Aggregation via the Newtonian Potential & Aggregation Patches

Thomas Laurent

University of California, Riverside

March 7, 2012

Joint work with: Andrea Bertozzi and Flavien Leger

Multidimentional Aggregation Equation

Continuum model for particles which interact via a pairwise interaction potential

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \vec{v}) = 0 \\ \vec{v} = -\nabla N * \rho \end{cases}$$

$$\mathcal{N}: \mathbb{R}^d o \mathbb{R}$$
 $\Delta \mathcal{N} = \delta$ "interaction potential"

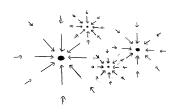
 $\rho(x,t)$: density of particles

 $\vec{v}(x,t)$: velocity of the particles located at x

 $x \in \mathbb{R}^d$

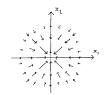
Discrete model for N particles X_1, \ldots, X_N

$$\dot{X}_i = -\sum_{j=1}^N m_j \, \nabla N(X_i - X_j)$$



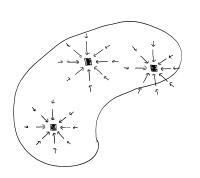
 $\mathcal{N}:\mathbb{R}^d o \mathbb{R}$ "interaction potential"

 $-\nabla N: \mathbb{R}^d \to \mathbb{R}^d$ "attracting field"



$$\rho_t + \operatorname{div}(\rho \vec{v}) = 0$$
$$\vec{v} = -\nabla N * \rho$$

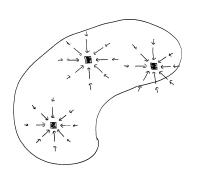
Every pieces of mass attracts one another according to the potential K.



Collapse!

$$\rho_t + \operatorname{div}(\rho \vec{v}) = 0$$
$$\vec{v} = -\nabla N * \rho$$

Every pieces of mass attracts one another according to the potential K.



Collapse!

- Biology
- Evolution of vortex densities in superconductors,
- Simplified model for granular flow
- Materials sciences, . . .

Relationship with 2D Euler

Vorticity-stream formulation of the 2D Euler Equation:

$$\begin{cases} \omega_t + \operatorname{div}(\omega \vec{v}) = 0 \\ \vec{v} = -(\nabla N * \omega)^{\perp} \end{cases}$$

- \vec{v} is divergence free
- \bullet ω is constant on particle path
- Global existence

Aggregation Equation in ND:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \vec{v}) = 0 \\ \vec{v} = -\nabla N * \rho \end{cases}$$

- \vec{v} concentrates the density
- ρ is grows along particle path
- Finite time blow up

Well-Posedness in $L^1 \cap L^{\infty}$

Particle path are well defined

Suppose $ho(\cdot,t)\in L^1\cap L^\infty$ and let

$$|||\rho(\cdot,t)||| = ||\rho(\cdot,t)||_{L^1} + ||\rho(\cdot,t)||_{L^\infty}$$

then

$$|v(x_1,t)-v(x_2,t)| \leq C |||\rho(\cdot,t)||| ||x_1-x_2|| (1-\log|x_1-x_2|)$$

As long as the solution remains in $L^1\cap L^\infty$ the velocity field is Log-Lipshitz and particle path are well defined

Method of characteristics

$$\partial_t \rho + \operatorname{div}(\rho \vec{v}) = 0$$

$$\partial_t \rho + \nabla \rho \cdot \vec{\mathbf{v}} + \rho \, \operatorname{div} \vec{\mathbf{v}} = \mathbf{0}$$

But
$$\vec{v} = -\nabla N * \rho$$
 so $\operatorname{div} \vec{v} = -\Delta N * \rho = -\rho$

$$\partial_t \rho + \vec{\mathbf{v}} \cdot \nabla \rho = \rho^2$$
 where $\vec{\mathbf{v}} = -\nabla \mathbf{N} * \rho$

$$\vec{v} = -\nabla N * \rho$$

So along the characteristics the density ρ satisfies the ODE $\dot{y} = y^2$ (solution: $y(t) = \frac{1}{(1/y_0)-t}$), that is:

$$\rho(X(t),t) = \frac{1}{\frac{1}{\rho_0(X(0))} - t}$$
 blows up at $t = \frac{1}{\rho_0(X(0))}$

So the first blowup occurs at $t^* = \frac{1}{|\rho_0|_{max}}$.

Well-Posedness

Theorem

Suppose ρ_0 is bounded and compactly supported. Let T be such that

$$0 < T < \frac{1}{|\rho_0|_{max}}.$$

Then there exists a unique bounded and compactly supported solution on [0,T].

To be more precise, the solution belongs to the space

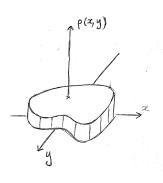
$$C([0,T],L^1(\mathbb{R}^d)) \cap L^\infty(\mathbb{R}^d \times (0,T))$$

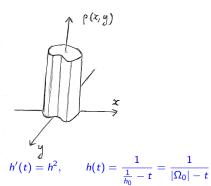
Aggregation Patches & Collapse to skeleton

Aggregation Patches

$$\rho_0(x) = \frac{1}{|\Omega_0|} \chi_{\Omega_0}(x) \qquad \qquad \rho(x,t) = \frac{1}{|\Omega_t|} \chi_{\Omega_t}(x)$$

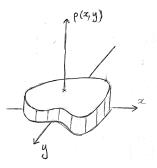
$$p(x,t) = \frac{1}{|\Omega_t|} \chi_{\Omega_t}(x)$$



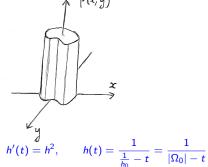


Aggregation Patches

$$\rho_0(x) = \frac{1}{|\Omega_0|} \chi_{\Omega_0}(x) \qquad \qquad \rho(x,t) = \frac{1}{|\Omega_t|} \chi_{\Omega_t}(x)$$



$$egin{aligned}
ho(x,t) &= rac{1}{|\Omega_t|} \; \chi_{\Omega_t}(x) \ &= rac{1}{|\Omega_0| - t} \; \; \chi_{\Omega_t}(x). \end{aligned}$$

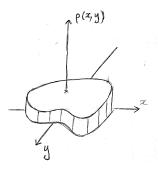


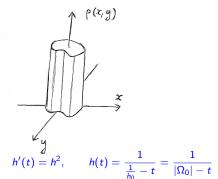
Aggregation Patches

$$\rho_0(x) = \frac{1}{|\Omega_0|} \chi_{\Omega_0}(x) \qquad \qquad \rho(x, t) = \frac{1}{|\Omega_t|} \chi_{\Omega_t}(x)$$

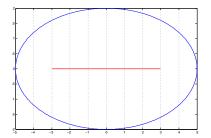
$$\rho(x,t) = \frac{1}{|\Omega_t|} \chi_{\Omega_t}(x)$$

$$= \frac{1}{|\Omega_0| - t} \chi_{\Omega_t}(x).$$





If ρ_0 = uniform distribution on a domain Ω_0 Then $\rho(\cdot,t)=$ uniform distribution on a time evolving domain Ω_t with $|\Omega_t|=|\Omega_0|-t$ Movies!



Theorem (Elliptical patch)

Let ρ_0 be the uniform distribution on the ellipse

$$rac{x^2}{a_0^2} + rac{y^2}{b_0^2} = 1$$
 and let $T^* = |\Omega_0| = \pi a_0 b_0$.

As $t \to T^*$, $\rho(t)$ converges weakly-* to the probability measure supported on the segment $[-r_0, r_0]$ with mass distribution

$$f(x) = \frac{2}{\pi r_0^2} \sqrt{r_0^2 - x^2}$$

where $r_0 = a_0 - b_0$.

3D Movies! Thomas Laurent Aggregation via the Newtonian Potential & Aggregation Patch

Numerics

$$\vec{v}(x,t) = -\frac{1}{|\Omega_0| - t} (\nabla N * \chi_{\Omega_t})(x)$$

Integrating by part we find

$$v(x,t) = \frac{1}{|\Omega_0| - t} \int_{\partial \Omega_t} N(x - y) n(y) d\sigma(y)$$

Curve Evolution

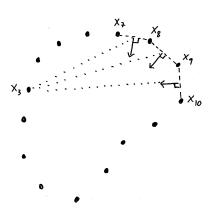
In 2D, letting
$$\partial\Omega_t=\{z(lpha,t)\in\mathbb{R}^2:lpha\in[0,2\pi)\}$$
 we get: $\dfrac{\partial z}{\partial t}(lpha,t)=ec{v}(z(lpha,t),t)$

and therefore:

$$\frac{\partial z}{\partial t}(\alpha,t) = \frac{1}{|\Omega_0|-t} \; \frac{1}{2\pi} \int_0^{2\pi} \ln \left|z(\alpha,t)-z(\alpha',t)\right| \left[\frac{\partial z}{\partial \alpha}(\alpha',t)\right]^{\perp} d\alpha'$$

change of variable
$$s = \ln \left(\frac{|\Omega_0|}{|\Omega_0| - t} \right)$$

$$\frac{\partial z}{\partial s}(\alpha, s) = \frac{1}{2\pi} \int_0^{2\pi} \ln |z(\alpha, s) - z(\alpha', s)| \left[\frac{\partial z}{\partial \alpha}(\alpha', s) \right]^{\perp} d\alpha'$$



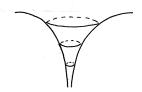
The spreading case & Convergence to self-similar circular patch

Multidimentional Aggregation Equation

Continuum model for particles which interact via a pairwise interaction potential

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \vec{v}) = 0 \\ \vec{v} = +\nabla N * \rho \end{cases}$$

 $\mathcal{N}: \mathbb{R}^d o \mathbb{R}$ "interaction potential"



 $\rho(x,t)$: density of particles

 $\vec{v}(x,t)$: velocity of the particles located at x

 $x \in \mathbb{R}^d$

Method of characteristics

$$\partial_t \rho + \vec{\mathbf{v}} \cdot \nabla \rho = -\rho^2$$

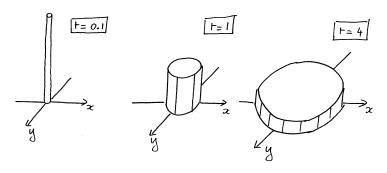
where
$$\vec{v} = -\nabla N * \rho$$

So along the characteristics the density ρ satisfies the ODE $\dot{y} = -y^2$.

The area of a patch satisfies
$$|\Omega_t| = |\Omega_0| + t$$

$$|\Omega_t| = |\Omega_0| +$$

 $\Phi(\cdot, t)$ is the circular patch of area t and mass 1.



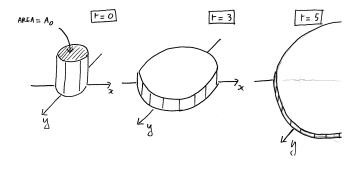
$\mathsf{Theorem}$

Let $\rho_0 \in \mathcal{P}(\mathbb{R}^d)$ be compactly supported and bounded. Let $\rho(x,t)$ be the solution. Then

$$\|\rho(\cdot,t)-\Phi(\cdot,t)\|_{L^1}\leq \frac{C}{t^{\lambda}}\qquad \lambda=\frac{1}{2^{d-1}}$$

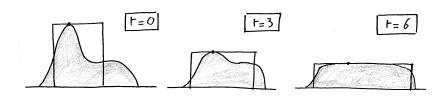
In \mathbb{R}^2 the rate of convergence is $\frac{1}{\sqrt{t}}$ and it is sharp.

$\Phi_{A_0}(x,t) = \text{circular patch of area } A_0 + t$



Remark: $\|\Phi_{A_0}(\cdot,t) - \Phi(\cdot,t)\|_{L^1} = 2 \frac{A_0}{A_0+t}$

Prove convergence to the fundamental solution which has same height than ρ_0 at time zero.



At all time $\rho(x, t)$ and the fundamental solution have same height

Change of variable

Go to the reference frame of this fundamental solution:

$$\tilde{x} = rac{x}{R(t)}$$
 $\tilde{t} = \ln\left(rac{A_0 + t}{A_0}
ight)$ $\tilde{
ho} = rac{1}{\omega_d} rac{
ho}{h(t)}$

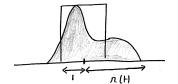
 Φ_{A_0} is now a stationary circular patch of radius 1, height $1/\omega_d$ and mass 1.

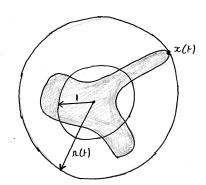
In these new variable ρ satisfies the PDE:

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) = 0$$
$$v = \omega_d \nabla N * \rho - \frac{x}{d}$$

and we have $\rho(t) \leq \frac{1}{\omega_d}$ for all t.

Movies!





x(t): particle the furthest away

r(t) = |x(t)| = radius of the cloud of particles

$$\begin{split} 1 = \text{radius of the} \\ \text{steady state} \end{split}$$

Estimate of the velocity of the particle the furthest away

By Newton's Theorem:
$$\nabla N * \chi_{B(0,r)}(x) = (\text{mass of } \chi_{B(0,r)}) \ \nabla N(x) = \frac{x}{d}$$

$$\begin{aligned} v(x) &= \omega_d \nabla N * \rho - \frac{x}{d} &= \omega_d \nabla N * \rho - \nabla N * \chi_{B(0,r)} \\ &= -\omega_d \left[\nabla N * \left(\frac{1}{\omega_d} \chi_{B(0,r)} - \rho \right) \right] (x) \end{aligned}$$

$$\begin{aligned} v(x) \cdot \left(-\frac{x}{|x|} \right) &= \omega_d \int \nabla N(x-y) \cdot \frac{x}{|x|} \left[\frac{1}{\omega_d} \chi_{B(0,r)} - \rho \right] (y) dy \\ &\geq \frac{1}{d \omega_d (2r)^{d-1}} \omega_d \int \left[\frac{1}{\omega_d} \chi_{B(0,r)} - \rho \right] (y) dy \\ &\geq \omega_d \left(\frac{1}{d \omega_d (2r)^{d-1}} \right) \left(r^d - 1 \right) &\geq C \frac{r^d - 1}{r^{d-1}} \end{aligned}$$

where we have used:
$$\nabla N(x-y) \cdot \frac{x}{|x|} \ge \frac{1}{d \omega_d(2r)^{d-1}} \quad \forall y \in B(0,r)$$

Estimate of the area of the support of the patch

$$r'(t) = v(x(t), t) \cdot \frac{x(t)}{|x(t)|} \le -C \frac{r^d - 1}{r^{d-1}}$$

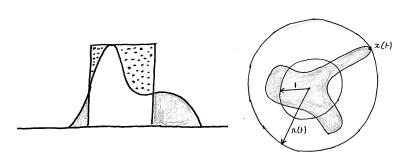
$$r^{d-1}r' \le -C(r^d - 1)$$

$$\frac{d}{dt}(r^d - 1) \le -Cd(r^d - 1)$$

$$\frac{d}{dt}(\omega_d r^d - \omega_d) \le -Cd(\omega_d r^d - \omega_d)$$

So the difference of area between the big disc and the small disc decays exponentially fast (in the rescaled variable).

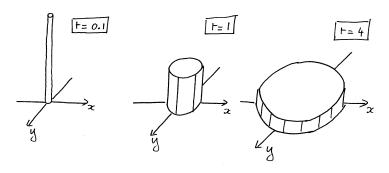
Estimate of the L^1 -difference between the patch and the steady state



 L^1 -difference between the patch and the steady state

 \leq 2 × (difference of area between the big disc and the small disc) × $\frac{1}{\omega_d}$ \leq Ae^{-Ct}

 $\Phi(\cdot, t)$ is the circular patch of area t and mass 1.



Theorem

Let $\rho_0 \in \mathcal{P}(\mathbb{R}^d)$ be compactly supported and bounded. Let $\rho(x,t)$ be the solution. Then

$$\|\rho(\cdot,t)-\Phi(\cdot,t)\|_{L^1}\leq \frac{C}{t^{\lambda}}\qquad \lambda=\frac{1}{2^{d-1}}$$

In \mathbb{R}^2 the rate of convergence is $\frac{1}{\sqrt{t}}$ and it is sharp.

Work in Progress

The boundary of the patch remains smooth up to the collapse time $T^* = |\Omega_0|$

if
$$\partial\Omega_0$$
 is $\mathit{C}^{1,\gamma}$ for some $\gamma\in(0,1)$

then
$$\partial\Omega_t$$
 is $C^{1,\gamma}$ for all $t\in[0,T^*)$

with A. Bertozzi and J. Garnett