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The NAS report: “frontiers in High Energy Density Physics  
are the X-Games of contemporary science”  
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  Plasmas consist of mobile charged particles  
interacting by long-range electromagnetic N-body forces 

National Academy of Sciences: Plasma Science 
 Advancing Knowledge in the National Interest 

Matter in the plasma state exists 
in an unimaginable variety 

Our understanding of plasma behavior 
 in each of these regimes differs widely K 101.16eV 1 4×=



  HED matter exhibits complex behavior not  
typically associated with classical plasmas 

P r
ad

=4
5.

7 
M

ba
r (

T4
(k

eV
))!

hot 
dilute!

Metals 

1 Mbar !

WDM 

Kremp et al., “Quantum Statistics of Non-ideal Plasmas”, Springer-Verlag (2005) 

ICF 

Hot dense!
 matter!

Magnetized!
 plasmas!

Warm dense!
 matter!

Solar!
surface!

1 Mbar = 1012 erg/cm3!

Bulk modulus ~ 1 Mbar!
§  Radiation dominated 

§  Strong correlations 

§  Multiple species 

§  Fermi degeneracy 

§   Hybrid quantum and classical 
behavior 

§  Bound states 

§  ionization  



  What are the computational challenges confronting 
HED physics? 

Multi-scale modeling 
•  Micro- and meso- scale physics impacts meso- and 

macro-scale  
•  A significant and fascinating challenge! 
•  On-going efforts in materials science, ICF, MFE, 

astrophysics, … 
 
Computer hardware and architecture 
•  Algorithmic R&D on efficient uses of new GPU 

machines  
•  Visualization and data analysis 
•  A national user facility for HEDP simulations (MD, 

QMD, PIMC, PIC, electronic structure, direct 
numerical simulation of multi-scale phenomena) 

 
Verification and validation 
•   Robust V&V program for computational tools 
•  Validation of sub-scale physics simulations 
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Multiscale Physics:  macroscale simulations require 
fundamental physics information from the meso-/micro-scale 
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Kinetic 
 Theory! Molecular 

 Dynamics!
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Density Functional 
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Quantum Molecular 
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Multiscale Physics:  meso-/micro-scale simulations 
                                   provide input to the macroscale 
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The advent of exascale computing provides opportunities 
for paradigm shifts 

•   How do we most advantageously utilize increased computational resources? 

•   Continue to simulate as  
we do currently (but perform 
more simulations): 
-- macroscale simulations 
 

  with 
 
mesoscale/microscale 
physics crudely approximated 
 

  and/or 
 
informing macroscale  
simulations through  
databases approximating  
actual physics 

Current Scenario Future Scenario #1 Future Scenario #2 
•  Perform macroscale 
simulations with higher 
spatio-temporal resolution 
 
               and 
 
include more detailed 
meso-/micro-scale physics 
reduced model descriptions 
 
              and 
 
begin integration of meso- 
scale physics into the 
macroscale 
 

•  Perform macroscale 
simulations with direct  
numerical simulation of 
mesoscale physics 
 
              and 
 
 perform mesoscale 
simulations with direct  
numerical simulation of 
microscale physics 

Direct numerical simulation from the micro-to-macro-scale is computationally  
unfeasible even at exascale! 



A current multi-scale challenge:  simulating fusion 
experiments for the National Ignition Facility 

   The goal of upcoming experiments on the National Ignition Facility (NIF) 
is to achieve fusion in a laboratory setting  

Fusion is accomplished via gravitational, �
magnetic and inertial confinement 

Fusing deuterium and tritium into a helium 
nucleus releases an energetic neutron �



Inertial confinement fusion (ICF) relies on the inertia of the 
fuel to provide confinement 
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•   INDIRECT DRIVE:  laser energy is 
   converted to x-ray energy by target 

•   x-rays bathe ICF capsule, 
   heating it up -- it expands 

•   conservation of momentum:  ablated 
   shell expands outward, rest of shell 
   (frozen DT) is forced inward 

•   fusion initiates in a central hot spot 
  containing ~ 5% of the fuel, and a thermo- 
  nuclear burn front propagates outward 
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The multi-scale challenge:  incorporate all necessary physics at all relevant length 
and time scales !

•    Hydrodynamic length !
     and time scales are set by !
     target size [O(mm)] !
     and laser pulse length !
     [O(ns)]!m
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 •    evolves on: !

      µm length scales !
   ps time scales!

⇒  beam propagation!

Laser!
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e-!λ0!
wave-particle 

wave-wave 

Ignition targets span a wide range of length  
and time scales 

⇒  environment  --   !
plasma parameters!
and scale lengths !

•    Detailed processes of beam propagation!
     occur on “light” spatial and temporal scales !

⇒  implosion stability !

•    Other examples:!
atomic physic, eos, opacity,!
non-local electron transport, …!



We use laser energy coupling to the ignition target as 
a detailed example of multi-scale modeling 

Energy Coupling è Tr 

 
       SBS:  laser scatters off self-generated 
                  ion acoustic waves (iaws) 
 
 
       SRS:  laser scatters off self-generated 
                  electron plasma waves (epws) 
 
 

Laser 

Backscatter 

Energy Re-direction è  symmetry change 

 
 Beam spray:  intensifies & scatters light 
 
 Beam bending:  moves light pattern on wall 
 
 Cross-beam transfer:  moves laser power  

       among beams 
 
Re-absorption of scattered light:  alters symmetry 
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•  Laser-plasma interactions modify the laser energy coupling to the hohlraum target!

D. E. Hinkel      HPC ERC 08/30/2011 



•    Hydrodynamic length and time scales are set by !
     target size [O(mm)] and laser pulse length [O(ns)]!

environment  --   plasma parameters and scale lengths !
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•    LPI evolves on: µm length and ps time scales!

beam propagation!

•    Detailed processes of LPI occur on “light” spatial !
     and temporal scales!

kinetic effects !
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LPI processes span a wide range of length and 
time scales 

need accurate plasma conditions!

need accurate beam model (including effects of cross-beam !
energy transfer, pump depletion, competition)!

need accurate interactions – when do kinetic 
effects matter?!

wall 

ablator 
+ 

capsule 
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Coupling these scales allows us to develop a predictive capability, validated by 
experiment !
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 Wave propagation simulations	
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Radiation/Hydrodynamics simulations	
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Our approach to multi-scale modeling  
uses a suite of tools 
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High resolution 	


implosion stability	



simulations	



Particle in cell (PIC) simulations	
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Here is how we model LPI for the National Ignition 
Campaign  (NIC): 
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•  Use plasma conditions + nominal laser intensity to: 
 -- calculate spectrum of reflected light 
 -- define spatio-temporo-wavelength region over  

           which to perform more detailed simulations 
 -- track “gain” of reflected light as a metric to 
    compare amongst designs/experiments 

•  Perform detailed beam propagation simulations to: 
 -- calculate reflectivity of one quad of beams 
  - at a particular time in the laser pulse 
         - over the volume specified at the macroscale 
 -- compute changes in energy deposition 
 -- synthesize backscatter diagnostics 

•  Perform microscale simulations to: 
 -- assess impact of kinetic effects 
 -- determine changes in reflectivity 

 
•  The microscale component of LPI for NIC has not 
     been as extensively analyzed because of the 
     “flowdown” effect 
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What kind of computational resources do we use 
at each scale? 

pF3D	



m
es

os
ca

le
	



m
ac

ro
sc

al
e	



Lasnex/Hydra	



Laser!

m
ic

ro
sc

al
e	

 PIC/Vlasov Codes	



e-!
λ0!

wave-particle 

wave-wave 

D. E. Hinkel      HPC ERC 08/30/2011 

•  2D rad-hydro simulations:  ~ 100 cpus for ~ 2 days 
     (workhorse) 
•   3D rad-hydro simulations:  ~ 1000 cpus for ~ 10 days 
 
•  Integration of “mesoscale hydrodynamics”: 

 -- requires >> 1000 cpus for >> 1 week  

•  Beam propagation simulations: 
     -- full machine runs for > 1 week (have run on up to 

 ~ 196,000 cpus) 
 
•  Will test on LLNL’s Sequoia machine later this year 

•  Microscale simulations: 
 -- some groups run on > 10,000 cpus 
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Rapidly increasing computer performance enables 
LPI calculations unimaginable just twelve years ago 

Computer Performance by Year
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       2007 
•  enhanced hydro 
•  enhanced SRS model 
•  optimized parallelization 2 x 2 x 5 mm3 �

     1994 
•  serial code 
•  linearized hydro 
•  filamentation only  

.05 x .05 x .2 mm3 �

        2004 
•  massively parallel 
•  nonlinear hydro 
•  filamentation, SBS, SRS 
•  saturation models 

.05 x .05 �
   x 5 mm3 � 2 x 2 x 2 mm3 �

        2010 
•  improved advection algorithm 
•  multi-quad simulations 
•  requires finer resolution 
•  > 100 billion zones 

D. E. Hinkel      HPC ERC 08/30/2011 

2 x 4 x 1.5 mm3 �



Both laser and plasma modeling improvements have 
impacted large-scale LPI simulations 

18 D. E. Hinkel Koonin Review 10/28/2011 

•  Modified plasma conditions from hohlraum modeling  
                                                 (improved atomic physics, electron transport) 

  -- results in a cooler plasma – SRS region moves closer to LEH 
  -- experimental and synthetic SRS spectra show SRS at similar wavelengths 

 
 
 
 
•  Realistic laser beams that include the effects of cross-beam energy transfer (XBT) 

  -- increased power on inner beams (symmetry) 
  -- spatial non-uniformity in cross section 

 
 
 
 
•  Laser quad overlap: simulate beam propagation (pF3D) for two quads of beams  
    (overlap contributes to the intensity; simulate 3-5 quads of beams?) 



A promising start:  simulated reflectivity approaches 
experimental levels when these models are used 
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Shot Energy 
(MJ) 

Time (ns) 30° SRS 
(TW) 

N091204 1.05 19 1.3 

2009 pF3D:  1 Quad 
                     pre-2009 plasma 
                     spatially uniform beam 

~ 0.1 

2010 pF3D:  1 Quad 
                     high flux model plasma 
                     spatially uniform beam 

0.18 

2011 pF3D:  1 Quad 
                     high flux model plasma 
                     spatially non-uniform beam 

0.43 

Shot Energy 
(MJ) 

Time (ns) 30° SRS 
(TW) 

N091204 1.05 19 1.3 

 
 
 
2010 pF3D:  2 Quads 
                     high flux model plasma 
                     spatially uniform beams 

0.62 

2011 pF3D:  2 Quads 
                     high flux model plasma 
                     spatially non-uniform beams 

0.67 

2012 pF3D:  3 Quads 
                     high flux model plasma 
                     spatially non-uniform beams 

~0.9-1.0 

Experimental Result Vs Single Quad 
pF3D Simulations 

Experimental Result Vs Double Quad 
pF3D Simulations 



Different LPI regions are traversed by an inner cone 
quad of beams 
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Quads not overlapped 
above capsule 

Overlap region 
with nearest 

neighbor quads 

Region of many 
overlapping quads 

xbt: cross-beam  
       energy transfer 



LPI:  Hohlraum modeling improvements have resulted 
in a change in backscatter location 
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•  SBS:  laser backscatters off self-generated ion acoustic waves (iaws) 

•  SRS:  laser backscatters off self-generated electron plasma waves (epws) 

results in 
direct energy 
loss 

•  High Flux Model (M. D. Rosen et al., HEDP, 2011):  improved atomic physics, non-local 
                      e- transport 
 -- modifies ne, Te   (and where SRS occurs) 

SRS Location pre-2009 

wall!

ablator!
plasma! gas!

fill!

SRS!

LEH!

Current SRS Location (HFM) 

wall!

ablator!
plasma! gas!

fill!

SRS!

LEH!

30o!
quad!

30o!
quad!



LPI:  30o SRS now occurs where there is overlap with 
nearest neighbor 23o quads   
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Current SRS Location (HFM) 
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SRS Location pre-2009 
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Quad overlap in 
SRS region 
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LPI:  Cross-beam energy near the LEH results in a 
spatially non-uniform intensity distribution  
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Current SRS Location (HFM) 

wall!

30o!
quad!LEH!

Beam before xbt, 
refraction, absorption 

Beam after xbt, 
refraction, absorption 

•  Cross Beam Energy Transfer (xbt): 

       laser forward scatters off ion acoustic waves 

       (P. A. Michel et al., PoP, May 2010) 

energy 
transfer 

IAW 



Background plasma: 
•    described by nonlinear fluid model (with multiple materials) 
•    couples to laser via ponderomotive (radiation) pressure, inverse brehmsstrahlung 

! 

A0 : incident laser 

! 

A1 : SBS; driven by 

! 

"nAA0

! 

A2 : SRS; driven by 

! 

"nLA0

Fields 

! 

"nA (iaw):  driven by  

! 

"nL (epw): driven by  

Plasma Response 

! 

A0A1

! 

A0A2
- satisfy respective wave equations 

•   pF3D provides beam transmission, reflectivity and energy deposition 
   by numerically solving equations of the form: 

We assess the impact of realistic plasma  
conditions and laser spots on reflectivity using pF3D 

advection 
absorption refraction 

SBS 
coupling 

SRS 
coupling 
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LpropA0 = C*(δnfA0 + δnAA1 + δnL A2) 

diffraction 



Proof-of-principle simulation:  propagate two quads        
                       (23°, 30°) through the resonance region   

25 *SLIP code, P. A. Michel and L. Divol�

Simulation @ 19 ns!
1.05 MJ Laser Energy!

N091204!

•   Laser Input:  use SLIP* to!
   propagate quads through!
   the LEH to the input plane!
   (E. A. Williams)!

•   pF3D: propagate two!
   quads of beams (23°, 30°)!
   through SRS region!
   (A. B. Langdon)!
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Incident Laser and Reflectivity 
(Measured) 

wall!

30o!
quad!LEH!



We have separated the effects of overlap and non- 
uniformity by performing different simulations  
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Shot Energy (MJ) Time (ns) 30° SRS (TW) 
N091204 1.05 19 1.3 

2010 pF3D:   high flux model plasma 
                     spatially uniform beams 

1 Quad: 0.18 
2 Quads: 0.62 

Shot Energy (MJ) Time (ns) 30° SRS (TW) 
N091204 1.05 19 1.3 

2011 pF3D:  high flux model plasma 
                     spatially non-uniform beams 

1 Quad: 0.43 
2 Quads:0.67 

Laser Quads on Input Plane  
to “New SRS” Region 



Both effects (overlapping quads and spatial non-
uniformity) act to increase reflectivity 

 10  20  30
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*We thank the Office of Science INCITE program for computational resources and the ALCF staff for computational support 
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Shot Energy (MJ) Time (ns) 30° SRS (TW) 
N091204 1.05 19 1.3 

2010 pF3D:   high flux model plasma 
                     spatially uniform beams 

1 Quad: 0.18 
2 Quads: 0.62 

Shot Energy (MJ) Time (ns) 30° SRS (TW) 
N091204 1.05 19 1.3 

2011 pF3D:  high flux model plasma 
                     spatially non-uniform beams 

1 Quad: 0.43 
2 Quads:0.67 



SRS light:  a “pre-amp” generated by the single 
quads is resonantly amplified in the overlap region 
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30o SRS Intensity 
in “New SRS” Region 

Shot Energy (MJ) Time (ns) 30° SRS (TW) 
N091204 1.05 19 1.3 

2010 pF3D:   high flux model plasma 
                     spatially uniform beams 

1 Quad: 0.18 
2 Quads: 0.62 

Shot Energy (MJ) Time (ns) 30° SRS (TW) 
N091204 1.05 19 1.3 

2011 pF3D:  high flux model plasma 
                     spatially non-uniform beams 

1 Quad: 0.43 
2 Quads:0.67 



Incident light:  pump depletion in region where SRS 
                          is amplified 
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30o Quad Intensity 
in “New SRS” Region 

Shot Energy (MJ) Time (ns) 30° SRS (TW) 
N091204 1.05 19 1.3 

2010 pF3D:   high flux model plasma 
                     spatially uniform beams 

1 Quad: 0.18 
2 Quads: 0.62 

Shot Energy (MJ) Time (ns) 30° SRS (TW) 
N091204 1.05 19 1.3 

2011 pF3D:  high flux model plasma 
                     spatially non-uniform beams 

1 Quad: 0.43 
2 Quads:0.67 



Future pF3D simulations would focus on more recent 
shots/new designs – for (hopefully) a triplet of quads 

30 D. E. Hinkel Koonin Review 10/28/2011 

•  Simulations of a triplet of quads to determine whether reflectivity  
     increases as expected 

 -- SRS/SBS competition 
 -- increases azimuthal extent of simulation 
 -- targeted machines:   Cielo(?); TLCC2(?); Sequoia(?); ??? 

 
 
 
 
 
 
•  Increase axial length, to better capture SBS reflectivity 

 -- would like to simulate 3.5 mm with a triplet 
 -- targeted machines:  TLCC2(?); Sequoia(?); ??? 

 
•  Simulate five quads as early science users on Sequoia? 

 -- we are currently determining if this is feasible 
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 To simulate a triplet of quads:  > 100 billion zones and ~ 1 month on a BGP machine 
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Microscale simulations are a necessary ingredient 
in accurately modeling the interactions of LPI 

31 

•    Langmuir Decay Instability (LDI):!
!-- likely occurring in NIF sub-scale targets!
!-- or over capsule in full-scale targets!

LDI depletes SRS Langmuir Wave!
SRS Langmuir Wave!

daughter LW! ion acoustic  
wave 

•    Electron Trapping:!
!-- can “inflate” reflectivity via damping reduction!
!-- can “deflate” reflectivity via de-tuning,!

           incoherence …!
!!

Electron trapping in Langmuir Wave!

electron phase space 

•   Re-amplification of SRS Light:!
!

Incorporating these effects into pF3D allows for their interplay with geometry!
0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

 0.05
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 0.15
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Electron Density

SRS light further amplified non-
resonantly near LEH? !

Re-Amplification�
Region*�

*P. A. Michel et al., PoP 17, 056305 (2010)  

•   Re-scatter?!

D. E. Hinkel      HPC ERC 08/30/2011 



Macroscale simulations of hydrodynamic instabilities are another important 
multi-scale ingredient for the ignition campaign!

High resolution capsule-only simulations address 
implosion stability 

Be + Cu 
shell�

interface�

Frozen DT�

Capsule! Hydra simulates a wedge of the capsule!
Be + Cu 
shell�

interface�
Frozen DT�

DT �
gas �

DT gas�

•   During implosion:  !
   --  perturbations due to surface roughness grow at the interface!
   --  may become large enough to reduce fusion yield if not controlled !



   Be Design 2         Be Design 1     

Fingers of Be penetrate  
through 75% of the DT   

Yield = 12.9 MJ   
Optimized design reduced 

mix width by ~ 2 ✕  

Design optimization reduces high mode growth, as 
verified with 3D simulations* 

*simulations performed by B. A. Hammel, AX Division, WCI�



At ~ 10 petaflop-days, we can begin to integrate 
mesoscale and macroscale physics 

Ignition / Uses of Ignition  

° ° ° 
° 

6 - 12 petaflop-days 

•   4 “letterbox” pF3D simulations (1/cone)!
•   5 different time slices circa peak power!
•   feedback to rad-hydro simulations  !

Ignition / Uses of Ignition  

•   resolve radiation flux asymmetry simultaneously with 
intermediate-mode hydrodynamic instabilities (up to ~ 
mode 100)!
!

15 - 30 petaflop-days 

Full integration requires in excess of 1000ʼs of exaflop-days !



At ~ 1 exaflop-day and beyond, we can integrate 
macroscale, mesoscale and microscale physics  

Integrating macroscale to microscale physics enlarges NIF operations 
parameter space !

Uses of Ignition  

° ° ° 
° 

�
�

 
Dodge Viper Version:!

~ 2 exaflop-days!
Porsche Version:!

~ 8,000 exaflop-days!

3D integrated macro-microscale simulations:�
hohlraum, beams, capsule:�

!

•   Uses of ignition:!
    -- operate where nonlinear LPI matters!
    -- integration of macro- to micro-scale is key!

•   Viper Version:!
       -- rad-hydro simulations, hi-rez capsule!
       -- multi-quad beam propagation !
           simulations at a few times!
       -- multiple PIC simulations at a few times!

•   Porsche Version:!
       -- rad-hydro simulations, hi-rez capsule,!
           enhanced physics!
       -- many multi-quad beam propagation!
           simulations with enhanced physics at !
           many times!
       -- many PIC simulations at many times!



Simulation of multi-scale phenomena is a true 
challenge for HED physics 

•   High-resolution radiation-hydrodynamics simulations:!
     --  continue to optimize capsule implosion stability!

•   Laser beam propagation simulations:!
  -- guide focal spot size decisions for NIF beams !
  -- guide ignition design optimization !

•   Micro-scale kinetic simulations:!
   -- investigate laser reflectivity saturation!

TO
DA

Y�

•   With a larger number of processors:!
   --  “more of the problem” at high resolution!
   --  simulations with higher fidelity physics!
   --  integration of today’s capabilities!FU

TU
RE

�

2019 Uses of Ignition Target:�
2 - 8,000 exaflop-days �

(Viper vs Porsche version) 

° ° ° ° 

How can we best ensure this future vision?!




