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The team we work with at Michigan and on CRASH!

•  Center for Radiative Shock Hydrodynamics (CRASH)!
–  Staff: Fryxell, Myra, Toth, Sokolov, van der Holst, Andronova, 

Torralva, Rutter, Trantham !
–  Grad students: Patterson, Chou, and many others !
–  UM Professors: Powell, Holloway, Stout, Martin, Larsen, Roe, van 

Leer, Fidkowsky, Thornton, Nair, Karni, Gombosi, Johnsen!
–  TAMU: Adams, Morel, McClarren, Mallick, Amato, Raushberger, 

Hawkins !
–  Simon Frazer: Bingham!
–  ARTEP: Klapisch, Busquet!

•  CLEAR Experimental Program !
–  Grad students: Visco, Huntington, Krauland, Di Stefano, Gamboa, 

Young, Wan, MacDonald  !
–  Many undergrads!
–  Staff: Grosskopf, Klein, Lowenstern, Gillespie, Susalla !
–  (Many scientific collaborators beyond UM not listed here)!
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This talk will cover !

•  An introduction to laboratory 
astrophysics at High Energy 
Density (HED)!
–  Material properties !
–  Hydrodynamics !
–  Radiation hydrodynamics!

•  Throughout !
–  Examples from the CRASH 

project!
–  Some observations on 

codes and UQ !
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The properties of high energy density matter 
connect with astrophysical systems!

Drake, !
Physics Today!
 June 2010!

Quark-gluon 
plasmas !
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High-Energy-Density Physics has elements 
common to some astrophysical systems!

HEDP!
Physics!Astrophysics!

Portion of 
astrophysics 
with HEDP 
connections!

Common elements: !
   strong shocks = compressible hydro!
   high pressures or temperatures – ionized!
   important radiative transfer !
   plasma hydrodynamics!

The “sexy” questions tend to arise from the connections!
Nearly every problem in HEDP has astrophysical connections!

HEDP involves the study of systems having a pressure > 1 Mbar (= 
0.1 Tpascal = 1012 dynes/cm2), and of the methods by which such 
systems are produced. !
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HEDP behavior depends on a lot of physics, 
often hard to model numerically!

Drake, !
Physics Today!
 June 2010!

WDM!
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Material properties matter for astrophysics!

•  Examples follow !

–  Hydrogen and other equations of state !

–  Iron opacities !

–  Foam materials in experiments!
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Warm dense matter is a big challenge!

States produced by shock waves in D2!

St
an
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rd

 m
od

el
!  = 

1.5!

•  At pressure near 100 Gpa     
(1 Mbar)!
–  Molecules dissociate!
–  Ionization begins !
–  Measurements are hard!

•  One cannot do the exact 
theory !
•  Even molecular dynamics 

depends on approximate 
potentials!
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 [D. Saumon and T. Guillot, Ap. J. 609, 1170 (2004)]!
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The different EOS models for hydrogen directly 
impact whether Jupiter is predicted to have a 
central dense core or not	



•  Outlines show range of 
models matching Jupiter’s 
properties within 2 of 
observed!

•  Cannot yet tell whether 
Jupiter has a core!

•  The predicted age of 
Jupiter is is also sensitive 
to the H EOS, which affects 
luminosity!

Adapted from slide by !
Bruce Remington!
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An EU consortium (SECHEL) has been funded to study 
iron properties using lasers !

Slide credit: Michel Koenig 
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2007 Don Dixon / cosmographica.com 

Predictions of solar structure do not 
agree with observations (13  CZ 
problem) 

Solar structure depends on opacities that 
have never been measured  

Challenge: create and diagnose stellar 
interior conditions on earth  

Z opacity experiments reach T ~ 156 eV 

High T enables first studies of transitions 
important in stellar interiors 

Laboratory experiments test opacity models 
that are crucial for stellar interior physics 

l (Angstroms)!

tra
ns

m
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!

8.0! 10.0! 12.0! 14.0!

Fe / Mg transmission at T ~ 156 eV 

Laboratory experiments test opacity models 
that are crucial for stellar interior physics 

Slide credit: James Bailey 
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Magnetically-driven z-pinch implosions provide one means to 
do studies like this, requiring bright x-ray sources !

Current 

B-Field 

JxB Force 

Stagnation Implosion Initiation 

kinetic and electrical energy 

internal (shock heating) 

x rays 

electrical energy 

kinetic energy 
•  Energy: 1.5 MJ x-ray ≈ 15% 

of stored electrical !
•  Power: 200 TW x-ray!

Slide credit: James Bailey 
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Z pinches can do opacity and photoionization experiments, 
relevant to stellar interiors and accretion powered objects!

Fe + Mg transmission!
 Te ~ 156 eV, ne ~ 1022 cm-3!

Ne transmission at !
Te ~ 25 eV, ne ~ 1019 cm-3!

photoionization sample!
radiation effects in 

plasma surrounding black 
hole!

opacity sample -!
same charge 
states in sun!

Z!
x-ray!

source!
1-2 MJ!

2·1014 W!

X-rays!

l !

l !

[Jim Bailey, PRL (2007);!
  and PoP 13, 056301 (2006)]!Slide credit: James Bailey 
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Experiments have to use foams!

•  Need to drive strong shocks across density differences of 
several (5 to 10)!
–  The various layers all have to be diagnosable !
–  Implies using plastic or other low-density solids !
–  But these are > 100x times gas densities !
–  The intervening density range becomes essential but is 

occupied by foam !

•  Alas, fluid-type EOS models are invalid for foams !
–  Do not model destruction of foam cells during plasma 

formation !
–  Do not model formation and decay of turbulence  !
–  Do not model hysteresis upon later cooling!
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Material properties matter for astrophysics!

•  Modeling them is a big challenge!

•  EOS models!
–  If they apply!

•  Opacity models !
–  Should self-consistency matter? !

•  Uncertainty in such models!

•  Uncertainty in wrong models !
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Our approach in CRASH !

•  We were charged with quantifying uncertainty in simulated 
results !
–  Uncertainty in EOS and opacity is part of this !

•  It’s nearly impossible to deal post facto with uncertainty in 
a table of 10N numbers!
–  One can do fitting to reduce the number of dimensions and 

can address the uncertainty associated with the fit, !
–  But this does not account for the numbers in the table being 

uncertain and for the uncertainties being correlated !

•  We took the approach of self-consistently evaluating EOS 
and opacity from atomic data !
–  Allows propagation of uncertainties (in principle) !
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EOS and opacity model: general scheme!

Atomic !
Concentration, Na !INPUTS:! Electron!

temperature!
      Pressure/!

Energy density!

Te! Trial Te!Trial Ne!

  Database!

Ionization/!
excitation!
energies!

Cross-
sections,!
lines!

Partition over ion charge number and principal 
quantum number, for all mixture components.!

Averaging!

Pressure, energy density!Ne=(total) - (bound)!

Averaging!Iterate! Iterate!

Absorption coefficient!

Averaging!
Multi-group opacities!

Electron heat conduction!

OUTPUT!

Derivatives: specific heat...!
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This worked well for low-Z but failed for Xe!

Polyimide!

Xe!

Of course, agreement among models does not imply accuracy!
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Some observations about material properties!

•  Understanding uncertainty in EOS and opacity models is at 
best difficult !
–  The atomic data approach is feasible at least at times !
–  Purely theoretic approaches can generate usable results !

•  But knowing their accuracy is problematic !
–  Doing this well would require a major, extended effort !

•   The situation is even worse when EOS models are not valid!
–  To handle such materials, more complex computational 

models are needed !
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Other issues in HED laboratory astrophysics!

•  Hydrodynamics!
–  And physics that affects it  !

•  Radiation hydrodynamics !
–  We will discuss CRASH to develop this topic!

•  We will not address a couple other areas !
–  Magnetic fields and MHD systems!
–  Relativistic dynamics!

•  Why not just trust the codes? !
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Destruction of clumps in post-shock flow has 
been a research area with impact !

•  Experimental results used to help interpret Chandra data from the Puppis 
A supernova remnant !

•  Well-scaled experiments have deep credibility!
•  Una Hwang et al., Astrophys. J. (2005)  !

Klein et al., ApJ 2003 !
Robey et al., PRL 2002!

Well scaled experiment!Chandra data!



Page 22!

How shock-clump experiments are done  !

•  The experiment involves 
blast-wave-driven mass 
stripping from a sphere !

•  Early experiments used Cu 
in plastic; recent 
experiments use Al in foam !
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Observations of the Al/foam case continued 
until mass stripping had destroyed the cloud!

•  Hansen et al., ApJ 2007, PoP 2007 !
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Simulating such experiments is not trivial!

•  Even leaving aside the EOS issues discussed above !
•  Many people act like their favorite hydro method is perfect !

–  I’m not taken in by this any more  !
–  Astro types love their PPM!

•  But PPM creates structure on unresolvable scales  !
–  Space weather modelers like more diffusive solvers !

•  Probably mock up reconnection effects OK, but need a lot of zones 
to accurately capture instabilities !

–  ALE codes seem popular in the labs !
•  But these involve unquantified dissipation of vorticity!

–  All the methods have seldom-mentioned parameters in the 
hydro scheme that affect the results !

–  “limiters”, “beta”, !

I’ve noticed that code developers seem to like best the 
methods that match their personalities!
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Any decent hydro code will prove able to reproduce 
some standard results!

Re-shock!

Modeling of 
Jacobs’ 
Richtmyer 
Meshkov 
experiment using 
CRASH!
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But I have learned that there are some magical 
hydrodynamic adjustable parameters!
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Now we turn to the CRASH project, and 
specifically its radiation hydrodynamics!

•  In CRASH we are funded !
–  To simulate a complex physical experiments !

•  Radiative shock experiments !
•  A radiation hydrodynamic code !

–  To assess the predictive capability of the simulation !
•  Using uncertainty quantification and related analysis!

•  Key papers !
–  CRASH code: Van der Holst et al, Ap.J.S. 2011 !
–  CRASH Physics: Drake et al. HEDP 2011!
–  3D simulations: Van der Holst et al, HEDP 2012!



Page 28!

The physical system of interest to CRASH is a 
radiative shock wave!

•  1 ns, 4 kJ laser irradiates Be 
disk!

•  Drives shock into Xe-filled 
tube!

•  Radiative precursor heats 
wall of tube, leading to 
ablation!

•  Complex interaction among 
laser-driven shock, 
ablation-driven shock, and 
Xe-Be interface!
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Just last week we got measurements from 
which we will get temperature profiles!

•  Imaging spectrometer !
–  Designed by UM student Eliseo Gamboa (J. Inst. 2011)!
–  Built by LANL; experiment by UM student Chan Huntington !
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We find our motivation in astrophysical 
connections!

•  Radiative shocks occur 
throughout astrophysics!
–  Supernovae, accretion, stars, 

supernova remnants, collisions!

•  Our experiments !
–  have all three relevant 

dimensionless parameters in 
the regime of shocks emerging 
from supernovae!

•  This produces qualitatively 
similar profiles!
–  We should see any important 

unanticipated physics!
–  Good code test in any event !

 

Ensman & Burrows ApJ92!

Reighard 2006!
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CRASH has a Laser Package to model energy 
deposition!

•  Laser energy transport via 3-D ray-tracing based on 
geometric optics!

•  Laser energy absorption via inverse bremsstrahlung !
•  Efficient parallel AMR implementation using block adaptive 

tree library (BATL) !
•  Verification tests based on laser ray turning point and energy 

deposition in simple analytic density distributions!
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CRASH Radhydro Code: Hydro and Electron 
Physics!

radiation/electron 
momentum exchange!

radiation/electron 
energy exchange!

electron heat conduction!

Compression work! collisional exchange!

laser energy deposition!

S =

8
>><

>>:

0
�Srm

r · CerTe � Sre + SL

�per · u +r · CerTe +
⇢kB(Ti�Te)

MpA⌧ei
� (Sre � Srm · u) + SL

9
>>=

>>;
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CRASH Radhydro Code: Multigroup diffusion!

•  Radiation transport equation reduces to a system of equations for 
spectral energy density of groups.  !

•  Diffusion is flux-limited!
•  For the gth group:!

emission-absorption = c�absg (Bg � Eg)

advection! compression work! photon energy shift!
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Overview of Solver Approach!
•  Self-similar block-based adaptive grid!
•  Finite-volume scheme, approximate Riemann solver for flux 

function, limited linear interpolation!
•  Mixed Implicit/Explicit update!

–  Hydro and electron equations!
•  Advection, compression and pressure force updated 

explicitly!
•  Exchange terms and electron heat conduction treated 

implicitly!
–  Radtran!

•  Advection of radiation energy, compression work and photon 
shift are evaluated explicitly!

•  Diffusion and emission-absorption are evaluated implicitly!
–  Implicit scheme is a preconditioned Newton-Krylov-Schwarz 

scheme !
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•  For material    , level-set function          is 
initialized based on signed distance from 
interface.!

•  Level-set function propagated by!

•  Cells are treated as a single material (that 
of the largest level-set function).!

•  Use AMR to resolve the interface!

Material Interface treatment!

XeBe

mBe

mXe

x
⇥

⇥t
(�m�) +� · (�m�u) = 0
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We extensively test our code!

•  New program units implemented with unit tests!
–  Nightly execution of many unit tests for CRASH and its parent 

code!
•  New features implemented with verification tests!

–  Daily verification & full system tests are run on a 16-core Mac.!
–  Tests cover all aspects of the new feature, including restart, 

using grid convergence studies and model-model comparison.!
•  Compatibility & reproducibility checked with functionality test suite!

–  Nightly runs. 9 different platforms/compilers on 1 to 4 cores: 
tests portability!

•  Parallel Scaling Tests!
–  Weekly scaling test on 128 and 256 cores of hera.!
–  Reveals software and hardware issues, and confirms that results 

are independent of the number of cores.!
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Multiple classes of tests are in our suite!

•  Hydrodynamics!
•  Radiation transport!
•  Radiation hydrodynamics!
•  Heat conduction!
•  Simulated radiography!
•  Material properties (EOS 

and opacities)!
•  Laser package!
•  Unit tests!
•  Full-system tests!

HEAT CONDUCTION!

RADIATION TRANSPORT!

HYDRODYNAMICS!

RADIATION HYDRODYNAMICS!

SIMULATED RADIOGRAPHY!
FULL SYSTEM!
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The hydro portion of the code scales very well 
 (CRASH hydro Weak Scaling on BG/L)!
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The full-system scaling is more 
communication-intensive  
CRASH rad-hydro strong scaling on Hera and Pleiades!



Page 40!

Simulation of the CRASH Experiment!



Page 41!

CRASH has been used to model several HED experiments!
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Creation of plasma jets using laser irradiation of 
conical foils!

Rayleigh-Taylor growth in the presence of a radiative 
shock!

Rayleigh-Taylor growth in a diverging system! Ablative flow of laser driven foil for collisionless 
shock experiments!

High Drive: 
310 eV Tr source 

35 µm 
Tip to Bubble

105 µm
 Tip to Bubble

Low Drive
207 eV Tr source 
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Code comparison studies are not trivial but 
have proven useful!

Infinite medium 
temperature relaxation !
•   4 Energy groups!
•   Constant opacities !
•   Different in each group !

Study participants!
•   FLASH: !

•  Don Lamb !
•  Milad Fatenejad!

•   CRASH!
•  Bruce Fryxell !
•  Eric Myra!

•   RAGE!
•  Chris Fryer !
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Accuracy is hard to come by in radiation 
hydrodynamics!
•  All methods have weaknesses !

–  IMC: noise!
–  Discrete ordinates: ray effects !
–  Diffusion: errors for systems not optically thick!

•  Flux limiter as potential tuning parameter !
•  We use diffusion for rad hydro !

–  Also are doing radtran studies of diffusion vs transport !

•  Current US policy puts us at an international disadvantage !
–  Only radhydro with diffusion is clearly not constrained !
–  International groups in solar physics and astrophysics have 

already gone beyond this !
–  There are no meaningful limitations: further sophistication by 

international researchers will be rapid!
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Our inputs and outputs for UQ reflect the specifics of our 
experimental system!

•  Outputs (y) !
–  Integrated Metrics!

•  Shock location (SL)!
•  Axial centroid of dense Xe 

(AC)!
•  Area of dense Xe (A)!
•  Radial moments!

–  Shock breakout time (BOT)!

•  Experimental (x)!
–  Laser energy!
–  Be disk thickness!
–  Xe fill gas pressure!

•  Model parameters ()!
–  Vary with model!
–  Examples: !

•  electron flux limiter, 
laser energy scale 
factor, !

•  Opacity scale factor!
•  Form of model !

–  e.g. 2D vs 3D!

Inputs!
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We use a model structure for calibration, validation & 
uncertainty assessment!

ym = ⌘(x, ✓) + �(x) + ✏

yc = ⌘(x, ✓c)

Measured in calibration 
experiments with specific 
x and unknown theta 
(few of these)!

Computed with specific 
values of x and theta 
(lots of these)!

Models discrepancy 
between reality and 
code – speaks to 
validation!

Replication error!

Fits code over input space!

Kennedy & O’Hagan 2000, 2001!

⌘(x, ✓)

�(x) ✏
⇡(✓|ym, yc)

experimental input!
x :
✓ : physics or calibration input!

First CRASH application: !
Holloway et al RESS 2011 !
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Flux limiter is an uncertain model parameter!

•  Need to evaluate 
probability distribution of 
such parameters!

•  This can represent 
calibration or tuning!

•  If the residual discrepancy 
is small, we get calibration!

•  If not, we get tuning!

Introduction
Methodology

Examples
Conclusion

Simulation Study
CRASH application
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Using this structure we predicted shock breakout 
time (BOT) using 1D & 2D codes!

1D sims!

2D sims!

Measurement to be 
predicted: left out of 
model fitting!

⌘BOT + �1!2

Tuned 1D!

Tuned 2D!

Tuned prediction!

This was 
preparation for 
jointly using 2D 
multigroup and 
3D gray!
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Some comments on quantifying predictive 
capability!
•  This is really hard!
•  It needs deep thought and lots of work at every level!

–  Experimental uncertainties are far more than just “error bars”!
–  Computational uncertainty is enormously complex !

•  The problem is not linearly decomposable !
–  Numerics !
–  Resolution (not just spatial) !
–  The problem of high dimensionality !
–  Quantifying uncertainty for wrong models !

–  Statistical analysis does not stand alone !
•  Extrapolation will always require expert judgment and analysis!
•  Calibration vs discrepancy for limited data  !

•  I see no way to do this remotely well without making it a 
dedicated, long-term, milestone-driven activity!
–  You can’t hang a UQ bag on your technical donkeys!
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Concluding Remarks!

•  SWMF/BATSRUS/CRASH is publicly available!
–  It is downloadable from http://csem.engin.umich.edu after 

registration!
–  However,!

•  There is learning curve!
–  ~1 month for a good PhD student!
–  ~3-6 month for an active researcher!
–  ∞ for senior Professors/administrators!

•  We welcome collaborators who want to install/run the 
codes!

•  SWMF/BATSRUS/CRASH are continuously evolving!
–  We typically provide 1 or 2 major upgrades a year!
–  User feedback is very important for further development!


