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Multidimentional Aggregation Equation

Continuum model for particles which interact via a pairwise
interaction potential

{
∂tρ+ div (ρ~v) = 0

~v = −∇N ∗ ρ

N : Rd → R
∆N = δ

“interaction potential”

ρ(x , t): density of particles

~v(x , t): velocity of the particles located at x

x ∈ Rd
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Discrete model for N particles X1, . . . ,XN

Ẋi = −
N∑
j=1

mj ∇N(Xi − Xj)

N : Rd → R
“interaction potential”

−∇N : Rd → Rd

“attracting field”
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ρt + div (ρ~v) = 0

~v = −∇N ∗ ρ

Every pieces of mass attracts one another according to the
potential K .

Collapse!

Biology

Evolution of vortex densities in
superconductors,

Simplified model for granular flow

Materials sciences, . . .
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Relationship with 2D Euler

Vorticity-stream formulation of the 2D Euler Equation:{
ωt + div (ω~v) = 0

~v = −(∇N ∗ ω)⊥

~v is divergence free

ω is constant on particle path

Global existence

Aggregation Equation in ND:{
∂tρ+ div (ρ~v) = 0

~v = −∇N ∗ ρ

~v concentrates the density

ρ is grows along particle path

Finite time blow up
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Well-Posedness in L1 ∩ L∞
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Particle path are well defined

Suppose ρ(·, t) ∈ L1 ∩ L∞ and let

|||ρ(·, t)||| = ‖ρ(·, t)‖L1 + ‖ρ(·, t)‖L∞

then

|v(x1, t)− v(x2, t)| ≤ C |||ρ(·, t)||| |x1 − x2| (1− log |x1 − x2|)

As long as the solution remains in L1 ∩ L∞ the velocity field is Log-Lipshitz and
particle path are well defined
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Method of characteristics

∂tρ+ div (ρ~v) = 0

∂tρ+∇ρ · ~v + ρ div~v = 0

But ~v = −∇N ∗ ρ so div~v = −∆N ∗ ρ = −ρ

∂tρ+ ~v · ∇ρ = ρ2 where ~v = −∇N ∗ ρ

So along the characteristics the density ρ satisfies the ODE ẏ = y2 ( solution:
y(t) = 1

(1/y0)−t
), that is:

ρ(X (t), t) =
1

1
ρ0(X (0))

− t
blows up at t =

1

ρ0(X (0))

So the first blowup occurs at t∗ = 1
|ρ0|max

.
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Well-Posedness

Theorem

Suppose ρ0 is bounded and compactly supported.
Let T be such that

0 < T <
1

|ρ0|max
.

Then there exists a unique bounded and compactly supported
solution on [0,T].

To be more precise, the solution belongs to the space

C([0,T ], L1(Rd )) ∩ L∞(Rd × (0,T ))
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Aggregation Patches
&

Collapse to skeleton
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Aggregation Patches

ρ0(x) =
1

|Ω0|
χΩ0

(x) ρ(x , t) =
1

|Ωt |
χΩt (x)

=
1

|Ω0| − t
χΩt (x).

. h′(t) = h2, h(t) =
1

1
h0
− t

=
1

|Ω0| − t
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Aggregation Patches

ρ0(x) =
1

|Ω0|
χΩ0

(x) ρ(x , t) =
1

|Ωt |
χΩt (x)

=
1

|Ω0| − t
χΩt (x).

. h′(t) = h2, h(t) =
1

1
h0
− t

=
1

|Ω0| − t

If ρ0 = uniform distribution on a domain Ω0

Then ρ(·, t) = uniform distribution on a time evolving domain Ωt with |Ωt | = |Ω0| − t
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Movies!
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Theorem (Elliptical patch)

Let ρ0 be the uniform distribution on the ellipse

x2

a2
0

+
y2

b2
0

= 1 and let T∗ = |Ω0| = πa0b0.

As t → T∗, ρ(t) converges weakly-∗ to the probability measure supported on the
segment [−r0, r0] with mass distribution

f (x) =
2

πr2
0

√
r2
0 − x2

where r0 = a0 − b0.
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3D Movies!
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Numerics

~v(x , t) = −
1

|Ω0| − t
(∇N ∗ χΩt )(x)

Integrating by part we find

v(x , t) =
1

|Ω0| − t

∫
∂Ωt

N(x − y)n(y)dσ(y)

Curve Evolution

In 2D, letting ∂Ωt = {z(α, t) ∈ R2 : α ∈ [0, 2π)}

we get:
∂z

∂t
(α, t) = ~v(z(α, t), t)

and therefore:

∂z

∂t
(α, t) =

1

|Ω0| − t

1

2π

∫ 2π

0
ln
∣∣z(α, t)− z(α′, t)

∣∣ [ ∂z
∂α

(α′, t)
]⊥

dα′
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change of variable s = ln

(
|Ω0|
|Ω0| − t

)
∂z

∂s
(α, s) =

1

2π

∫ 2π

0
ln
∣∣z(α, s)− z(α′, s)

∣∣ [ ∂z
∂α

(α′, s)
]⊥

dα′
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The spreading case
&

Convergence to self-similar circular
patch
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Multidimentional Aggregation Equation

Continuum model for particles which interact via a pairwise
interaction potential

{
∂tρ+ div (ρ~v) = 0

~v = +∇N ∗ ρ

N : Rd → R
“interaction potential”

ρ(x , t): density of particles

~v(x , t): velocity of the particles located at x

x ∈ Rd

Thomas Laurent Aggregation via the Newtonian Potential & Aggregation Patches



Method of characteristics

∂tρ+ ~v · ∇ρ = −ρ2 where ~v = −∇N ∗ ρ

So along the characteristics the density ρ satisfies the ODE ẏ = −y2.

The area of a patch satisfies |Ωt | = |Ω0|+ t
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Φ(·, t) is the circular patch of area t and mass 1.

Theorem

Let ρ0 ∈ P(Rd) be compactly supported and bounded.
Let ρ(x , t) be the solution. Then

‖ρ(·, t)− Φ(·, t)‖L1 ≤
C

tλ
λ =

1

2d−1

In R2 the rate of convergence is 1√
t

and it is sharp.
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ΦA0(x , t) = circular patch of area A0 + t

Remark: ‖ΦA0(·, t)− Φ(·, t)‖L1 = 2 A0
A0+t
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Prove convergence to the fundamental solution which has same
height than ρ0 at time zero.

At all time ρ(x , t) and the fundamental solution have same height
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Change of variable

Go to the reference frame of this fundamental solution:

x̃ =
x

R(t)
t̃ = ln

(
A0 + t

A0

)
ρ̃ =

1

ωd

ρ

h(t)

ΦA0
is now a stationary circular patch of radius 1, height 1/ωd and mass 1.

In these new variable ρ satisfies the PDE:

∂ρ

∂t
+ div(ρv) = 0

v = ωd∇N ∗ ρ−
x

d

and we have ρ(t) ≤ 1
ωd

for all t.
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Movies!
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x(t): particle
the furthest away

r(t) = |x(t)| =
radius of the cloud of
particles

1 = radius of the
steady state
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Estimate of the velocity of the particle the furthest away

By Newton’s Theorem: ∇N ∗ χB(0,r)(x) = (mass of χB(0,r)) ∇N(x) =
x

d

v(x) = ωd∇N ∗ ρ−
x

d
= ωd∇N ∗ ρ − ∇N ∗ χB(0,r)

= −ωd

[
∇N ∗

(
1

ωd
χB(0,r) − ρ

)]
(x)

v(x) ·
(
−

x

|x |

)
= ωd

∫
∇N(x − y) ·

x

|x |

[
1

ωd
χB(0,r) − ρ

]
(y)dy

≥
1

d ωd (2r)d−1
ωd

∫ [
1

ωd
χB(0,r) − ρ

]
(y)dy

≥ ωd

(
1

d ωd (2r)d−1

)(
rd − 1

)
≥ C

rd − 1

rd−1

where we have used: ∇N(x − y) ·
x

|x |
≥

1

d ωd (2r)d−1
∀y ∈ B(0, r)
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Estimate of the area of the support of the patch

r ′(t) = v(x(t), t) ·
x(t)

|x(t)|
≤ −C

rd − 1

rd−1

rd−1r ′ ≤ −C(rd − 1)

d

dt
(rd − 1) ≤ −Cd(rd − 1)

d

dt
(ωd r

d − ωd ) ≤ −Cd(ωd r
d − ωd )

So the difference of area between the big disc and the small disc decays exponentially
fast (in the rescaled variable).
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Estimate of the L1-difference between the patch and the steady state

L1-difference between the patch and the steady state

≤ 2× (difference of area between the big disc and the small disc)×
1

ωd

≤ Ae−Ct
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Φ(·, t) is the circular patch of area t and mass 1.

Theorem

Let ρ0 ∈ P(Rd) be compactly supported and bounded.
Let ρ(x , t) be the solution. Then

‖ρ(·, t)− Φ(·, t)‖L1 ≤
C

tλ
λ =

1

2d−1

In R2 the rate of convergence is 1√
t

and it is sharp.
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Work in Progress
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The boundary of the patch remains smooth
up to the collapse time T ∗ = |Ω0|

if ∂Ω0 is C 1,γ for some γ ∈ (0, 1)

then ∂Ωt is C 1,γ for all t ∈ [0,T ∗)

with A. Bertozzi and J. Garnett
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