
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t = 0

“plateau solution”	
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t =∞



“Bump-on-tail” Instability 
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plateau solution 

v 

f 
two-bump-on-tail 

multiple steady 
state solutions 



Free Energy under constrained Phase Space Rearrangement 

€ 

ε = n ⋅εminimize:	



for example: apply sequence  (ν10,ν21) under diffusion constraint 

for atoms, use π-pulse excitations νij:  

for plasma, use Hamiltonian forces: “Gardner restacking” 

under phase space conservation 

       ε0 	

 	

        ε1    	

 	

 	

             ε2 	

 

Initial        n0        n1              n2 

Step1   ( n1 +n0)/2   ( n1 +n0)/2              n2 

Step2   ( n1 +n0)/2   ( n1 +n0)/4 + n2/2   ( n1 +n0)/4 + n2/2 

under diffusion constraint the free energy is not so easily found 

solution sequence (νij1, νij2,…) 

Fisch and Rax, 1993	





Example	



       ε0 = 0 	

 	

           ε1 = 1 	

        ε2 = 4 

Initial 	

W0 = 22         n0 = 0 	

        n1= 2 	

        n2 = 5 

Step 1 	

W1 = 12             5/2 	

              2 	

            5/2 

Step 2 	

W2 = 45/4           5/2 	

            9/4 	

            9/4    

Apply (ν20,ν21)  

       ε0 = 0 	

 	

           ε1 = 1 	

        ε2 = 4 

Initial 	

W0 = 22               0 	

        	

              2 	

               5 

Step 1 	

W1 = 21               1 	

              	

              1 	

               5 

Step 2 	

W2 = 13                3 	

           	

              1 	

               3	



Step 3 	

W3 = 10                3 	

                              2 	

               2 

Apply (ν10,ν20,ν21)  

Better strategy 

Strategy 1: Diffuse particles first between similar population levels 



Example (continued)	


       ε0 = 0 	

 	

           ε1 = 1 	

        ε2 = 4 

Initial 	

W0 = 22               0 	

        	

              2 	

               5 

Step 1 	

W1 = 35/2             0	

              	

             7/2 	

             7/2 

Step 2 	

W2 = 21/2            7/4 	

             7/2 	

             7/4	



Step 2 	

W3 = 77/8           21/8 	

           21/8 	

             7/4 

Apply (ν21,ν20,ν10)  

Best strategy 

Strategy 2: Deplete particles first from high energy levels 

       ε0 = 0 	

 	

           ε1 = 1 	

        ε2 = 4 

Step 1 	

W1 = 35/2             0	

              	

             7/2 	

             7/2 

Step 2 	

W2 = 63/4            7/4 	

             7/4 	

             7/2	



Step 3 	

W3 = 49/4           21/8 	

             7/4 	

             21/8	



Step 4 	

W4 = 175/16       21/8 	

           35/16 	

           35/16 

(ν21, ν10,ν20,ν21)  

Poor strategy 



Statement of the Problem	



€ 

W = n ⋅εDiscrete:  Find the sequence {νij} that minimizes:	



Then find K that minimizes        	

    . 	



€ 

∂f v,t( )
∂t = K(v,v ',t)∫ f (v ',t)− f (v,t)[ ]

€ 

K(v,v ',t) = K (v ',v,t)

€ 

K(v,v ',t) ≥ 0

Note the H-theorem:	


€ 

W (t) = ε(v)∫ f (v,t)dv

Continuous:   Let	



€ 

€ 

W (t→∞)

€ 

d
dt f (v,t)2∫ dv ≤ 0



“Bump-on-tail” Instability 

f 

v 

plateau solution 

v 

f 
two-bump-on-tail 

multiple steady 
state solutions 



Get Hot Ion Mode:  Ti  > Te	


75% of α power to ions ⇒ Pf →2 Pf	



Power Flow in a Fusion Reactor 
Advantages of “α-Channeling” 

Tail ions	



Fuel ions	



α-particles	



electrons	



Waves	


Normal Power Flow	



€ 

D + T→He4 + n



Extracting Free Energy 

Tokamak center	



Tokamak periphery	



Favorable Diffusion Path	



Fisch and Rax, 1992	



motivated by:	


Wong and Ono, 1984	





vy → vy + Δvy

Vy=ω/ky	



€ 

xgc → xgc +
ΔE

mΩω
ky

B	



y	



x	


z	



ω/ky	



v⊥ xgc → xgc + Δvy Ω
Ω ≡ eB m

ΔE = mvyΔvy

Diffusion Paths 

Fisch and Rax, 1992	


Herrmann and Fisch, 1997	





Child-Langmuir Law ���
(rigorous upper bound)	



d 

+V 0 

J 

steady-state, maximum 
current density that can pass 
through a diode, Child-
Langmuir Law:	



Electron-emitting 
cathode	



JCL =
4
9
ε0

2e
m
V 3/2

d 2



Generalizations of Child-Langmuir	



•  nonzero injection velocity, and Maxwellian distribution  
(Langmuir, 1923) 

•  Relativistic  (Chetvertkov, 1985) 
•  Time-Varying voltage to reduce transients  

(Kadish, Peter, Jones 1985) 
•  Quantum  (Y. Y. Lau, 1991) 
•  Multi-Dimensional  (Y. Y. Lau, Luginsland, 2002)  
•  Short Pulses  (Y. Y. Lau, Valfells 2002) 



Time-Dependent Boundary Conditions	



d 

0 	

   V(t) < V0	



J0(t)	

 Instantaneous current 
leaving the diode can exceed 
the steady-state limit.	



But what about the average 
current over a long period of 
time?	



Electron-emitting 
cathode	



x=
0 

x=
d 



(Unremarkable) Upper Bound for Time-Averaged Current Density	



d	



0 +V 

J0(t)	



Electron-emitting 
cathode	



x=0	

 x=d	



Griswold, Fisch and Wurtele (2010) 	



τmin	
  is	
  the	
  minimum	
  transit	
  -me	
  of	
  an	
  
electron	
  across	
  the	
  diode.	
  

Qmax is the maximum charge (per unit 
area) that can be injected into the diode 
without violating the boundary 
condition at the cathode qE(x=0)≥0.	



PIC simulations led us to conjecture 
that the time dependent limit is equal to 
the steady-state limit.	





Exception:���
JCL exceeded by 13% in few Electron “Coulomb Blockade” Regime	



Zhu and Ang (2011)	



Electron-emitting 
cathode	



x=xe 

Single electron 

Here electron does not get pushed 
back into the cathode:	



Griswold, Fisch and Wurtele (2012). 	



discontinuity in the electric field at the 
electron means the field at the cathode can 
fall below zero:	



x=0	





Time Dependent Child-Langmuir Limit ���
with Time Dependent Flux and Voltage 	



Caflisch and Rosin (2011) arXiv: 1110.2840v1	



d	



    0   V(t) 

J0(t)	



x=0	

 x=d	



What is the proper limit to use in this case?	



(steady-state)	



Caflisch and Rosin showed that it is 
possible to exceed the adiabatic average of 
the limit:	



JCL =
4
9
ε0

2e
m
V 3/2

d 2

We use the limit defined by the “maximal” 
boundary conditions 	





•  Wave as a number of quanta: 



What happens to imbedded waves as plasma is compressed?	



Regime of adiabatic compression:	



€ 

PpwV 3/2 = const

€ 

γ =
m+ 2
m

€ 

E ~V −3/4 ~ n3/4

€ 

ω ~ n1/2 ~V −1/2Example: 
Plasma Waves 

Action conservation: 

€ 

VE2

ω
~ const

€ 

1
ν < τ comp < 1ω

€ 

Ppw =
E2

16π

€ 

PV γ
= const

1D: 
compare: 3D: 

€ 

γ = 5 3

€ 

γ = 3



Dodin, Geyko, & Fisch, POP, 2009 



Compression Perpendicular to k	



ω	



k‖	



ωp2	



ωp1	



ωp2	

ωp1	



k1	

 k1	



k1	



Under compression:  Less damping,	



T⟂	
  	
  >	
  	
  T‖	



Under expansion:  More damping,	

 T⟂	
  	
  <	
  	
  T‖	



if collisionless	



€ 

ω2 =ωp
2

vph	





Current Drive and Heating	
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compression perpendicular to k	



€ 

ω ~ n1/ 2

€ 

k ~ v|| ~ const

€ 

ω kv|| ~ n1/2

f	



v	



compression parallel to k	



€ 

ω ~ n1/ 2

€ 

k ~ 1/L ~ n

€ 

ω kv|| ~ n−3/2

€ 

v|| ~ 1/L ~ n

T⟂	
  	
  <	
  	
  T‖	



T⟂	
  	
  <	
  	
  T‖	



Note: under expansion,	



Note: under compression,	



In either case, extra wave energy can accentuate energy difference	





Particle Simulations	


Schmit et al, 2010	





Plasma wave compression 
Longitudinally compressing Langmuir wave – f(x,v)	





Dodin, Geyko, and Fisch, Phys. Plasmas (2010) 

Schmit, Dodin, and Fisch, PRL (2010) 

Langmuir Wave “Switch” 



Gratings for Petawatt (1015W) Laser 

Mourou et al.	



Limitations of CPA	


	

Thermal damage to expensive gratings	


	

Requires broad-bandwidth high-fluence amplifiers 	

   	

 	

	



103 compression	



TW/cm2	

GW/cm2 in amplifier	


< 10 ps	



For PW	



103 cm2 
gratings	





Resonant Raman Amplification and Compression	



Self-similar “π-pulse” regime	


Malkin, Shvets, and Fisch (PRL, 1999)	



Pump a	



plasma 
wave	



pω
c	
  

ω

k  

€ 

ωa −ωb =ωp
 
k a −
 
k b =
 
k p

resonance	


condition	





Moderately under-critical plasma 

Pump a	



plasma 
wave f	



pω
c	
  

ω

k

Seed b	





  Asymptotic geometrical-optics, or eikonal methods of modeling wave propagation: 

action conservation theorem  =  
continuity equation for the photon density 

e.g., Runborg (2007), Kravtsov and Orlov (1990)… 

Method of Dodin – Generalized Lagrangian Approach	





  A physical model must be conservative: 
•  Single wave still conserves its action, or quanta 
•  Resonant interactions conserve Manley-Rowe integrals 

e.g., 

  But… These nonlinear GO envelope equations assume 
•  that the nonlinearity is adequately modeled by the NLSE 
•  that the underlying medium is homogeneous and stationary 



multiple resonances   Field-theoretical Lagrangian approach yields equations 
that are conservative in general GO medium, at all z and t 

Whitham (1965), Bretherton and Garrett (1968)... 

cf. Brizard and Kaufman (1995) 

dispersion relation: 

envelope equation: 

Lagrangian density: 

  Included beat phases, 

•  Closed set of slow-motion PDEs  
•  Any resonances (linear and nonlinear) and wave self-action included 
•  Wave action/Manley-Rowe integrals are manifestly conserved 
•  …and, in plasma, we also know the nonlinear Lagrangian explicitly! 

e.g., 



  The wave Lagrangian can be expressed through 
ensemble-averaged oscillation-center energies 

  Example: 

cf. Brizard and Kaufman (1995) 

  Making approximation in the Lagrangian does not 
affect the conservative properties of the equations 

•  The nonlinear coupling affects the dispersion; e.g, 

•  The nonlinear coupling affects the transport: 



Dodin and Fisch, Phys. Plasmas (2012a,c) 

  Trapped electrons contribute an E-independent term 

  TPMI theory must be revised 

cf. Dewar et al., 1972; Ikezi et al., 1978; Rose, 2005; Rose and 
Yin, 2008; Istomin and Karpman, 1972; Benisti et al., 2010... 

  The only self-action not described by NLSE! 



Dodin and Fisch, PRL (2011);  PoP (2012b) 

  For any distribution                        yields 

cf. Manheimer and Flynn, 1971; Dewar, 1972; Winjum et al., 2007;  
Khain and Friedland, 2007; Goldman and Berk, 1971; Krasovsky, 2007;  

Rose and Russell, 2001; Benisti and Gremillet, 2007; Lindberg et al., 2007... 

(similarly for other waves, e.g., whistlers) 

•  δ-beam: 

•  flat beam: 



Dodin and Fisch, submitted to PRA; generalizes Dewar (1977) 

Barnett (2010);  Kemp (2011) ; Milonni 
and Boyd (2011); Baxter and Loudon 

(2010); Pfeifer et al (2007)… 

This part is known; cf. Sturrock (1961), Whitham (1965), Dougherty (1970)... 

  The same Lagrangian approach actually resolves the 100-year-
old "dilemma" about the wave energy-momentum in dielectric 

U  is the ponderomotive energy density, 
Λ is the matrix of Lorentz transformation  

  We can derive the physical EMT, including striction 
effects, without specifying the wave nature 

•  Abraham's formula, p = pA, holds only in resting fluid 
•  Now we can calculate the full ponderomotive force 

…could also include these average forces to model the bulk plasma dynamics… 



Hall Thruster 



Fundamentally different from conventional HT: 	


Electrons are confined in a hybrid magneto-electrostatic trap.	



Electromagnets 

Anode 

Ceramic channel 

Annular part Cathode-
neutralizer 

F = -µ∇B F = -eE 

B

B

PPPL CHT:    P = 50 - 300 W	


                      OD = 2.6 cm	



	

    T = 2 - 12 mN	



Cylindrical Hall Thruster 

Y. Raitses and N. J. Fisch, Physics of Plasmas, 8, 2579 (2001). 



Cylindrical Configurations	



800 G 

270 G 
Bmod ≈ 100 G 

800 G 

Cusp Geometry	

 Direct Geometry	



Cusp Geometry was thought important to produce axial thrust	





Ω	
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θ	


r	
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En

€ 

Es

€ 

Eη	



A. Rotation of Force Vector by Supersonically Rotating Electrons	



€ 

qEs = −eEs = meΩ
2rcosθ

Force on ions = centrifugal force on electrons	



€ 

En

€ 

η ≈ sinη = Es En =
Ω
Ωe

cosθ =
ρL
r

E /B
vT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cosθ

Example: Te = 20 eV, 	



En = 200 V/cm, a=L=1 cm 

So rotate η by about 6 degrees for sonic 
rotation and more for supersonic rotation!	



€ 

Ωe ≡ eB /m

€ 

ρL ≅ T20
1/ 2 /B100mm

r ~ 10 mm	

 or 12 degrees for r = 5mm   

Fisch, Raitses, Fruchtman (2011) 	





Summary: ���

1.  Free Energy of Plasma under Wave Diffusion	



2.  Rigorous upper bound for space-charge limited current	



3.  Wave compression in plasma	



4.  Lagrangian description of wave propagation including trapped 
particles (method of Dodin)	



5.  Collimation of ions in magnetic fields (self-organization of 
supersonically rotating electrons) 	




