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Multidimentional Aggregation Equation

Continuum model for particles which interact via a pairwise
interaction potential

N:RY— R
AN =6
“interaction potential”
Otp +div(pv) =0
{\7 =—-VN=xp

p(x, t): density of particles

V(x, t): velocity of the particles located at x
x € R
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Discrete model for N particles Xi,..., Xy
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==Y m TN - X) :
j=1 )
—VN:R?Y - R
N:RY >R “attracting field”

“interaction potential”
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pe +div(pv) =0
Vv=—-VN=xp

Every pieces of mass attracts one another according to the
potential K.

Collapse!
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pe +div(pv) =0
Vv=—-VN=xp

Every pieces of mass attracts one another according to the
potential K.

Collapse!

@ Biology

@ Evolution of vortex densities in
superconductors,

@ Simplified model for granular flow

@ Materials sciences, ...
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Relationship with 2D Euler

Vorticity-stream formulation of the 2D Euler Equation:

wy + div (W\7) =0 @ V is divergence free
V= *(VN * w)L @ wis const.ant on particle path
@ Global existence

Aggregation Equation in ND:

atp + div (p\‘/‘) =0 @ V concentrates the density

o @ p is grows along particle path

v=—-VN=xp P.lg. g p p
@ Finite time blow up
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Well-Posedness in L1 N L
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Particle path are well defined

Suppose p(-,t) € L' N L™ and let

oG Ol = llpC Ol + lloC D)l

then

Vx1,8) = vOx, )] < ClllaC, )] Ixa — x| (1~ log Jx1 — xal) ]

As long as the solution remains in L' N L° the velocity field is Log-Lipshitz and
particle path are well defined
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Method of characteristics

Otp+div(pv) =0
8tp+Vp- \7+pdw\7:0

But Vv=-VN=xp so divi = —AN*xp = —p

dep+V-Vp=p? where vV =—-VNsxp J

So along the characteristics the density p satisfies the ODE y = y? ( solution:
y(t) = l/m A7) thatis:

1
p(X(t),t) = —5—— blowsup at t = ————
rorxo) ¢ po(X(0))

1

So the first blowup occurs at t* = ——.
[P0 | max
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Well-Posedness

Theorem

Suppose pg is bounded and compactly supported.
Let T be such that

0<T<

|p0’max.

Then there exists a unique bounded and compactly supported
solution on [0, T].

To be more precise, the solution belongs to the space

c([o, T], LY(R)) N L=(RY x (0, T))
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Aggregation Patches

Collapse to skeleton
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Aggregation Patches

1
20|

po(x) = —— xa,(x) 0 t) = —— xau(x)

€2
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Aggregation Patches

1 1
po(x) = Q0| X0 (%) p(x,t) = o] xa, (x)
1
==t X, (%)-
7\ PxyY)
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Aggregation Patches

1 1
po(x) = g X (%) plx,t) = o] xa, (x)
1
==t X, (%)-

7\ PxyY)

1
Qo] — ¢

If po = uniform distribution on a domain g
Then p(-, t) = uniform distribution on a time evolving domain Q; with |Q| = |Qq| — tJ
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Movies!

Thomas Laurel
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Theorem (Elliptical patch)

Let po be the uniform distribution on the ellipse

2 2
%+L2 =1l and let T* = |Qo| = mapbo.
ay by

Ast — T*, p(t) converges weakly-* to the probability measure supported on the
segment [—ro, rp] with mass distribution

where rp = ag — byp.
v
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3D Movies!

Thomas Laurel

Aggregation via the Newtonian Potential & Aggregation Patc



Numerics

- 1
V(x,t) = —m(v’v * X, )(X)

Integrating by part we find

1
ot =g | NG Y)n()do()

Curve Evolution

In 2D, letting 0 = {z(a,t) € R?: a € [0,27)}

we get: %(a, t) = ¥(z(a t), £)
and therefore:
0z 1 1 2 0z L
—(o,t) = —— — | ) —z(a, )| | = (', t)| do’
5e (@0 = gy on | Inlztet) 2@ 0] [5o (@ 0] da
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) |S20] )
change of variable s=1In (7
Q0| — ¢

2 E) 1
%(a,s) = %/0 In|z(a,s) — z(a, 5)]| [i(a/,s)} da’
X3
¢ e X%
’ o \Z—"O\
. h ) L e X
LTy
* L. ) DR !
X3 PRI . AR o
‘xro
o .
.
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The spreading case

Convergence to self-similar circular
patch

Thomas Laurent Aggregation via the Newtonian Potential & Aggregation Patc



Multidimentional Aggregation Equation

Continuum model for particles which interact via a pairwise
interaction potential

N:RY >R
“interaction potential”
Orp +div(pv) =0
V=+VNsxp

p(x, t): density of particles

V(x, t): velocity of the particles located at x
x € R
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Method of characteristics

2

<t
Il

Otp+VvV-Vp=—p where —VN % p J

So along the characteristics the density p satisfies the ODE  y = —y?2.

The area of a patch satisfies  |Q:| = [Qq| + ¢
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(-, t) is the circular patch of area t and mass 1.

t= 0.1 lr-:!i F= 4

Let po € P(R?) be compactly supported and bounded.
Let p(x, t) be the solution. Then

Cc 1

oG, = 0Dl € 5 A= g

In R? the rate of convergence is % and it is sharp.
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® 4, (x, t) = circular patch of area Ay + t

AREA= A, t=3

2¥
5, - .

Remark: [[® (-, t) — @, t)|[2 = 2%
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Prove convergence to the fundamental solution which has same
height than pg at time zero.

At all time p(x, t) and the fundamental solution have same height
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Change of variable

Go to the reference frame of this fundamental solution:

- A t 1
$= > t:|n<0+> p= P
Ao

® 4, is now a stationary circular patch of radius 1, height 1/wy and mass 1.

In these new variable p satisfies the PDE:

%—I—div(pv)zo
X
v—deN*p—g

and we have p(t) < L forall t.

= wy
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Movies!

Thomas Laurel
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! a(hH

x(t): particle
the furthest away

r(t) = x(t)| =
radius of the cloud of
particles

1 = radius of the
steady state
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Estimate of the velocity of the particle the furthest away

By Newton's Theorem: VN * x (g, ) (x) = (mass of xpg(0,r)) VN(x) = —

vix) = deN*p—g = wgVN=*p — VN*xp@o,n

= —wy {VN* (widxg(ow) — ﬁ)} (%)

v(x) - (—i) =wqg /VN(X—y) ‘L |:iXB(O "= p] (v)dy

\
dwd(2r)d it [wi N p} )y
rd —
> wy (7‘1%(;):’71) (rd _ 1) >C rdﬂl

1
| |~ de(2r)" !
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where we have used: VN(x —y)- Vy € B(0,r)




Estimate of the area of the support of the patch

x(t) rd—1
: <_C
() = ordt

r'(t) = v(x(t),t)

7 < —c(rf — 1)
d d d
E(r —1) < —Cd(r* —-1)

d
I(wdrd — wy) < —Cd(wgr? — wq)

So the difference of area between the big disc and the small disc decays exponentially
fast (in the rescaled variable).
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Estimate of the L!-difference between the patch and the steady state

x(F)

g

L!-difference between the patch and the steady state

1
< 2 x (difference of area between the big disc and the small disc) x —
wd

< Ae—Ct
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(-, t) is the circular patch of area t and mass 1.

t= 0.1 lr-:!i F= 4

Let po € P(R?) be compactly supported and bounded.
Let p(x, t) be the solution. Then

Cc 1

oG, = 0Dl € 5 A= g

In R? the rate of convergence is % and it is sharp.
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Work in Progress
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The boundary of the patch remains smooth
up to the collapse time T* = |Q|

if 9Q is C1 for some v € (0,1)

then 9Q; is C17 for all t € [0, T%)

with A. Bertozzi and J. Garnett
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