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Linear Transport
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Problem Setting

@ We consider the extremely simplified case of linear transport for
neutral particles of unit speed

o Located at position z € D C R?

o Traveling with direction € € S?

o Particles move through a material medium with scattering,
absorption, and total cross-sections og, 0,, and o = 0, + 05

e The material generates a particle source of S.
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Kinetic Transport Equation

e The kinetic density ¢ = ¥ (z,Q,t) is the density of particles with
respect to the measure d€Q2dx. It satisfies:

O+ Q- Vb + 00 = (536 + )

where ¢ = (1), angle brackets denotes (non-normalized)
integration over (), and S is a source.

o Equation is interesting in its own right, but also a simple
prototype for collisional kinetic equations.
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Basic Properties

e Balance Law. The particle concentration satisfies

0i6+ V- () + agp = S|

e Diffusion Limit. On long time-scales and for highly scattering
materials, ¥ (z, Q) = ¢/47 + O(e) and

1
8t¢+ Ua¢ = Vx . (wvxgb) + S+ 0(52) , K 1

o Streaming Limit. When o5 = 0, the transport equation becomes
an infinite set of uncoupled equations.
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Numerical Simulation

e Challenges:
o Large phase space.
e Multiscale behavior.

e Implicit solutions.

e Common Methods for Angular Discretization:

e Diffusion
e Monte Carlo
o Discrete Ordinates (Sy)

o Spherical Harmonics Expansion (Py)
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The Line Source Problem: Comparison of Methods!

a) analytic ) Diffusion  (c¢) Monte-Carlo

Q

(e) 1 (f) Ps

1

T. A. Brunner. “Forms of Approximate Radiation Transport”, Tech. Rep. SAND2002-1778, Sandia

National Laboratories, Jul 2002.
(Cory Hauck - Oak Ridge) Entropy-Based Models 30 March 2012

9/ 47



Moment Methods
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Moment Equations

e Let m = m(f2) be a vector containing spherical harmonics in €.
o Let u(x,t) := (my(z,-,t)) be moments of 1) with respect to m.

e Multiply the transport equation by m and integrate over all angles:

‘Gtu+vx A(Qmy) 4+ ogu = O'SQU—{—S‘

where @ = diag([1,0...,0]) and s = [S,0...,0]7.
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Closure

@ To close the system, replace @ by an ansatz &(u) that satisfies the
consistency relation

<m1[1(u(x,t))> — u(z,1) .

e The results gives a closed system of balance laws

‘8tu+Vx-f(u)+atu:aSQu—|—s‘

where f(u) = (Qmi)(u))

@ The behavior of the moment system depends heavily on the
closure.
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Entropy-Based Closure

e Let n be a scalar valued, strictly convex function.

@ Closures based on the entropy minimization principle (or
maximization in physics) use the ansatz

(u) =arg min {(n(g)) : (mg) = u}

geL(S)

to close the moment system.
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Formal Optimality Conditions

o A minimizer, if it exists, is given by G4, where

T

Ga =1, (a’ m)

where 7, is the Legendre dual of 7.

@ The dual variable &(u) solves

min {{1.(aTm)) - aTu}
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Why Entropy (as a modeling tool) ?

e Entropy minimization is a well-known tool for identifying
equilibria, where the moments are conserved quantities
(H-Theorem).

e Entropy-based moments systems are symmetric hyperbolic (in the
& variable) and dissipate the entropy h(u) = (7(Ga(w))) (in a
closed system).

e In nonlinear settings, the collision operator “selects” a specific
entropy.

e In linear settings, any strictly convex entropy will be dissipated (in
a closed system). Positivity of the ansatz is the practical issue.
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Why Entropy (as a practical implementation) 7

e In many contexts, radiation is a major conduit for energy
exchange between materials and high resolution and kinetic
simulations are necessary.

o Large scale kinetic simulations are extremely expensive.
[Astrophysics supernova group at Oak Ridge estimates O(101°)
bytes of memory and O(10%?) — O(10%°) flops per run.]

e High performance computers are beginning to show bottlenecks in
data management. Problem will get much worse in the future.

o Kinetic simulations will have to go hybrid to limit data: global
moments + local kinetics.
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Previous Work

o Literally too much to list.

e First use as a non-equilbrium moment closure was by Minerbo in
1978 at Los Alamos: “Maximum Entropy Eddington Factors”, J.
Quant. Spectrosc. Radiat. Transfer.

e Levermore (1996): application to non-equilibrium gas dynamics;
formal mathematical properties

@ Dubroca and Feugeas (1999): thermal radiative transfer with
Bose-Einstein statistics

e Relationship to Extended Thermodyanmics (Miiller and Ruggeri)
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Solving the Optimization

o In the past, most work has focused on the two moment model M.
@ Solving the optimization is extremely expensive: iterative
methods, quadrature evaluation.

e However ... in large-scale, parallel computing environments, the
expense can be mitigated.

o = E E 9Dal
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Implementation of the Closure
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Setup

o We assume a slab geometry with no source, in which case the
transport equation is

Ou + pdst) + ovtb = T

where p € [—-1,1].
@ The vector m contains the first N + 1 Legendre polynomials in .

e We use the Maxwell-Boltzmann entropy. The entropy ansatz is

P(u) = Ga(u), Where Gqo = exp(a’m)

and &(u) solves

min  {(Ga) — aTu}

acRN+1
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Realizability

Definition

A vector v € RNV*1is realizable if v = (mg) for some non-negative
L!(dp) function g with (g) > 0. The set of all such v is denoted by Rum.

Realizability is a necessary condition for the optimization problem to
have a solution. Unfortunately,

@ A typical numerical algorithm for updating the moments need not
preserve realizability.

© The optimization problem is much harder to solve near the
boundary of Ry,.
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Kinetic Scheme

o To approximate

‘ ou + 0f(u) + opu = 05Qu,

we use a finite-volume method.
o Let

u;(t) ~ Al/[ u(z,t)de .

T .
J

approximate the average of u over spatial cells I; of width Ax.
@ The kinetic scheme has the form

fiv12— %12

Oru; + Az

+ ogu; = O'SQII]' s

e For time integration, we use a second-order SSP Runge-Kutta
scheme (Heun’s method).
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Kinetic Scheme (contd.)

e Let &(u) denote the optimization algorithm’s approximation to
the true solution &(u)

o Let G'j = Gd(uj) and éj = Gé\c(uj)

o Edge values for the flux are computing using the entropy ansatz

‘ fj+1/2 = <,Uméj+1/2> )

where

Gj+1/2 =

Gjy1— 5fsi p<0

~ {éj‘i‘AQij u>0
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Kinetic Scheme (contd.)

o The quantities s; approximate the spatial derivative of G

Gj=Gj1 Gin=Gj ,Gin =G
Ar 2Ax ’ Az )

s;j := minmod {9

for 6 € (1,2).

e Note that s; is computed only by communicating the moments.
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Maintaining Realizability

o Realizability depends on the ratio

Theorem

Given the modified CFL condition

the realizable set is invariant under the kinetic solver.
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The Dual Problem

@ The dual problem for &(u) is

min {(Ga) — aTu}

acR?

where G, = exp(a’m).

@ The gradient g and Hessian H are

gla) = (mGy) —u and H(a)= (mm’Gy) >0
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Challenges of the Dual: Quadrature

e For moments near the realizable boundary the effective support of
the entropy ansatz becomes very narrow.

@ The dual problem is very sensitive to the numerical quadrature.
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Figure: Level curves of the dual objective in a two-moment problem.
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Challenges of the Dual: Sensitivity

uy/ug = coth(é(u)) — 1/é&; (u)
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Figure: Relating multipliers to moments in a two moment problem.

o Near the realizable boundary, the Hessian becomes singular.

@ Our numerical scheme maintains realizability under the
assumption that the dual problem for & is sufficiently
converged.
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Challenges of the Dual: Poorly Conditioned Hessian

@ In the course of solving the dual problem for an M5 model we
come across a “bad” value of a.
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(a) The polynomial o m. (b) The ansatz Ge.
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Challenges of the Dual: Poorly Conditioned Hessian
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Challenges of the Dual: Poorly Conditioned Hessian

e With a small perturbation, we can generate a “super-bad” value of
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Challenges of the Dual: Poorly Conditioned Hessian
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Regularizing the Moments

@ As u approaches the boundary of realizability, the dual problem
becomes impossible to solve in finite-precision arithmetic.

e We find nearby realizable moments by replacing u by
v(r) = (1= r)u+ ruge,

where e = (1,0,...,0) and 0 < r < 1.
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Numerical Results: Two-Beam Instability

Bounded domain: = € (zr,zr) = (—0.5,0.5)

Boundary conditions:

¢(wp, pyt) = exp(—10(p — 1))
Y(zR, 1y t) = exp(—10(u + 1))

Initially, (almost) a void:

w(%,mt = 0) = leﬂoor

Purely absorbing medium:

0a=2,0=0
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Figure: A two-beam instability with N = 1 and 1000 spatial cells.
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Figure: A two-beam instability with N = 1 and 1000 spatial cells.

Hauck - Oak Rid Entropy-Based Models 30 March 2012 36 / 47



0351 4

351 1

005 0.4 0.3 0.2 0.1 [ 0.1 - o
(a) Snapshots of the solution, (b) logyo Jlu—v(r)|.
uo(z,t).

Figure: A two-beam instability with N = 15 and 1000 spatial cells.
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(a) The number of quadra-
ture points.
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Figure: A two-beam instability with N = 15 and 1000 spatial cells.
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Improving the Hessian: Change of Bases

Old method using Radau quadrature with isotropic iniial condition

New method using Radau quadrature with isotropic initial condition
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Figure: A two-beam instability with N = 15, 1000 spatial cells, 40-pt
quadrature.
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Some Statistics

@ The optimization problem is solved 10,851,552 times.

@ 94.9031% of problems needed 3 or fewer iterations.

1.3266% of problems needed more than 6 iterations.

e average number of iterations was 1.6116

0.012772% of problems were regularized.
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Figure: A two-beam instability with N = 15 and 1000 spatial cells.
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Using CUDA

e Profiling the old optimization code shows that that integrals
evaluation in objective, gradient, and Hessian take 95% of the
time.

@ Maximum Possible Speedup by Amdahl’s Law:

1
(1—.95)

@ A More Realistic Estimate

- 336 Cores at 1.7 GHz vs 1 CPU Core at 3GHz;
- Double Precision 8 Times Slower Than Single Precision
1
(1 —.95)+.95/(336 x 1.7/3/8)
e Computational Results
e Serial Performance: 18.096 sec

e GPU Performance: 4.376 sec
e Actual Speedup: 4.135
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Outlook
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What’s been done

e We have a working algorithm in 1-D MATLAB and C which
includes

o A second-order scheme that preserves realizability (in exact
arithmetic).

o An optimization algorithm with change of basis and option for
adaptive quadrature.

e A reasonable regularization procedure when things are really bad.

e A CUDA (GPU) code is also running, but not optimzed and not
for the newest algorithm.
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What’s to be done

e An asymptotic preserving (AP) scheme.

Implicit time integration.

e Multi-D results.

Scaling studies with parallel implementation.
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Thank you!
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