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 Challenge: Orbital-free functionals 

 Progress:  New functionals, new reference calculations  

Topics 

QTP

 Motivation: Physics of Warm Dense Matter: see M. Desjarlais on 12 Mar.   

and F. Graziani on 13 Mar. 

 Survey 

  Problems  of naïve variational theory (Zero T, finite T) 

  Implications for molecular dynamics on complicated materials  

 Density functional theory basics – Zero T, finite T 

 Finite-T Hartree-Fock 

 Open questions for WDM applications 
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Molecular dynamics is a major simulation tool; See M. Murillo 14, 15 March.   

MD implements Newton’s 2nd Principle:  

Bottleneck: the potential.  For electrons & ions, that 

should be the  Born-Oppenheimer free- energy 

surface  

WDM Systems and Simulation Bottleneck 

QTP

Adapted from R. Redmer, LBNL WDM, 2011 

 
H-He (8.6%) @ 1 Mbar, 4 kK  

F({R}) is the electronic 

free energy. 
 Quantum Stat Mech   

$ $ $ $ or € € € € €  Quantum Stat Mech Box 

WDM: NO small 

parameters to do the QM! 
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• The time-independent Schrödinger equation &  Hamiltonian for the  

Ne-electron problem with N fixed nuclei (Hartree atomic units): 

Many-electron Quantum Mechanics  
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 The many-electron wave function is anti-symmetric on interchange of a pair: 

     0 1 1 0 1 1, , , , , ; , , , , , ;
e e e ek k j j N N j j k k N N         r r r r R r r r r R

 
 

Ne = number of electrons 

N  = number of nuclei 

QTP

Sum of 1- & 2-body 

Hamiltonians; symmetric 

on interchange of a pair 

Nuclear (ion) positions (Born-Oppenheimer approx.);  

suppressed hereafter unless directly relevant.   

2

1

1 E 27.2116 eV 1 au.=0.5292 Å

1One-electron KE: r
2

electron electron

Hartree

m q

d  
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 Hartree & traditional units: 
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2 / 2 1
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 Rydberg & traditional units: 



 

     

Why many-electron problem is tough; T=0 K Variational Principle 

The variational principle 

So why not just guess a trial wave function with a bunch of physically and 

chemically plausible parameters and do the minimization calculation by brute  

force numerical quadrature?     
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 Lagrange Multiplier to 

preserve normalization 

is equivalent to the Schrödinger equation.  That is, the  Schrödinger eqn. arises 
from requiring the first-order variation of Etrial to be  zero: 
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Approximate vs. exact  wave functions: 

HF is approx 
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All “excited”  Slater 

determinants 

Full CI  

Question 1: is this expansion exact? YES 

Question 2: is this expansion rapidly converging? NO 

Question 3: can the expansion be truncated and used as  

a variational expression? Well YES; scheme is called MCSCF  

(multi-configuration self-consistent field). But still have issues: 

Selection of orbitals φ, parameters in them, … .  Did we keep  

the variation principle?  Are we capturing the physics and  

chemistry?  Can we do the integrals? 
Credit: So Hirata 

J.C. Slater (by SBT) 

Examples, T=0 K Variational Principle 
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       ψ 1,2, , 1 2trial e a b z eN N     
↑Anti-symmetrizer 



         ˆ1,2, , exp 1 2trial e a b z eN N      T

Jastrow correlated wave function; much 

used in Monte Carlo.  Note: nodes are 

fixed by the determinant.  Explicit “r12” 

dependence makes integrals difficult. 
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All possible orbital  

substitutions 

 in the determinant 

More examples, T=0 K Variational Principle 

Coupled Cluster (CC) Ansatz ( single  

reference).  t- amplitudes are not 

determined variationally in practice. 

Keeping all substitutions through 

doubles scales computationally as Ne
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Why many-electron problem is tough; T=0 K Variational Principle 

The variational principle 

So why not just guess a trial wave function with a bunch of physically and 

chemically plausible parameters and do the minimization calculation by brute  

force numerical quadrature?     
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Lagrange Multiplier to 

preserve normalization 

is equivalent to the Schrödinger equation.  That is, the  Schrödinger eqn. arises 
from requiring the first-order variation of Etrial to be  zero: 

QTP

Too many arbitrary forms, too many diverse parameterizations to guess, 

too many parameters to vary, too many variables of integration! 

Computational cost OK for one or a few molecules, NOT for Born-

Oppenheimer Molecular Dynamics 



For a normalized ground state, the energy is 
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2-particle reduced density matrix “2-RDM”  

State function: anti-symmetric under particle exchange  (Fermions!) 

Hamiltonian: symmetric sum of 1- and 2-body interactions. 

We end up doing integrals over all but one or two of the  coordinates just to  

eliminate them (change of variables), thus (introducing spin here):  
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1-particle reduced density matrix “1-RDM”   

 

 Sum over spins 
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Why many-electron problem is tough; T=0 K Variational Principle 

Guessing a 2-RDM and using it in the variational principle doesn’t work either.   

This is the notorious N-representability problem: How can we know (NASC) that  

a trial 2-RDM comes from a Ne -Fermion wave function?  The answer is  known  

but using it is essentially as intractable as using the many-electron wave function. 
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Why many-electron problem is tough; T≠0 K  

Grand canonical ensemble  
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Hohenberg-Kohn Theorems – consider the Ne -electron Hamiltonian, which includes 

an external potential (for us, the nuclear-electron attraction) 
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HK-I: “A given ground state density n0 (r)  determines the ground state  

wave function and hence all the ground state properties of an Ne -electron system.” 

Original Proof: by contradiction [P. Hohenberg and W. Kohn, Phys. Rev. 136,  

B864 (1964) 

Modern Proof: Levy-Lieb constrained search (sequential application of the  

Variational Principle, density by density) 

[M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979); L. Lieb, Internat. J. Quantum Chem.  

24,  243 (1983)] 

Density Functional Theory Rudiments 

QTP



 

     

DFT Rudiments: HK-I Proof by Contradiction 

0
ˆ ˆ,ext ext n

1. Consider a non-degenerate ground state.  Suppose that there are two external  

potentials that yield the same ground-state density: 

2.  Then by the variational principle 

     

0 0 0 0 0 0 0

0 0 0

0 0

ˆ ˆ
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ext ext
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3. But the argument can be done reversing primed and unprimed quantities. 

This gives 

     0 0 ext extd n v v      r r r r

4.  Adding these last two results gives the contradiction 
0 0 0 0

   

5. Therefore the ground state density determines the external potential and  

hence, the ground state wave function. 

Remark: this proof does not address the possibility of a density n which is 

not associated with any vext  (the v-representability problem) 

QTP



 

     

DFT Rudiments: HK Theorems  & Equivalence Classes (Constrained Search) 

Mel Levy’s idea: take all the wave-functions that give the same density and vary 

over them first.  Then vary the density.   The variational expression becomes 
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Just a rewriting but establishes the Hohenberg-Kohn theorems  

by constrained search.    

QTP

HK-I: “A given ground state density n0 (r)  determines the  

ground state wave function and hence all the ground state  

properties of an Ne -electron system.” 

HK-II: “For such a system in an external potential vext(r), there 

is a universal (i.e., independent of vext ) functional F[n] with  

the following properties: 

       
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Mel Levy,  Perdew Fest,  Mar. 2008   



 

     

DFT Rudiments: HK-I Proof by Constrained Search  ← blue heading means supplemental 

2.  Minimize this functional over all  the Ne electron states that give n0 

 

   

0

0

ˆ ˆmin

|

ee

n





  



 

 r r r

E

3.  Then at most 0 is a normalized linear combination  of ground states, since  

the external potential contribution to the total energy depends only on the  

density: 

   0ext extd n v  r r r

4.  Therefore the ground state density determines the ground state wave function. 

1.  Consider the positive operator ˆ ˆ
ee and form 

  ˆ ˆ
ee   E

Remarks: No v-representability problem, no restriction to non-degenerate 

ground states.  We have not shown that, subject to mild conditions, every density 

is associated with at least one Ne electron state.  In fact, there are infinitely many  

such states for each density (Harriman, Phys. Rev. A 24, 680 (1981)). 

QTP

 | 1-particle reduced 

density matrix

  r r



HK-II: “For an Ne –electron system with an external potential vext(r), there 

exists a universal (i.e., independent of vext ) functional F[n] with the 

following properties: 

Original Proof: Essentially by announcement; the paper assumes that  

HK-I holds for non-ground-state densities.   

 
Modern Proof: Levy-Lieb Constrained Search 

 Form  

DFT Rudiments : HK Theorems from Constrained Search (continued) 
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Then 

which is the first piece of  the theorem. 
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Remark: This F[n] , the Levy functional,  is NOT the same mathematical object as the 

one originally defined by HK. In particular, there is no v-representability issue with 

regard to the variation over n nor any restriction to non-degenerate ground state. This 

functional does fulfill the role of the one defined by HK.  It has its own problems 

however.  It is not convex and has some unpleasant functional derivative problems.  For 

most purposes, the Levy functional is good enough.  See Lieb (1983).   

Now apply the variational principle  again 

DFT Rudiments: HK-II proof (continued) 

0 0
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But the definition of min;n  means that 
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Convexity:  1 2 1 2(1 ) [ ] (1 ) [ ]A an a n aA n a A n    

QTP

0 0 0

0
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Taken together, these give bracketing inequalities 
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Recall HK-II 

Do the variation with a Lagrange multiplier for fixed particle number 
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DFT Rudiments: Existence Thms and Proceeding Constructively (Kohn-Sham) 



 

     

DFT Rudiments: Existence Thms and Proceeding Constructively (Kohn-Sham) 

 The big challenge:  HK-II says that F[n] exists but does not give a form that can 

be used to do the variational problem just displayed. 

 But we do know how to form F[n] explicitly for a system of non-interacting 

fermions with the same density set by some vKS as follows: 
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Non-interacting fermions means  

min;n is a Slater determinant.   
 ; 1

1
1, , det

! emin n e N
e

N
N

  

     

 
   

   

*

1

1 1 1 2(2)

1 2 1 2

2 1 2 2

|

| |1
| det

| |2

eN

SD j

j

SD SD

SD

SD SD

x x x x

x x x x
x x x x

x x x x

  

 

 



 

  
    

  

The Slater determinant 1- and 2-RDMs are 

So the KS kinetic energy is        * 2
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How is this useful? 
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DFT Rudiments: Existence Theorems and Proceeding Constructively (cont’d.) 

By definition, the non-interacting (independent particle) system must have energy 

      [ ]s S KSE n n d n v     r r r

Again, do the variation with a Lagrange multiplier for fixed particle number 
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Choose the Lagrange multiplier to be the same as in the original system 

by setting the zero of the potential vKS (adding a constant, if necessary).   

So we may be able to map the problem into that of constructing vKS.  

How can that be done? 

Remark:  v-representability of the ground-state density n0 has been 

reintroduced as an assumption.   
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The non-interacting system becomes useful as follows.  Rearrange the 

interacting system functional as follows: 

DFT Rudiments:  Kohn-Sham  Rearrangement 
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Lu Jeu Sham, Sanibel, 2010.   



 

     

What we have done is 
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Thus, the variation principle and Euler equation for the physical system become 
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Comparison with the Euler Equation for the KS system 
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New task: construct Exc 
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DFT Rudiments: Details of the Kohn-Sham Construction - 



The Kohn-Sham equation (non-spin-polarized for simplicity) is: 
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with the eXchange-Correlation potential given by 

Remark:  Exact exchange in DFT is defined by the KS determinant, NOT the  

Hartree-Fock determinant. 

Rudiments of K-S DFT 
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Everything is known except for the XC functional EXC .  It is known exactly  

only in a few special cases.   

Remark: 
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There are several classes of approximate functionals that  

are demonstrably  successful at different levels of prediction: 

    ◊  Local Density Approximation 

Rudiments of K-S DFT 
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◊  Generalized Gradient approximations add 

terms dependent on density gradients: 
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a) FGGA determined by constraints, scaling inequalities, other exact 

results:  Perdew-Wang 91, Perdew-Burke- Ernzerhof, VMT, VT{84} 

PBEmol, (Mexican DFT collaboration), etc. 

b) FGGA  determined in part by fitting to atomization energies: Becke etc. 
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Free Energy Density Functional Theory   

Eion-ion omitted for brevity. 
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Mermin-Hohenberg-Kohn finite-temperature DFT 

Basic equations are: 
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Otherwise the KS equations look the same as in the ground state. 

K-S Free-energy DFT 
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Thermal Hartree-Fock Approximation 

The trace “Ne,SD” is over all  Ne-electron Slater determinants Φ.  
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Mermin [Ann. Phys. (NY) 21, 99  (1963)] proved that the Finite Temperature 

Hartree-Fock  approximation is the “obvious” generalization of ground-state 

Hartree-Fock theory.  Basic equations are: 
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Thermal Hartree-Fock Approximation - continued   
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Variational minimization leads to the obvious generalization of the 

ground-state HF equation: 



 Challenge: Orbital-free functionals 

 Progress:  New functionals, new reference calculations  

Topics 
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 Motivation: Physics of Warm Dense Matter: see M. Desjarlais on 12 Mar.  

and F. Graziani on 13 Mar. 

 Survey 

  Problems  of naïve variational theory (Zero T, finite T) 

  Implications for molecular dynamics on complicated materials  

 Density functional theory basics – Zero T, finite T 

 Finite-T Hartree-Fock 

 Open questions for WDM applications 



DFT for WDM – Major Open Questions 
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• Observation: OF-DFT may be necessary, not merely an attractive option for 

WDM.  Large numbers of small occupation numbers make the number of 

MD steps comparatively small for conventional KS at finite T . 

• Technical issue: pseudopotentials?  (mean ionization state?) 
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T

• Temperature and density dependence of Fxc ? 

•  Implicit temperature dependence of ground-state Exc[n] used at finite T.  
Is Fxc [n, T]≈ Exc[n(T)] good enough?  

•  Same question for ground state OF-KE  functionals: Ts[n,T] ≈ Ts[n(T)]?  

•  Orbital-free free-energy functionals  in WDM regime -  

 

Functional forms for tS [n, T] ,  sS [n,T] ,  uxc [n,T]? 

Accurate ground-state limiting forms? 



 Challenge: Orbital-free functionals 

 Progress:  New functionals, new reference calculations  

Topics 
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 Motivation: Physics of Warm Dense Matter: see M. Desjarlais on 12 Mar.  

and F. Graziani on 13 Mar. 

 Survey 

  Problems  of naïve variational theory (Zero T, finite T) 

  Implications for molecular dynamics on complicated materials  

 Density functional theory basics – Zero T, finite T 

 Finite-T Hartree-Fock 

 Open questions for WDM applications 



• The KS eigenvalue problem is the high-cost computational  step in B-O 

MD.  At every step:   
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Too slow!  Order Ne
M  with 2.6 ≤ M ≤  3 at best.  Requires heroic calculations 

(some of which have been done – need for the data is HIGH!) 

 

There are “order-N” approximate methods but they are not general 

(additional assumptions, e.g. about basis locality, etc., limit applicability). 

B-O Forces from DFT 

→ So there’s both urgency and opportunity for better methods.  Or do we just 

wait on bigger, faster machines? 

QTP



“Everyone knows Amdahl’s Law but quickly forgets it”  

 T.Puzak, IBM (2007) 
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1

(1 )

speedup; fraction parallel; number of processors

P
P

N

P N



 

 

S

S = 

99.9 % parallel, 2048 processors ,  

speedup ≈ 675 

IEE Computer, 41, 33 (2008) 

Also see www.cs.wisc.edu/multifacet/papers/amdahl_multicore.ppt 
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The Ideal - Orbital-free DFT 

With the K-S density kernels ts, sS and a good density-dependent (NOT orbital-
dependent)  FXC ,  DFT B-O forces would be simple: 

Even at T=0, there are many well-known barriers to 

getting ts , e.g.,  Teller non-binding theorem for Thomas-

Fermi-Dirac,  failures of TF-von Weizsäcker, …. 

 

L.H. Thomas,  

Sanibel, 1975. 

Photo by SBT   
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Fermi-von 

Weiszäcker  



 

 

The Other KS Orbital Problem (Jacob’s Ladder) 

Biblical (Genesis 28: 11-19) 

William Blake, 1800;  Also African- 

American Spiritual (folk hymn) 

• DFT – XC approximations 

    (John Perdew) 

n  LSDA 

Hartree world 

Heaven of chemical accuracy 

n                                GGA 

ts and/or 2n                      meta-GGA 

x                                 hyper-GGA 

unocc. {φi}                  generalized RPA, etc. 

Red = explicit orbital dependence 

J. P. Perdew and K. Schmidt, in Density Functional  

Theory and its Application to Materials, 

V. Van Doren, C. Van Alsenoy, and P. Geerlings, 

Eds.,  AIP, Melville, New York, 2001 

Dilemma: “Everybody” is working on orbital-dependent XC functionals! 

See Mexican Group work on “lower rung” XC functionals    
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Here, in somewhat sloppy translationally invariant notation, is the basic  

theme of  the response function approach 

2

(r) r  (r - r ) (r ) (q) (q) (q)

(r )(r)
(r - r ) r  (q - q ) (q) (q,q )

(r ) (r )

[ (r)] (q - q ) (q) (q,q )

KS KS

KS KS

KS

KSs s

n d v n v

v vn
d

v n n

v n
n n n

     

 
  

  

 
  

  

    


     

 

     
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

Orbital-free KE Approaches – Response Function 

Result is a set of non-local (two-point) approximations based on Average 

Density Approximation, Weighted Density approximation, etc.  

 Various versions work  moderately well for metals.  

Another  recent version works moderately well for  insulators. 

The non-locality is too complicated (computationally costly, introduces local  

pseudo-potentials) for our purposes 
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Orbital-free KE Approaches – Response Function 

Density-dependent kernel for semiconductors 
C. Huang and E.A. Carter, Phys. Rev. B 81, 045206 (2010)  
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 Introducing density-dependence in the kernel “… comes at the expense of 

greatly complicating the derivation and making a straightforward numerical 

implementation computationally expensive…” Y.A. Wang, N.Govind, and 

E.A.Carter, Phys. Rev. B 60, 16350 (1999) 

Two-point OFKE Functional Problems 

QTP

 Density-independent kernels suffer from nonlinear instability “ … in the sense 

that the corresponding kinetic-energy functionals are not bounded from below.” X. 

Blanc and E. Cancès, J. Chem. Phys. 122, 214106 (2005) N-representability issue? 

 Multiple parameters without physical constraints. 

 Different kernels for metals and semi-conductors: but what about pressure-

induced insulator-metal transitions?   

 Reference density is non-unique for bulk systems and undefined for finite ones. 
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• Goal: a workable recipe for a one-point  ts[n] purely for driving MD. Remember 

the ground state formulation: 

Orbital-free Density Functional Theory: Single-Point Strategy 

• Obviously need analogous progress for T > 0 K:  tS [n, T] ,  sS [n,T] ,  uxc [n,T]  

• Observe: we do NOT seek a KE density kernel that will do everything that is in 

the basic DFT theorems 

• Assumption: continued progress on pure EXC approximations, i.e., not 

hybrids or OEP (optimized effective potential).   

QTP

• Desired:  ts[n(r)] be no more complicated than GGA EXC (depends on gradient of 

the density) or meta-GGA (depends on Laplacian of the density also).   



• Key Ingredient - Pauli KE, Pauli potential, and square root of density [M. Levy 

and H. Ou-Yang, Phys. Rev. B 38, 625 (1988); A. Holas and N.H. March, Phys. Rev. A 44, 5521 (1991); 

E.V. Ludeña, V.V. Karasiev, R. López-Boada, E. Valderama, and J. Maldonado, J. Comp. Chem. 20, 155 

(1999) and references in these]  An exact expression is 

[ ] [ ] [ ], [ ] 0s Wn n n n   
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Stationarity of variation with respect to density n yields 

Single-point OF-KE Functional Construction  

• Useful (but incorrect) clue: “Conjointness conjecture” [H. Lee, C. Lee, and R.G. Parr,  

Phys. Rev. A 44, 768 (1991)].  The GGA EX   is  
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SiO Stretch;  Total energy vs.  

bond length 

All six Ts approximations fail to 

bind!  V  violates  positivity.   

OF-DFT: Test of Existing Single-point  (GGA) KE functionals 

• Tests of 6 existing functionals, three 

conjoint.  KS density as input to each. 

   PW91: Lacks and Gordon, J.Chem. 

Phys. 100, 4446 (1994) [conjoint] 

   PBE-TW: Tran and Wesolowski, 

Internat. J. Quantum Chem. 89, 441 

(2002) [conjoint] 

   GGA-Perdew: Perdew, Phys. Lett. A 

165, 79 (1992) [conjoint] 

   DPK: DePristo and Kress, Phys. Rev. A 

35, 438 (1987) 

   Thakkar: Thakkar, Phys. Rev. A 46, 

6920 (1992) 

   SGA: Second order Gradient Approx. 
TS = TTF + (1/9) TW 

J. Comput. Aided Matl. Design 13, 111 (2006) 
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Parameterizations 

• Tried two simple forms for modified enhancement factors. These forms would 

be convenient for use in MD.  No guarantee that any of these is optimal. 
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N=2 is typical PBE form as also used by Tran & Weslowski 

N=3 is the form used by Adamo and Barone [J. Chem. Phys. 116, 5933 (2002)] 

N=4 highest tried 

• Constrain parameters to  0v 

Initial parameterization used 

(a) single SiO  or 

(b) SiO, H4SiO4, and H6Si2O7.  

Stretched single Si-O bond in all cases with self-consistent KS densities. 

OF-DFT: Modified conjoint KE functionals 
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Single bond 

stretching 

gradient in 

H2O. 

 

OF-KE 

parameters 

from 3-member 

training set 

(SiO, H4SiO4, 

and H6Si2O7) 

except PBE2. 

NO information 

about H2O in 

the set. 

OF-DFT  - Performance of Modified Conjoint, Positive-definite Functionals 

All of our functionals give too large an equilibrium bond length.  
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OF-DFT  - Pauli Potentials Compared 

Phys. Rev. B 80, 245120 (2009)  

Comput. Phys. Commun. (submitted) 

QTP

Pauli potential vθ  , vicinity of the 

Si site in SiO at R = 1.926 Å.  

“KS” is the exact inversion from 

the KS solution.   

“GGA” is the Tran -Wesolowski   

potential. 

“mcGGA”  is our PBE2 modified 

conjoint-form (positivity 

enforced).   

TF+vW and scaled TF+vW/9 for 

comparison. 

 

PROBLEM: 

mcGGA Pauli potential vθ  singularities  at the nuclei.  TOO positive! 

GGA goes negative. TF+vW/9 does too but TF+vW doesn’t ⇒ any 

answer you want with TF+λvW! 



Beware of scaled Thomas-Fermi-von Weiszäcker used variationally in  

OF-DFT, or even with the actual KS n0 (for a given XC) as  

input,  can lead to weirdness: 

Paul Ayers (Sanibel 2007): “An ab initio quantum chemist will 

wonder- “Is an N-representability constraint missing?” 

Orbital-free KE – Problems with Simple Approaches 

“If so, should we surrender? N-representability problems are very 

difficult ….” 

Functional  

(all simple LDA XC) 
Etotal (Hartree) 

TFλW, λW = 1  -85.734 

TFλW, λW = 1/5 -128.801 

TFλW, λW = 1/9 -139.887 

KS (13s8p GTO) -127.484 

TFλW from G. Chan, A. Cohen, and 

N. Handy, J. Chem. Phys. 114, 631 

(2001) 
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Singularities are not fatal. 

Left: Bcc Li lattice constant; Right fcc Al lattice 

constant.  mcGGA is our PBE-2,  

parameterized  to  SiO  implemented in modified  

PROFESS code.   GGA=Tran-Wesołowski 

QTP

Are Positive Singularities Fatal to mcGGA?      

Comput. Phys. Commun. (submitted) 



Solving the OFKE Euler equation with a KS code? 

QTP

[ ] [ ] [ ], [ ] 0s Wn n n n   

Why did we switch to the PROFESS code? 

21
(r) (r) (r) (r)

2

(r) 0 r

KSv v n n

v n



 



 

 
     
 

  

Chan, Cohen, and Handy  

J. Chem. Phys.  114, 631 

(2001) 

Levy, Perdew, and 

Sahni, Phys. Rev. A 30, 

2745 (1984) 

Stationarity of variation with respect to density n yields 
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TFDvW, λW = 1 

Etotal (Hartree) 

Chan, Cohen 

& Handy 

Numerical KS 

code 

GTO KS 

code 

H atom -0.2618 -0.26183 -0.25997 

Li atom -4.1054 -4.10542 -4.09635 

Ne atom -85.7343 -85.73445 -85.73004 

Solving the OFKE Euler equation with a KS code? 

However, with simple linear mixing of densities and 

starting from the pure von Weizsäcker KE, the 

iterative convergence is very slow and unpredictable 

 

Even a numerical grid diatomic molecule code is 

slow to converge and unpredictable. 

Comput. Phys. Commun. (submitted) 



Current work is to remove mcGGA singularities by partial resummation of  

gradient expansion to respect Kato cusp condition.  One functional has  

been explored  a little. 

OF-DFT  -  Removing Pauli Potential Singularities 

Phys. Rev. B 80, 245120 (2009) 

H2O molecular total energy  

 as function of one bond  

KS = reference calc (source of  

 input density; middle curve) 

DPK = DePristo-Kress OFKE  

 functional reparameterized  

 for  this case (2nd from top) 

MGGA = meta-GGA functional of  

 Perdew and Constantin (top) 
Phys. Rev. B 75, 155109 (2007). 

Thakkar functional (lowest curve) 

RDA = This work (second lowest) 
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• The model problem is a hard-walled rectangular parallelepiped 

containing a few (1-8 for now) hydrogen atoms. 

• Initial exploration with cubic box, edge-length L. 

• A few fixed atomic positions are sampled.   

• Box size is from 1 au3 (L = 1 au) to free-system  limit  (L → ∞). 

• Temperature range:  0 ≤ T ≤ 200,000 K. 
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Confined System – finite-T Hartree-Fock 



Requirements: 

• Match boundary conditions. 

• Represent ground state and sufficient number of excited states at 

different box sizes. 

• Allow for efficient calculation of 2-electron integrals. 

Basis: 

Cartesian Gaussians truncated to 

match BCs. 

Coefficients  a0 ,  aL set by requiring 

each basis function to be continuous. 
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Basis Set – Confined System 
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Technical issues and resolution: 

• Continuity of first derivative at matching point and corrections to 

piecewise evaluation of KE matrix elements – works with a non-zero 

piece-wise correction for p-type functions 

• Efficient calculation of 2- electron integrals – finite-range integrals of 

Gaussians and error functions done analytically as much as possible, 

rest via Gauss-Legendre quadrature. 

QTP

Basis Set - continued 



The ion configuration.  Each ion is at the center of its own octant. 

(An initial choice for exploration.  In general, the ion configuration  

is arbitrary.) 

QTP

Results – 8 Atom Array of Cubical Symmetry in a Cubical Box  



Comparison of Exchange Functionals  

QTP

Ex from finite-temperature Hartree-Fock (FTHF) 

Ex from ground state LDA with FTHF density   

Ex from temperature-dependent LDA (Perrot & Dharma-Wardana 1984 

parameterization) with FTHF density.  

All for 8 atoms, cubic symmetry, in cubic box, L = 6 bohr 

Phys. Rev. B 85, 045125 (2012) 

 

 3 2 4/3( ) 3 3 4 ( , )/xE T d n T    r r
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8 Atom Cubical Array – Low-T plateaus? 

Fermi distribution for a single spin for four temperatures at L = 6 bohr. 

Note that the T=0 K occupied orbitals induced by cubic symmetry are a 

single a1g and a triply degenerate t1u.   



 Finite-T Hartree-Fock, LDAx, LDAx(T) Exchange free energy 

 
 
  
 

Periodic bcc Lithium at ambient and 2x density.   Modified AbInit code. 

(orbital-dependent, nor orbital free). 

∆FX(T) = FX(T) - FX(T =100 K) per atom.   

LDAx(T) is from Perrot and Dharma-Wardana, Phys. Rev. A 30, 2619 (1984).  
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Finite-temperature Hartree-Fock, LDAx, LDAx(T) Total free energy 

 
 
  
 ∆Ftotal(T) = Ftotal(T) - Ftotal(T= 100 K) per atom.   

LDAx(T) is from Perrot and Dharma-Wardana, Phys. Rev. A 30, 2619 (1984).  
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Periodic bcc Lithium at ambient and 2x density.  

Modified AbInit code (orbital dependent, not orbital-free). 



Finite-temperature Hartree-Fock, LDAx, LDAx(T) Eq. of State: ρ=0.6 g/cm3 

 
 
  
 Pressure vs T: HF, LDAx, LDAx(T) 

∆P(T) = PHF(T) - PLDAx(T);  

∆P(T) = PLDAx(T) (T) - PLDAx(T)  

QTP

Bcc Lithium at ambient density. Modified AbInit 

code (orbital dependent, not orbital-free). 

  



 
 
  
 

Pressure vs T: HF, LDAx, LDAx(T) 

∆P(T) = PHF(T) - PLDAx(T);  

∆P(T) = PLDAx(T) (T) - PLDAx(T)  

Finite-temperature Hartree-Fock, LDAx, LDAx(T) Eq. of State: ρ=1.2 g/cm3 

Bcc Lithium at 2 x ambient density.  Modified AbInit code  

(orbital-dependent, not orbital-free. 
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