
Developing PIC Codes for the Next
Generation Supercomputer using GPUs

Viktor K. Decyk
UCLA

Abstract

The current generation of supercomputer (petaflops scale) cannot be scaled up to exaflops (1000
petaflops), To achieve exascale computing, new classes of highly parallel, low power devices
are being designed. The most successful so far has been the Graphical Processing Unit (GPU).
I will describe how our research in developing algorithms for Particle-in-Cell codes for GPUs
should help us exploit the next generation supercomputer when it arrives.

Wednesday, March 28, 2012

During the last 40 years, I have experienced 2 revolutions in Supercomputing

The first was vector computing:
We had to learn how to “vectorize” our codes

The second was distributed memory parallel computing:
We had to learn how to “parallelize” our codes with
message-passing

Each time, it took the scientific community nearly a decade
to adapt

I believe we are in the middle of a third revolution in hardware.

This revolution is driven by
• Increasing shared memory parallelism, because increasing frequency is not practical
• A requirement for low power computing
• Goal is Exaflops computing (1018 Floating Point operations per second)

Wednesday, March 28, 2012

Revolution in Hardware

Many new architectures
• Multi-core processors
• Low power SIMD accelerators, GPUs
• Low power embedded processors
• FPGAs
• Heterogeneous processors

In a revolution, it is difficult to know
which path leads to prosperity

Wednesday, March 28, 2012

GPUs are graphical processing units originally developed for graphics and games
• Programmable in 2007

GPU Technology has two special features:
• High bandwidth access to global memory (>100 GBytes/sec)
• Ability to handle thousands of threads simultaneously, greatly reducing memory “stalls”

Challenges:
• High global memory bandwidth is achieved mainly for stride 1 access
 (Stride 1 = adjacent threads read adjacent locations in memory)
• Best to read/write global memory only once (streaming algorithms)
• shared memory is very small

GPUs consist of:
• 12-30 SIMD multiprocessors, each with small (16-48KB), fast (4 clocks) shared memory
• Each multi-processor contains 8-32 processor cores
• Large (0.5-6.0 GB), slow (400-600 clocks) global shared memory, readable by all units
• No cache on some units
• Very fast (1 clock) hardware thread switching

Wednesday, March 28, 2012

Simple Hardware Abstraction for Next Generation Supercomputer

A distributed memory node consists of
• SIMD (vector) unit works in lockstep with fast shared memory and synchronization
• Multiple SIMD units coupled via “slow” shared memory and synchronization

Distributed Memory nodes coupled via MPI

Each MPI node is a powerful computer by itself
A supercomputer is a hierarchy of such powerful computers

OpenCL programming model uses such an abstraction for a single node

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

MPI node MPI node

Wednesday, March 28, 2012

This hardware model matches GPUs very well
• But can be adapted to other hardware.

On NVIDIA GPU:
• Vector length = block size (typically 32-128)
• Fast shared memory = 16-64 KB.

On Intel multicore:
• Vector length for SSE = 4
• Fast shared memory = L1 Cache

Intel MIC (Knights Corner)
• Vector length = 16

Wednesday, March 28, 2012

Designing new algorithms for next generation computers

This abstract machine contains a number of familiar hardware elements
• SIMD (vector) processors
• Small working memory (caches)
• Distributed memories

Scientific programmers have experience with each of these elements

Vector algorithms
• Calculation on a data set whose elements are independent (can be done in any order)
• Long history on Crays, Fijitsu, NEC supercomputers

Blocking (tiling) algorithms
• When data will be read repeatedly, load into faster memory and calculate in chunks
• Long history on RISC processors

Domain decomposition algorithms
• Partition memory so different threads work on different data
• Long history on distributed memory computers

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

Slow Shared Memory

Wednesday, March 28, 2012

Designing new algorithms for next generation computers

Programming these new machines uses many familiar elements,
but put together in a new way.

But some features are unfamiliar:

Languages (CUDA, OpenCL, OpenACC) have new features

GPUs require many more threads than physical processors
• Hides memory latency
• Hardware uses master-slave model for automatic load balancing among blocks

Optimizing data movement is very critical

Wednesday, March 28, 2012

Simplest example: Vector algorithms

In PIC code, often appears in field solvers
• Stride 1 memory access optimal (to avoid memory bank conflicts)

 complex qt(nyv,nxvh), fxyt(nyv,2,nxvh), ffct(nyhd,nxhd)

 do j = 2, nxh
 dkx = dnx*real(j - 1)
 do k = 2, nyh
 k1 = ny2 - k
 at1 = real(ffct(k,j))*aimag(ffct(k,j))
 at2 = dkx*at1
 at3 = dny*real(k - 1)*at1
 zt1 = cmplx(aimag(qt(k,j)),-real(qt(k,j)))
 zt2 = cmplx(aimag(qt(k1,j)),-real(qt(k1,j)))
 fxyt(k,1,j) = at2*zt1
 fxyt(k,2,j) = at3*zt1
 fxyt(k1,1,j) = at2*zt2
 fxyt(k1,2,j) = -at3*zt2
 enddo
 enddo

Here is a code fragment of a vectorized Poisson solver, k•E = 4πqn(k)
• Usually inner loops were vectorized

Wednesday, March 28, 2012

Vector algorithms

Here is a code fragment of a Poisson solver written for CUDA Fortran
• The changes were minimal: loop index replaced by thread ids
• If test to check loop bounds
• Both loops are running in parallel

 k = threadIdx%x + blockDim%x*(blockIdx%x - 1)
 j = blockIdx%y

 dkx = dnx*real(j - 1)
 if ((k > 1) .and. (k < nyh1) .and. (j > 1)) then
 k1 = ny2 - k
 at1 = real(ffct(k,j))*aimag(ffct(k,j))
 at2 = dkx*at1
 at3 = dny*real(k - 1)*at1
 zt1 = cmplx(aimag(qt(k,j)),-real(qt(k,j)))
 zt2 = cmplx(aimag(qt(k1,j)),-real(qt(k1,j)))
 fxyt(k,1,j) = at2*zt1
 fxyt(k,2,j) = at3*zt1
 fxyt(k1,1,j) = at2*zt2
 fxyt(k1,2,j) = -at3*zt2
 endif

See my presentation, “Development of numerical algorithms for the next generation of
supercomputers,” at US-Japan Workshop for more examples:
http://www-fps.nifs.ac.jp/ohtani/JIFT2011/program.shtml

Wednesday, March 28, 2012

http://www-fps.nifs.ac.jp/ohtani/JIFT2011/program.shtml
http://www-fps.nifs.ac.jp/ohtani/JIFT2011/program.shtml

Dawson2 at UCLA:
Experimental Cluster of GPUs is a prototype for next generation supercomputer

96 nodes: ranked 235 in top 500
 • Each node has: 12 Intel G7 X5650 CPUs and 3 NVIDIA M2090 GPUs.
 • Each GPU has 512 cores: total GPU cores=147,456 cores, total CPU cores=1152

Dawson2
Performance: 70 TFlops
Cost: about US$1,000,000
 8千万円 = 1千6百石
Power: 96 KW.
Not a production facility

NIFS Plasma Simulator
Performance: 77 TFlops
Production facility

Cost, power will drive supercomputers in this direction

Wednesday, March 28, 2012

 PIC codes integrate the trajectories of many particles interacting
self-consistently via electromagnetic fields. They model plasmas at the most
fundamental, microscopic level of classical physics.

 PIC codes are used in almost all areas of plasma physics, such as fusion energy
research, plasma accelerators, space physics, ion propulsion, plasma processing, and
many other areas.

 Most complete, but most expensive models. Used when more simple models fail, or
to verify the realm of validity of more simple models.

Largest calculations:
• ~1 trillion interacting particles (on Roadrunner)
• ~300,000 processors (on Jugene)

Main Application for Dawson2 cluster: Particle-in-Cell Codes

Wednesday, March 28, 2012

Particle-in-Cell Codes

Simulation of magnetosphere of Mercury
P. Travnicek et.al,

Simulation of ITG turbulence in Tokamaks
R. Sanchez et. al.

Energetic electrons in laser-driven fusion simulation
J. May and J. Tonge

Simulation of compact plasma wakefield accelerator
C. Huang, et. al.

Wednesday, March 28, 2012

Particle-in-Cell Codes

Ion propulsion modeling, J.Wang, et. al.

Relativistic shock simulation, S. Martins, et. al.

Simulation of intense laser-plasma interactions, L. Yin, et. al.
Wednesday, March 28, 2012

Simplest plasma model is electrostatic:

1. Calculate charge density on a mesh from particles:

2. Solve Poisson’s equation:

3. Advance particle’s co-ordinates using Newton’s Law:

() ()q Sx x xi i

i

t = -/

4E:d rt=

() ()m
dt
d

q S d
v

E x x x xi
i

i i= -# dt
dx

vi
i=

Particle-in-Cell Codes

Inverse interpolation (scatter operation) is used in step 1 to
distribute a particle’s charge onto nearby locations on a grid.

Interpolation (gather operation) is used in step 3 to approximate
the electric field from grids near a particle’s location.

X

Wednesday, March 28, 2012

Distributed Memory Programming for PIC

This is dominant technique used on today’s supercomputers

Domain decomposition is used to assign which data reside on which processor
• No shared memory, data between nodes sent with message-passing (MPI)
• Most parallel PIC codes are written this way

Details can be found at:

P. C. Liewer and V. K. Decyk, “A General Concurrent Algorithm for Plasma Particle-in-Cell
Codes,” J. Computational Phys. 85, 302 (1989)

Wednesday, March 28, 2012

Distributed Memory Programming for PIC
Domain decomposition with MPI

Primary Decomposition has non-uniform partitions to load balance particles
• Sort particles according to spatial location
• Same number of particles in each non-uniform domain
• Scales to thousands of processors

Particle Manager responsible for moving particles
• Particles can move across multiple nodes

2D Domain decomposition

Each partition has equal number of particles

1D Domain decomposition

•

• •

••

•
•
•

••

•
•

• •

•

•

• •

•
•

•

•
•

•

•
•• ••

•

• •
••

•
•

• •

• •

•

•

• •
••

••

•
•

• ••

•

• ••
•
••

• •

• •

•

•

••• •
••

• ••
•• •

• •
• •

••

• •
•

• •

•

• •

• ••
• •

Wednesday, March 28, 2012

Distributed Memory Programming for PIC

In our codes, we also keep the communication and computation procedures separate
• Bulk Synchronous Programming

There are 4 main communication procedures in the PIC code:
• Particle manager (move particles to correct processor)
• Field Manager (add/copy guard cells)
• Partition manager (move field elements between uniform/non-uniform partitions)
• Transpose (used by FFT)

Wednesday, March 28, 2012

Particle-in-Cell Codes on Distributed Memory Computers

1

10

100

10
4

10
5

Collision
Warm
Optimal

S
p

e
e
d

 u
p

CPUs

81%

72%

OSIRIS strong scaling

from 4,096 to 294,912 CPUSElectromagnetic Code
Blue Gene Benchmark:

1024x1024x512 cells
8,589,934,592 particles

Not trivial to parallelize:
Two data structures
and inhomogeneous density.

Wednesday, March 28, 2012

GPU Programming for PIC: One GPU

Most important bottleneck is memory access
• PIC codes have low computational intensity (few flops/memory access)
• Memory access is irregular (gather/scatter)

Memory access can be optimized with a streaming algorithm

PIC codes can implement a streaming algorithm by keeping particles ordered by cell.
• Minimizes global memory access since field elements need to be read only once.
• Cache is not needed, gather/scatter can be avoided.
• Deposit and particles update can have optimal memory access.
• Single precision can be used for particles

Adaptable PIC Algorithm
• Sorting cell can contain multiple grids
• Adaptable with 4 adjustable parameters to match architecture
• Domain decomposition used to avoid data dependencies

Challenge: optimizing particle reordering

Wednesday, March 28, 2012

GPU Programming for PIC: Maintaining Particle Order is Main Challenge

Stream compaction: reorder elements into substreams of like elements
• Less than a full sort, low overhead if already ordered

Two cases
• 1: Particle moves to another thread in same vector or block
 Use fast memory
• 2: Particle moves to another thread in a different vector or block
 Essentially message-passing, except buffer contains multiple destinations

The reordering algorithm does not match the architecture well
• Does not have stride 1 access (poor data coalescing)
• Does not run in lockstep (has warp divergence)

Reference:

V. K. Decyk and T. V. Singh, “Adaptable Particle-in-Cell Algorithms for Graphical
Processing Units,” Computer Physics Communications, 182, 641, 2011.

See also: http://www.idre.ucla.edu/hpc/research/

Wednesday, March 28, 2012

http://www.idre.ucla.edu/hpc/research/
http://www.idre.ucla.edu/hpc/research/

Evaluating New Particle-in-Cell (PIC) Algorithms on single GPU: Electromagnetic Case

We also implemented a 2-1/2D electromagnetic code
• Relativistic Boris mover
• Deposit both charge and current density
• Reorder twice per time step
• 10 FFTs per time step

Optimal parameters were lth=64, and
On Fermi C2050, ngpx = 2, ngpy = 2
On Tesla C1060 and GTX280, ngpx = 1, ngpy = 2

Observations:
• About 2.9% of the particles left the cell each time step on Fermi C2050
• About 4.6% of the particles left the cell each time step on Tesla C1060, GTX 2010
• Field solver took about 9% of the code

Wednesday, March 28, 2012

Evaluating New Particle-in-Cell (PIC) Algorithms on GPU: Electromagnetic Case

Warm Plasma results with c/vth = 10, dt = 0.04
 Intel Nehalem Fermi C2050 Tesla C1060 GTX 280
Push 81.7 ns. 0.89 ns. 1.13 ns. 1.08 ns.
Deposit 40.7 ns. 0.78 ns. 1.06 ns. 1.04 ns.
Reorder 0.5 ns. 0.57 ns. 1.13 ns. 0.97 ns.
Total Particle 122.9 ns. 2.24 ns. 3.32 ns. 3.09 ns.

The time reported is per particle/time step.
The total speedup on the Fermi C2050 was 55x,
on the Telsa C1060 was 37x, and on the GTX 280 was 40x.

Cold Plasma (asymptotic) results with vth = 0, dt = 0.025
 Intel Nehalem Fermi C2050 Tesla C1060 GTX 280
Push 78.5 ns. 0.51 ns. 0.79 ns. 0.74 ns.
Deposit 37.3 ns. 0.58 ns. 0.82 ns. 0.81 ns.
Reorder 0.4 ns. 0.10 ns. 0.16 ns. 0.15 ns.
Total Particle 116.2 ns. 1.20 ns. 1.77 ns. 1.70 ns.

The time reported is per particle/time step.
The total speedup on the Fermi C2050 was 97x,
on the Telsa C1060 was 66x, and on the GTX 280 was 69x.

Wednesday, March 28, 2012

Current Research

How do we design code for a cluster of GPUs?

We need a hybrid MPI/GPU design
• Scientific software typically lasts longer than hardware
• Can we keep the code general enough to support other architectures?
• Can we minimize the amount of specialized code?

Current Solution: implement a generic MPI/OpenMP code, specialize later to CUDA
• Simpler to program and understand

Wednesday, March 28, 2012

Hybrid MPI/OpenMP Programming for PIC

Nested (hierarchical) domain decompositions
• Each shared memory node has its own domain
• Edges of shared memory domain define MPI domain

Allows fine grained partitions with reduced communications requirements
• Prototype for GPU-MPI decomposition

16 partitions (MPI or OpenMP)

MPI node MPI node

8 partitions (OpenMP) 8 partitions (OpenMP)

Wednesday, March 28, 2012

FFT gives nearly 3 times better performance with MPI-OpenMP than MPI alone
Overall, spectral code gets more than 4 times better performance

Wednesday, March 28, 2012

Conclusions

PIC Algorithms on GPUs are largely a hybrid combination of previous techniques
• Vector techniques from Cray
• Blocking techniques from cache-based architectures
• Message-passing techniques from distributed memory architectures

• Programming to Hardware Abstraction leads to common algorithms
• Streaming algorithms optimal for memory-intensive applications

Scheme should be portable to other architectures with similar hardware abstractions
• OpenCL version allows the code to run on AMD GPU and Intel Multicore

Hierarchical (Nested) Domain Decompositions look promising for GPU cluster
• Also improves performance on shared memory/distributed memory architectures

Although GPUs and NVIDIA may not survive in the long term, I believe exascale computers
will have similar features.

We do not plan to wait 10 years to start developing algorithms for the next generation
supercomputer

Wednesday, March 28, 2012

