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 Theory of the Rayleigh-Taylor instability in inertial fusion 

 
• Ablation fronts in laser-driven targets  

 

• Classical linear Rayleigh-Taylor instability 

 

• Ablative linear Rayleigh-Taylor instability 

 

• Single-Mode Nonlinear Theory 

 

• Multimode ablative RT 

 

 Hydrodynamic simulations 

 
• Eulerian and Lagrangian hydrodynamics 

 

• Two-fluids, nonlocal heat conduction, radiation transport, laser absorption 

 

• Single mode and multimode simulations of hydrodynamic instabilities 
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Theory of the Rayleigh-Taylor 

instability in inertial fusion 



The laser energy deposition generates a thermal 

conduction zone and an ablative flow 
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Outer shell  
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a=acceleration in the 
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The outer surface of an imploding capsule separates 

a dense fluid supported by a lighter one 
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The outer surface of an imploding capsule is unstable 

to the Rayleigh-Taylor instability 
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Derive the classical R-T from Newton’s law  
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Classical growth rate 
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 Rayleigh, Proc. London Math. Society, 1883 

Taylor, Proc. Royal Soc. of London, 1950 



The ABLATIVE R-T is just Newton’s law at work again 

but with a restoring force: the dynamic pressure.  
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The perturbed dynamic pressure is stabilizing  
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Energy flow balance 
(see Appendix) 

Ablation introduces a cutoff (wave number) in the unstable spectrum 
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Appendix: Perturbed blow-off velocity 



The ablative growth rate is significantly less than 

the classical value. Modes with k> kc are stable 

ua=3.5m/ns 

g=100 m/ns2 Cutoff wave number 
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Nonlinear classical RT: the bubble velocity 

saturates when the bubble amplitude is ~0.1. 

The bubble amplitude does not saturate 
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What can we infer about the nonlinear ablative 

 RT by simply looking at the linear spectrum? 
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In the deeply nonlinear phase, the vorticity accumulates 

inside the bubble raising the bubble terminal velocity 

R. Betti and J. Sanz, Phys. Rev. Lett. 97, 205002 (2006)  
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Single-mode simulation of the deeply nonlinear 

ablative Rayleigh-Taylor instability 
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Multimode nonlinear interaction leads to an envelop growth 

of the bubble front h=gt2 with  dependent on the box size 
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This conclusion does not include the effect of bubble acceleration 



Hydrodynamic Simulations 

Excellent tutorial at http://hedpschool.lle.rochester.edu/1000_proc2011.php 

by Radha Bahukutumbi 

http://hedpschool.lle.rochester.edu/1000_proc2011.php


Hydrodynamic codes use a combination of Eulerian 

and Lagrangian grids (ALE = arbitrary Lagrangian-Eulerian) 
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LT= |T/T| = temperature gradient scale length 

 

e = electron mean free path 

 

e<< LT  diffusive heat transport SH 

 

e≥ LT  nonlocal heat transport FS 

Te 
 

LT ~ e  Te 
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Single mode simulations are carried out to assess the 

suitability of the ALE (arbitrary Lagrangian-Eulerian) grid 
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Multimode laser-imprinting simulations of CH+DT targets show 

Rayleigh-Taylor instability growth at the ablation front 
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Simulations by R. Nora (LLE) 
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DT ice + SiO2 

Double ablation front  

DT ice + CH+CHSi(5%)+Si 

Double ablation front + Classical interface  
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E-ablation front 

radiative 

front 

Multimode laser-imprinting simulations of SiO2 +DT targets show 

Rayleigh-Taylor instability growth at the radiative/classical front 
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Simulations by R. Nora (LLE) 



Hydrodynamic instabilities in ICF are generally understood 

but challenges remain in developing an accurate 

predictive capability for 2D-3D multimode interactions 

•  The linear theory of the ablative RT is fully developed and the physics 

    is well understood. Ablation is stabilizing in the linear phase. 

 

•   The nonlinear single-mode evolution is well understood 

    and ablation is destabilizing in the deeply nonlinear phase 

    (bubble acceleration) 

 

•  The effect of the initial conditions on the nonlinear multimode  

   ablation front dynamics is not well understood 

 

• An accurate evaluation of the instability seeds from laser  

    non-uniformities (imprinting) is difficult 

 

• Three dimensional simulations are computational expensive and 

     great difficulties remain in developing accurate nonlinear 

     multimode simulations (this also applies to 2D simulations).  

         

conclusions 



BACK UP SLIDES ON NONLINEAR ARTI 







Mitigation techniques for the 

Rayleigh-Taylor instability in 

laser accelerated targets: 

1. Reduce the seeds 

2. Reduce the growth rates 



Reducing the seeds for the RT (by making 

uniform laser beams) improve the integrity 

of the imploding shell  

No SSD 
1THz SSD  

P. McKenty et al, Phys. Plasmas 2000 
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The growth rates can be reduced by shaping 

 the entropy of the imploding shell 
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Stabilize the RT by increasing the ablation velocity 



Adiabat shaping reduces the RT growth without 

degrading the final compression 

FSC 

V. N. Goncharov et al, Phys. Plasmas 10, 1906 (2003) 

K. Anderson and R. Betti, Phys. Plasmas 10, 4448 (2003) 

K. Anderson and R. Betti, Phys. Plasmas 11, 5 (2004) 

R. Betti et al, Phys. Plasmas 12, 042703 (2005) 






