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Our Itinerary!

•  Why molecular dynamics? 

•  Resources and codes 

•  Classical mechanics and the connection to kinetic theory 

•  Forces 

•  Initial conditions and boundary conditions 

•  Integrators 

•  Thermostats 

•  Analysis 

Next lecture: details and examples specific to high energy density physics. 
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Molecular Dynamics: What Is It?!

1)   Molecular dynamics (MD) is a simulation method; that is, a 
computational method for solving hard, non-linear problems. 

2)   MD simulates particles to yield an understanding of how many-
body interactions determine time-dependent material properties. 

3)   Particles are treated as discrete objects and forces are computed 
to high precision (“exactly”). 

4)   Typically, MD is implemented as an atomistic method. The 
particles are electrons or ions. 

polio protoplanetary 
disk 

particulate 
flow 
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Where To Look!
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More: Where To Look!
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Of Course…The Internet!

Molecular dynamics computer simulation of the deposition of a 
single copper atom with a kinetic energy of 1 eV on a copper 
surface. Technical details: cross section of two atom layers in 
the middle of a larger (10x10x10 unit cells) 3D simulation cell. 
Simulation made with Sabochick-Lam embedded-atom method 
potential, Berendsen temperature control used only at the outer 
boundaries to scale temperature down to 0 K. Initial 
temperature 0 K (cell prerelaxed to allow for surface relaxation 
inwards). This kind of processes occur in reality during 
physical vapour deposition. 

http://en.wikipedia.org/wiki/Molecular_dynamics 

Free apps: 

i2DMD 
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Examples of MD Codes!
1.  NAMD (Not (just) Another Molecular Dynamics (code)) 

  Free 

  Structural biology 

  http://www.ks.uiuc.edu/Research/namd/ 

2.  Gromacs (GROningen MAchine for Chemical Simulation) 

  GNU GPL 

  Structural biology/polymers 

  http://www.gromacs.org/ 

3.  VASP (Vienna Ab initio Simulation Package) 

  DFT-MD 

  Not public domain; must obtain license 

  http://www.vasp.at/ 

4.  LAMMPS 

5.  AMBER (Assisted Model Building with Energy Refinement) 

6.  Etc. 
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Building an MD Code Starting From Newton!

Sir Isaac Newton 

F = ma

= mẍ(t)

1.  Figure out what your forces are.  

  This can be quite simple or require complex calculations. 

2.  Identify the initial conditions and boundary conditions. 

  Thermal equilibrium or non-equilibrium? Periodic? 

3.  Integrate Newton’s Second Law to obtain trajectories. 

  Identify optimal numerical scheme for your problem. 

4.  Process data to generate observables. 

  Pre-compute during run or post-process. Visualization. 
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Reformulate: Hamiltonians and Lagrangians !
Classical mechanics can be reformulated in a number of ways, each of which reveals 

something interesting and useful. 

William Rowan Hamilton Joseph-Louis Lagrange 

H =
N�

i=1

p
2
i

2mi
+ U(q)

dpi

dt
= −∂H

∂qi

dqi

dt
=

∂H

∂pi

S =

� t2

t1

dt L(t)

L = T − U

δS = 0
d

dt

∂L

∂q̇i
=

∂L

∂qi
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MD and Kinetic Theory: The Connection!

F (x, p, t) =
N�

i=1

δ(x− xi(t))δ(p− pi(t))

Question: What is the probability of finding a particle at phase space position (x,p)?  

We can find an equation of motion for this probability, since we know the equations of motion for the positions 
and momenta (Hamilton Equations).  

Note: Given the initial conditions for the phase-space coordinates and the Hamilton Equations, this is exact and 
just a definition. 

∂F (x, p, t)

∂t
+

p

m
· ∂F (x, p, t)

∂x
+ F(x, t) · ∂F (x, p, t)

∂p
= 0

This is an exact equation that is very 
difficult to solve. Take ensemble 

average of this equation. 

f(x, p, t) = �F (x, p, t)�
∂f(x, p, t)

∂t
+

p

m
· ∂f(x, p, t)

∂x
+

�
F(x, t) · ∂F (x, p, t)

∂p

�
= 0

f(x, p, x�, p�, t)Requires: 

BBGKY hierarchy… 

•  Kinetic theory deals with how to 
truncate this hierarchy: “collision 

integrals”. 

•  Kinetic theory is therefore 
approximate. 

•  Kinetic theory involves solving 
partial differential equations (PDEs). 
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Choice of Forces is Highly Problem Dependent!

•  Most MD is performed with pair potentials. 

•  Lennard-Jones 

•  Morse 

•  Double Yukawa 

•  Harmonic 

•  Dipole 

•  Embedded atom 

•  There are many types of forces/potentials. 

•  Ionic bond 

•  Hydrogen bond 

•  Coulomb attraction/repulsion 

•  Covalent bond 

•  Non-pair potentials are often required. 

•  Often referred to as “force fields” (e.g., AMBER). 

•  I will say a lot more about this in the second lecture. 

http://en.wikipedia.org/wiki/AMBER 

http://en.wikipedia.org/wiki/File:MM_PEF.png 
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Initial Conditions and Boundary Conditions!
Obviously, this is highly problem dependent. 

random velocities, almost random 
positions, periodic boundary conditions 

directed velocities, clustered positions, 
periodic boundary conditions 

directed velocities, clustered positions, 
open boundary conditions 

random velocities, clustered positions, 
reflecting boundary conditions 
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Basics of ODE Integration!

dy(t)

dt
= f(y(t), t)

dy(t)

dt
≈ fn+1 − fn

∆t

yn+1 − yn
∆t

= fn

yn+1 = yn +∆tfn

yn+1 − yn
∆t

= fn+1

yn+1 = yn +∆tfn+1

forward Euler (explicit) 

backward Euler (implicit) 

dy

dt
= −ay2

yen+1 = yen − a∆t(yen)
2

yin+1 = yin − a∆t
�
yin+1

�2

yin+1 =

�
1 + 4a∆tyin − 1

2a∆t
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Numerical Results!

∆t = 1 ∆t = 0.5

∆t = 0.25 ∆t = 0.125

a = 1

Nsteps = 10

Nsteps = 1000

∆t = 0.125

y(t) =
y(0)

1 + aty(0)

implicit 

explicit 

Exact solution: 

exact 
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Another Numerical Example: Small Change!

y(t) =
y(0)

1 + aty(0)

a = −1

∆t = 0.1 ∆t = 0.01

a > 0

y(0) < 0

implicit 

explicit 
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Great Choice For MD: Pendulum Equation!

VLJ(r) = 4�

�
σ12

r12
− σ6

r6

�

VBuck(r) = A exp (−Br)− C

r6

Pauli repulsion 

van der Waals 

Lennard-Jones 6-12 

Buckingham 

anharmonic oscillator 
A “generic” equation is then: 

d2y

dt2
+ ω2 sin(y) = 0

d2y

dt2
+ ω2y ≈ 0

•  Arises from Newton’s Laws. 

•  Is non-linear; mimics real systems. 

•  Approximate solution (SHO) well known. 

•  Displays rich behavior. http://en.wikipedia.org/wiki/Pendulum 
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Dynamics in Phase Space!
•  We would like to try out our first-order integrators. 

•  Position and velocity natural variables. 

dy

dt
= v

dv

dt
= −ω2 sin(y)

http://en.wikipedia.org/wiki/Pendulum_(mathematics) 

yn+1 = yn +∆tvn

vn+1 = vn − ω2∆t sin(yn)

vn+1 = vn − ω2∆t sin(yn)

yn+1 = yn +∆tvn+1

Forward Euler: 

Minor change (semi-implicit): 

Remember, both are first-order. Semi-implicit is completely stable. 

gigantic timesteps are 
possible.  

y 

v 
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What About Fully Implicit?!

Mea culpa: 
•  I was too lazy. 

yn+1 = yn +∆tvn+1

vn+1 = vn − ω2∆t sin(yn+1)

sin (yn+1) ≈ sin (yn) + (yn+1 − yn) cos(yn)

Lazy man’s implicit: linearize and invert. 

L-implicit 

explicit 

∆t = 0.1

ω = 1
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Energy Drift Analysis!

H = p
2 + q

2

H =
�
p
2
0 + q

2
0

� �
1 + 4∆t

2
�

H =

�
p
2
0 + q

2
0

�

(1 + 4∆t2)

Consider the Simple Harmonic Oscillator (SHO): 

H =
�
p
2
0 + q

2
0

�
+ 4∆t

2
�
p
2
0 − q

2
0

�

Forward Euler: 

Backward Euler: 

Semi-implicit Euler: 

p 

q 
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How Does One Construct Second-Order Methods?!
Consider the Taylor expansion: 

r(t+∆t) = r(t) + v(t)∆t+
1

2
a(t)∆t2 +

1

6
b(t)∆t3 + · · ·

r(t−∆t) = r(t)− v(t)∆t+
1

2
a(t)∆t2 −

1

6
b(t)∆t3 + · · ·

r(t+∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 +O(∆t4)

This is the celebrated Verlet algorithm. 

Usually, we also want the velocities: 

This is the most popular integrator: good accuracy and time reversible. 

v(t+∆t) = v(t) +
a(t+∆t) + a(t−∆t)

2
∆t+O(∆t2)

v(t+∆t/2) = v(t) +
a(t)

2
∆t

r(t+∆t) = r(t) + [v(t+∆t/2)]∆t

v(t+∆t) = v(t+∆t/2) +
a(t+∆t)

2
∆t

+ 

= 
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Variational Integrators: Connection to Lagrange!
We know that mechanics in our universe obeys the action principle – use it! 

q1

q2

q3
Which path makes the action stationary? 

d

dt

∂L

∂q̇
=

∂L

∂q

∂L

∂q̇

����
t+∆t

− ∂L

∂q̇

����
t

= −∆t
∂V

∂q2

m (q3 − q2)−m (q2 − q1) = −∆t2
∂V

∂q2

q3 = 2q2 − q1 −
∆t2

m

∂V

∂q2

One can also use the action directly. 

There is something very 
special about Verlet. 

S =

� t3

t1

dt L(t)

≈ ∆t

�
1

2
L1 + L2 +

1

2
L3

�

≈ ∆t

�
m

4

�
q2(t)− q1(t)

∆t

�2

− 1

2
V (q1(t)) · · ·

�

∂S

∂q2
= 0
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Minimum Image Convention and Neighbor Lists!

Now that we have forces, tricks are needed. 

1.  Need to ensure that particles are 
not too close. 

2.  Need to sum forces accounting for 
boundary conditions. 

Better would be to use 
nearest neighbor lists. More 

in next lecture. Repulsive Yukawa interaction: u(r) =
A

r
exp(−Br)
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Is The Code Working?!

•  Momentum should be conserved to machine precision, using Newton’s First Law. 

•  Energy conservation is then the most important metric available. 

•  Make plots and movies to check for egregious errors.  

further 15% increase 
in time step 
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Finite Temperature: Thermostats!
Finite temperature simulations are quite common. There are several methods to 

handle this case.  

1.  Do nothing. Perform simulation at constant energy (microcanonical 
ensemble). Collisions will randomize any non-Maxwellian behavior in the 
initial conditions. For large particle numbers, this works quite well. 

2.  Velocity scaling. Every so often, examine the second moment of the velocity 
distribution. Scale all velocities so that the target second moment (desired 
temperature) is reached. This can be done gently by relaxing the distribution 
to the target over many time steps. 

3.  Nose’-Hoover.  Solve a deterministic equation with extra degrees of freedom 
that are chosen to yield the canonical ensemble. 

4.  Langevin. Picture system as being in contact with a stochastic bath/reservoir. 
Modify equations of motion to account for system+bath coupling. 

wikipedia.org/wiki/Nosé–Hoover_thermostat 

mv̇ = F − γv + ξ(t)

�ξ(t)ξ(t�)� = 2Tγδ(t− t�)
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Initial Conditions and Equilibration!

•  200 time steps 

•  Velocity set to zero between steps 80 and 120 

Input 

Initialize 
(x,p) 

Equilibrate 

Perform 
Run 

Analyze 
Results 

•  random ICs •  ordered ICs 
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Achieving Target Temperature!

equilibration too short 
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Run Completed: Now What?!
Once again, it greatly depends upon the problem. But, there is 

one general principle: 

You have all phase space information. Whatever you are 
interested in, you must be able to know how it is 

connected to the full phase space history.  

Input 

Initialize 
(x,p) 

Equilibrate 

Perform 
Run 

Analyze 
Results 

Equilibrium Transport Non-Equilibrium 
MD (NEMD) 

•  energy 

•  pressure 

•  free energy 

•  phase diagrams 

•  diffusion 

•  viscosity 

•  conduction 

•  other time 
autocorrelation 

functions 

•  relaxation 

•  shocks 

•  external 
fields 

•  reactions 
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Specific Examples of Observables!

D =
1

3

� ∞

0
dt �v(t) · v(0)�

Ohta & Hamaguchi, PoP 7, 4506 (2000). Graziani et al., HEDP 8, 105 (2012). Graziani et al., HEDP 8, 105 (2012). 

dE/dxP = nT − 1

6

�

i�=j

ninj

�
d3r

∂uij(r)

∂r
gij(r)

radial distribution 
functions 

velocity autocorrelation 
functions 

energy deposition 
in NEMD 
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Back To That App…!

Boundary conditions. 

Time step. 

Forces/potentials. 

Thermostat. 

Observables. 

Initial conditions. 

B. H. Kim, A. Beskok, and T. Cagin 
Viscous heating in nanoscale shear driven liquid flows 

Microfluidics and Nanofluidics 9, 31 (2009) 
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Segue Into Second Lecture!

•  What you now know: 

1.  What MD is and what MD is not. 

2.  Some of the details of what goes into an MD code. 

3.  The MD procedure from specifications to running to analysis. 

•  What you don’t (hopefully) yet know: 

1.  What are the physical HEDP regimes of interest for MD? 

2.  What types of forces do we need to describe HED matter? 

3.  Which algorithms need to be adapted to such plasmas? 

4.  What are some of the outstanding interesting problem? 


