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Linear Transport
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Problem Setting

We consider the extremely simplified case of linear transport for
neutral particles of unit speed

Located at position x ∈ D ⊂ R3

Traveling with direction Ω ∈ S2

Particles move through a material medium with scattering,
absorption, and total cross-sections σs, σa, and σt = σa + σs

The material generates a particle source of S.
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Kinetic Transport Equation

The kinetic density ψ = ψ(x,Ω, t) is the density of particles with
respect to the measure dΩdx. It satisfies:

∂tψ + Ω · ∇xψ + σtψ =
1

4π
(σsφ+ S)

where φ = 〈ψ〉, angle brackets denotes (non-normalized)
integration over Ω, and S is a source.

Equation is interesting in its own right, but also a simple
prototype for collisional kinetic equations.
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Basic Properties

Balance Law. The particle concentration satisfies

∂tφ+∇ · 〈Ωψ〉+ σaφ = S

Diffusion Limit. On long time-scales and for highly scattering
materials, ψ(x,Ω) = φ/4π +O(ε) and

∂tφ+ σaφ = ∇x ·
(

1

3σs
∇xφ

)
+ S +O(ε2) , ε� 1

Streaming Limit. When σs = 0, the transport equation becomes
an infinite set of uncoupled equations.
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Numerical Simulation

Challenges:

Large phase space.

Multiscale behavior.

Implicit solutions.

Common Methods for Angular Discretization:

Diffusion

Monte Carlo

Discrete Ordinates (SN )

Spherical Harmonics Expansion (PN )
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The Line Source Problem: Comparison of Methods1

(a) analytic (b) Diffusion (c) Monte-Carlo

(d) S6 (e) P1 (f) P5

1
T. A. Brunner. “Forms of Approximate Radiation Transport”, Tech. Rep. SAND2002-1778, Sandia

National Laboratories, Jul 2002.
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Moment Methods
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Moment Equations

Let m = m(Ω) be a vector containing spherical harmonics in Ω.

Let u(x, t) := 〈mψ(x, ·, t)〉 be moments of ψ with respect to m.

Multiply the transport equation by m and integrate over all angles:

∂tu +∇x · 〈Ωmψ〉+ σtu = σsQu + s

where Q = diag([1, 0 . . . , 0]) and s = [S, 0 . . . , 0]T .
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Closure

To close the system, replace ψ by an ansatz ψ̂(u) that satisfies the
consistency relation 〈

mψ̂(u(x, t))
〉

= u(x, t) .

The results gives a closed system of balance laws

∂tu +∇x · f(u) + σtu = σsQu + s

where f(u) = 〈Ωmψ̂(u)〉

The behavior of the moment system depends heavily on the
closure.

(Cory Hauck - Oak Ridge) Entropy-Based Models 30 March 2012 12 / 47



Entropy-Based Closure

Let η be a scalar valued, strictly convex function.

Closures based on the entropy minimization principle (or
maximization in physics) use the ansatz

ψ̂(u) = arg min
g∈L1(S)

{〈η(g)〉 : 〈mg〉 = u}

to close the moment system.
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Formal Optimality Conditions

A minimizer, if it exists, is given by Gα̂, where

Gα ≡ η′∗(αTm)

where η∗ is the Legendre dual of η.

The dual variable α̂(u) solves

min
α∈Rn

{
〈η∗(αTm)〉 −αTu

}
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Why Entropy (as a modeling tool) ?

Entropy minimization is a well-known tool for identifying
equilibria, where the moments are conserved quantities
(H-Theorem).

Entropy-based moments systems are symmetric hyperbolic (in the
α̂ variable) and dissipate the entropy h(u) = 〈η(Gα̂(u))〉 (in a
closed system).

In nonlinear settings, the collision operator “selects” a specific
entropy.

In linear settings, any strictly convex entropy will be dissipated (in
a closed system). Positivity of the ansatz is the practical issue.
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Why Entropy (as a practical implementation) ?

In many contexts, radiation is a major conduit for energy
exchange between materials and high resolution and kinetic
simulations are necessary.

Large scale kinetic simulations are extremely expensive.
[Astrophysics supernova group at Oak Ridge estimates O(1016)
bytes of memory and O(1022)−O(1026) flops per run.]

High performance computers are beginning to show bottlenecks in
data management. Problem will get much worse in the future.

Kinetic simulations will have to go hybrid to limit data: global
moments + local kinetics.
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Previous Work

Literally too much to list.

First use as a non-equilbrium moment closure was by Minerbo in
1978 at Los Alamos: “Maximum Entropy Eddington Factors”, J.
Quant. Spectrosc. Radiat. Transfer.

Levermore (1996): application to non-equilibrium gas dynamics;
formal mathematical properties

Dubroca and Feugeas (1999): thermal radiative transfer with
Bose-Einstein statistics

Relationship to Extended Thermodyanmics (Müller and Ruggeri)
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Solving the Optimization

In the past, most work has focused on the two moment model M1.

Solving the optimization is extremely expensive: iterative
methods, quadrature evaluation.

However ... in large-scale, parallel computing environments, the
expense can be mitigated.

PDE	
  

Op'miza'on	
   Op'miza'on	
   Op'miza'on	
  

Quadrature Quadrature Quadrature 
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Implementation of the Closure
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Setup

We assume a slab geometry with no source, in which case the
transport equation is

∂tψ + µ∂xψ + σtψ =
σs

2
φ

where µ ∈ [−1, 1].

The vector m contains the first N + 1 Legendre polynomials in µ.

We use the Maxwell-Boltzmann entropy. The entropy ansatz is

ψ̂(u) = Gα̂(u) , where Gα ≡ exp(αTm)

and α̂(u) solves

min
α∈RN+1

{
〈Gα〉 −αTu

}
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Realizability

Definition

A vector v ∈ RN+1 is realizable if v = 〈mg〉 for some non-negative
L1(dµ) function g with 〈g〉 > 0. The set of all such v is denoted by Rm.

Realizability is a necessary condition for the optimization problem to
have a solution. Unfortunately,

1 A typical numerical algorithm for updating the moments need not
preserve realizability.

2 The optimization problem is much harder to solve near the
boundary of Rm.
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Kinetic Scheme

To approximate

∂tu + ∂xf(u) + σtu = σsQu,

we use a finite-volume method.

Let

uj(t) '
1

∆x

∫
Ij

u(x, t) dx .

approximate the average of u over spatial cells Ij of width ∆x.

The kinetic scheme has the form

∂tuj +
fj+1/2 − fj−1/2

∆x
+ σtuj = σsQuj ,

For time integration, we use a second-order SSP Runge-Kutta
scheme (Heun’s method).
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Kinetic Scheme (contd.)

Let ᾱ(u) denote the optimization algorithm’s approximation to
the true solution α̂(u)

Let Ḡj := Gᾱ(uj) and Ĝj := Gα̂(uj)

Edge values for the flux are computing using the entropy ansatz

fj+1/2 =
〈
µmḠj+1/2

〉
,

where

Ḡj+1/2 :=

{
Ḡj + ∆x

2 sj µ > 0

Ḡj+1 − ∆x
2 sj+1 µ < 0
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Kinetic Scheme (contd.)

The quantities sj approximate the spatial derivative of Ḡ

sj := minmod

{
θ
Ḡj − Ḡj−1

∆x
,
Ḡj+1 − Ḡj−1

2∆x
, θ
Ḡj+1 − Ḡj

∆x

}
.

for θ ∈ (1, 2).

Note that sj is computed only by communicating the moments.

(Cory Hauck - Oak Ridge) Entropy-Based Models 30 March 2012 24 / 47



Maintaining Realizability

Realizability depends on the ratio

γj(µ) :=
Ḡj(µ)

Ĝj(µ)
.

Theorem

Given the modified CFL condition

max
µ, j
{γj}

∆t

∆x

θ + 2

2
+ σt∆t < 1,

the realizable set is invariant under the kinetic solver.
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The Dual Problem

The dual problem for α̂(u) is

min
α∈Rn

{
〈Gα〉 −αTu

}
where Gα = exp(αTm).

The gradient g and Hessian H are

g(α) = 〈mGα〉 − u and H(α) = 〈mmTGα〉 > 0
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Challenges of the Dual: Quadrature

For moments near the realizable boundary the effective support of
the entropy ansatz becomes very narrow.

The dual problem is very sensitive to the numerical quadrature.
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Figure: Level curves of the dual objective in a two-moment problem.
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Challenges of the Dual: Sensitivity
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Figure: Relating multipliers to moments in a two moment problem.

Near the realizable boundary, the Hessian becomes singular.

Our numerical scheme maintains realizability under the
assumption that the dual problem for α̂ is sufficiently
converged.
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Challenges of the Dual: Poorly Conditioned Hessian

In the course of solving the dual problem for an M15 model we
come across a “bad” value of α.
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Challenges of the Dual: Poorly Conditioned Hessian
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Challenges of the Dual: Poorly Conditioned Hessian

With a small perturbation, we can generate a “super-bad” value of
α.
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Challenges of the Dual: Poorly Conditioned Hessian
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Regularizing the Moments

As u approaches the boundary of realizability, the dual problem
becomes impossible to solve in finite-precision arithmetic.

We find nearby realizable moments by replacing u by

v(r) = (1− r)u + ru0e,

where e = (1, 0, . . . , 0) and 0 < r � 1.
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Numerical Results: Two-Beam Instability

Bounded domain: x ∈ (xL, xR) = (−0.5, 0.5)

Boundary conditions:

ψ(xL, µ, t) = exp(−10(µ− 1)2)

ψ(xR, µ, t) = exp(−10(µ+ 1)2)

Initially, (almost) a void:

ψ(x, µ, t = 0) = ψfloor

Purely absorbing medium:

σa = 2 , σs = 0
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Figure: A two-beam instability with N = 1 and 1000 spatial cells.
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Figure: A two-beam instability with N = 1 and 1000 spatial cells.
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Figure: A two-beam instability with N = 15 and 1000 spatial cells.
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Figure: A two-beam instability with N = 15 and 1000 spatial cells.
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Improving the Hessian: Change of Bases
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(c) Old, warm start.
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Figure: A two-beam instability with N = 15, 1000 spatial cells, 40-pt
quadrature.
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Some Statistics

The optimization problem is solved 10,851,552 times.

94.9031% of problems needed 3 or fewer iterations.

1.3266% of problems needed more than 6 iterations.

average number of iterations was 1.6116

0.012772% of problems were regularized.

(Cory Hauck - Oak Ridge) Entropy-Based Models 30 March 2012 41 / 47



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of iterations

R
el

a
ti

v
e

fr
eq

u
en

cy

1e−8 1e−6 1e−4 1e−2
      0

2.0e−05

4.0e−05

6.0e−05

8.0e−05

1.0e−04

1.2e−04

Regularization parameter r

R
el

a
ti

v
e

fr
eq

u
en

cy

Figure: A two-beam instability with N = 15 and 1000 spatial cells.
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Using CUDA

Profiling the old optimization code shows that that integrals
evaluation in objective, gradient, and Hessian take 95% of the
time.

Maximum Possible Speedup by Amdahl’s Law:

1

(1− .95)
= 20.

A More Realistic Estimate
- 336 Cores at 1.7 GHz vs 1 CPU Core at 3GHz;
- Double Precision 8 Times Slower Than Single Precision

1

(1− .95) + .95/(336 ∗ 1.7/3/8)
≈ 11.

Computational Results
Serial Performance: 18.096 sec
GPU Performance: 4.376 sec
Actual Speedup: 4.135
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Outlook
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What’s been done

We have a working algorithm in 1-D MATLAB and C which
includes

A second-order scheme that preserves realizability (in exact
arithmetic).

An optimization algorithm with change of basis and option for
adaptive quadrature.

A reasonable regularization procedure when things are really bad.

A CUDA (GPU) code is also running, but not optimzed and not
for the newest algorithm.
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What’s to be done

An asymptotic preserving (AP) scheme.

Implicit time integration.

Multi-D results.

Scaling studies with parallel implementation.
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Thank you!
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