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Self-organizing animal aggregations

e Animal groups with a high structural order

e [ he behaviour of individuals is so coordinated, that the group
moves as a single coherent entity
e Examples of self-organizing biological groups
— schooling fish
— herds of ungulates
— swarming insects

— zigzaging flocks of birds



Mathematical models

e [ he existing models fall into 2 categories: Lagrangian and
Eulerian

e Lagrangian models: trajectories of all individuals of a species
are tracked according to a set of interaction and decision
rules

— a large set of coupled ODE's

— a large set of coupled difference equations (discrete time)

e Eulerian models: the problem is cast as an evolution equation
for the population density field

— parabolic

— hyperbolic



A nonlocal Eulerian PDE swarming model

e We study the PDE aggregation model in R":

— continuity equation for the density p:
pt+V-(pv) =0

— the velocity v is assumed to have a functional dependence
on the density

v=—-VK=x*xp

— the potential K incorporates social interactions: attrac-
tion and repulsion

e [ he model was first suggested by Mogilner and Keshet, J.
Math. Biol. [1999]

e Literature on this model has been very rich in recent years
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Lagrangian description

N individuals; X;(t) = spatial location of the i-th individual at time ¢

dX; 1
dt N
j=1...N
JF

PDE: continuum approximation, as N — oo

Assumption: social interactions depend only on the relative distance between
the individuals

K(z) = K(|z)
Notation: F(r) = —K (r)
dx; 1 Xi— X,
== Y F(Xi-X;D—, =1...N
it N 4. X — X

JF
F(|X; — X;|) = magnitude of the force that the individual X; exerts on the
individual X;, along X; — Xj.

Repulsion (F'(r) > 0) acts at short ranges, attraction (F(r) < 0) at long

ranges.



Motivation for this work

e Equilibria of the model should have biologically relevant fea-
tures:
— finite densities

— sharp boundaries

— relatively constant internal population

e [ he main motivation for this work is to

— design interaction potentials K which lead to such equi-
libria

— investigate analytically and numerically the well-posedness
and long time behaviour of solutions



Interaction potential K
K(f) — Kfr' _|_ Ka
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Random initial conditions inside the unit square. The solution approaches a
constant density in the unit disk.
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Example b. n = 3, various gq
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e T he equilibria are monotone in the radial coordinate: decreasing about
the origin for 2 —n < q < 2, increasing for ¢ > 2, and constant for ¢ = 2.

e As ¢ — oo, the radii of the equilibria approach a constant, and mass
aggregates toward the edge of the swarm.

e As g \ 2 —n, the radii of equilibria approach 0 and mass concentrates at
the origin.

e Numerics suggests that all these equilibria are global attractors for the
dynamics.



Benefits of the Newtonian repulsion

Our model:

pt +V - (pv) =0, v=—-VKxp

K(x) = ¢(2) + %mq, ¢>2—n

Expand V- in the equation: p;+v-Vp= —pdivo

Calculate divv:

divv = div(—=VK % p)
= —-AK=xp

p— A(%Iffclq) % p

The repulsion term has become locall



Lagrangian approach
Characteristic curves: th(oz t) = v(X(a,t),t), X(a,0) =«

Evolution equation for p(X(a,t),t):

l;—f —p® + pA(—leq)

Special case q = 2: explicit calculations

AGRER) =n A(GP)sp=n [ o)y

A\

=M

ODE along characteristics: % = —p(p —nM)

Exact solution: p(X(a,t),t) = nM

Asymptotic behaviour as t — oo?
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Asymptotic behaviour t — oo

Density: p(X,t) — nM, as t — oo, along particle paths with
po(a) # 0

Asymptotic behaviour of trajectories: Ry = iMoo | X (i, t)]

For radial solutions, it can be proved that trajectories are mapped

into the ball of R™ of radius Ry = —1 .
(nwn)n

Numerics suggest that all solutions have this asymptotic be-
haviour.

Global attractor: constant, compactly supported density:

nM if || < —1
p(z) = (nwn)n
0 otherwise
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Global existence of particle paths

v(@) = [ k(z—y)p(y)dy - Ma, (1)
where k() = n%,nﬁ

The convolution kernel k is singular, homogeneous of degree
1 —n.

Equation (1) is analogous to Biot-Savart law, where vorticity w
IS now replaced by density p.

Existence and uniqueness of particle paths follow similarly to that
for incompressible Euler equations.

Extension to global existence: Beale-Kato-Majda criterion

¢
/o |p(+, 8)||[,0ds < oo, for all finite times ¢

Analysis extends to general exponent g > 2 — n.
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Case g #= 2: Non-constant steady states

Assume (based on numerics) that the model admits a steady
state supported on a ball B(0, R).

Recall formula for dive:  dive = p— A(g]z|?) * p

Equilibria supported on B(0, R):

v =0, hence divv =0 in B(0,R)
A steady state p satisfies:

p—(n+q=2) [ le—yl"25ydy=0  in B(O,R)

Define operator Tp: Tro(z) = (n+q—2) [p(o.r) lo—y|92p(y)dy

Solutions p are eigenfunctions of T'r corresp. to eigenvalue 1:

Trp=0p
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Existence and uniqueness of equilibria

Theorem. For every ¢q > 2 —n and M > 0, there exists a unique
radius R (that depends on g and n only) and a unique steady state
p that is supported on B(0,R), has mass M and is continuous
on its support.

Sketch of proof: Consider case R = 1 first.

Tip(z) = (n+q—2) [z — |7 ?p(y)dy
B(0,1)

Ty is a linear, strongly positive, compact operator that maps the space of
continuous functions C([0,1],R) into itself.

Krein-Rutman theorem: there exists a positive eigenfunction p; such that

Tip1 = Ap1 (2)

A(g,n) is the spectral radius of T3; it is a simple eigenvalue and there is no
other eigenvalue with a positive eigenvector.

Define, by rescaling: p(r) = p1(r/R), introduce in (2):
Trp(r) = BT 2)p(r)
=1

1

Find R = A\ nt2,
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Qualitative properties of equilibria

Theorem. Consider a bounded steady state p(xz) that is sup-
ported in a ball B(0,R) of R®. Then, p is radially symmetric and
monotone about the origin. More specifically, we distinguish two
cases: (i) 2 —n < g < 2, when p is decreasing about the origin,
and (ii) ¢ > 2, when p is increasing.

Proof uses the method of moving planes.
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Dynamic evolution to equilibria

Numerical results in n = 3 dimensions:
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(a) g=1.5 (b) ¢ =20

The solutions approach asymptotically the steady states studied and shown
in previous slides.

Numerics with a variety of other initial conditions suggests that these equilibria
are global attractors for the dynamics.
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Asymptotic behavior of equilibria: ¢ > o0 and ¢ \( 2 —n

First consider case R = 1 and the eigenvalue problem
T1p1(x) = Ap1(z), for x € B(0,1),
with

Tpy(e) =(n+q-2) [ 0.1) =z — y|72p1 (y)dy

Goal: Use perturbation methods to find approximations for A
(spectral radius of T1) and py (corresponding eigenvector).

Then, consider general R and find approximations to equiliblrium
solution p(r) = p1(r/R) and its radius of support R = X nt+a-2,
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Asymptotic behavior ¢ — o~
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Numerics suggests: the radius of the support R approaches a constant, as
g — oo (left).

As g increases, mass aggregates toward the edge of the swarm, creating an
increasingly void region in the centre (right).

Mi(z) = (n+q—2) |z — y|9*p1(y)dy
B(0,1)

~ (n+q—2)p1(1) |z — y|? 2dy.
B(0,1)

Evaluate at z = 1, cancel p1(1) and find a coarse approximation to \.
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—1 —1
A (n—1)w, 12" Te3r = )r(”+q )/F(n—14+ 2y
2 2 2
Approximate ps:

p1(r) ~ C/ sin"29(v/1 —r2sin26 — r cos#)"t124g,
0

Iterate the procedure to find a refined approximation for .

Find approximations for R.
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n = 3. Numerical and asymptotic solutions, as ¢ — oo. There is excellent

agreement between the two solutions.
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Asymptotic behavior ¢ \ (2 —n
Denote ¢=2-—n-+c¢, e >0
Asymptotic study in the small € regime

Aepi(z) = 6/ !

B(0,1) |x — y|™

— p1(y)dy, e=qg—1. (3)

Asymptotic expansion (suggested by numerical simulations)
e = Ao+ A€+ Ape” + - -

pi(z) = ,5(0) () + eﬁ(l)(a:) —+ 625(2)(33) + ...

The kernel W iS not integrable for e = 0, so we can not

substitute the formal expansions into (3) directly.
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Subtract on both sides kc(|z|)p5(x), where
1
ke(le)) = [

B(0,1) |y —xz|¢™™

dy

(Ae — ke(|z]))py(z) = G/B(O 1) ﬁléy)_;ﬁl_(ew)dya r = |z,

The integral in RHS is now O(1) for e = 0, provided p(0) is HoIder
continuous

Expand:  ke(r) = nwn + 42 In(1 — r2)e + k(2 (r)e2 + O(3)

Match powers of ¢ on both sides:

O(1) : Ao — nwy, =0
50) () — 50 1 _
O(e) : / B pn (y)dy — (M1 — =nwn In(1 — [2]2))p % (z) = 0
B(0,1) ly — 2

Leading order: \g = const. and limiting profile ,5(0) (solved by
inverse iteration)

21



g \( 2 —n: Numerics ~ asymptotics

n = 3 (critical value ¢ = —1)
13 ‘ ‘
Asymptotic
mmme Numerical
0.
121 ®
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g=0.0 ‘,‘
------ g=-0.5 1ol e »
----ig=-0.8 LR eRT
Limiting profile | | % e e e
OO 0.2 0.4 0.6 0.8 1 -1 -0.5 0 0.5 1
t q

Left: Equlibria p{ for e =2,1,0.5,0.2 (¢ = 1,0,—0.5,—-0.8).

The plain solid line is the limiting profile 5(0) found from asymptotics. AS
e — 0, p{ approaches the limiting profile, confirming the asymptotic expansion.

Right: Eigenvalues obtained numerically (dots) and from the asymptotic ex-
pansion valid at order O(e?). Excellent agreement for small € (¢ = —1).

Remark. As ¢ \,2 —n, radius R = A\~1/(nt4=2) = \—1/¢ of support approaches
0 exponentially fast and p(r) = p1(r/R) converges to a Dirac delta.
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Even ¢: polynomial steady states
Integral equation for p in radial coordinates:

R
() = (g, n) /0 YD I(rYdr,  0<r <R

I(r,7") = / ('r2 + (7“’)2 — 2rr' cos Q)q/2_1 sin" "2 0de.
0

Kernel I(r,7r") is separable when q is even.
Define the i-th order moments of the density (mo = M):

R
mi = nwn/ rP T 50 dr (4)
0
Example: ¢ =4
I(r,7") = (r2 4+ (+)?) / ' sin" 2 0d6
0
p(r) = (n 4 2)mor® + (n + 2)mo (5)

Plug (5) into (4): find a linear system to solve for mg and mo

General g even: p(r) is a polynomial of even powers, of degree q — 2
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Inverse problem: custom designed potentials

Inverse problem: given a density p(x), can we find a potential K
for which p(xz) is a steady state of the model?

Answer: Yes, provided p(x) is radial and is a polynomial in |z|.

Theorem: In dimensions n = 2 or n = 3, consider a radially symmetric
density p(x) = p(|z|) of the form

5(r) = bo 4 bor? + bar®* + ... 4 bygr2d x| < R
P 0 otherwise.
Then p(r) is the steady state corresponding to the force

d

F(r) = — — = 2l
(r) nwy, rn1 ;Qi-l-n

where the constants agp,ao,...,asq, are computed uniquely from bg, bo,...,byy
by solving a linear system.

Remark: Case d = 0 corresponds to family ¢ = 2 from previous slides:

1 1
p(r) = const., F(r) = — -
nwn 1"~

—Cr
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Inverse problem: examples
Examples: n=1, R=1

(@ FD=1-2%  ©) j)=2 () p@)=,+a* -2t

The corresponding forces given by the Theorem are:

(@) F(a)= 3 _ ix + %3; ®) Fz) = + —a: _ %aﬁ
1, 209425 2075 , %3 .
(e) F(x) - + 672182° 25270 T 19”7
) ] pz)

(b) (©)

Filled circles along the z-axis: the steady states reached by numerical time
evolution. Empty circles: density function as computed from the filled circles.
Solid line: analytical expression for p.
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Regularized potentials

Ch, 0<r<ro
F(ry=¢ +—-r, ro<r<?2 (6)
—Chexp(—r), 2<r

1 regularize
—

F(T):;—T

r,=0.0000 r,=0.0902

00000 X1 00
-1 0 1 -1 0 1 -1 0 1 -1 0 1

Equilibrium states for the regularized interaction force (6). Initial conditions
were chosen at random in the unit square. For rg < 0.09, the steady state is
the same as for ro = 0 (uniform density in the unit circle).
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Future Directions

Energy considerations: local/ global minima

1

Pl =5 [ [ K=oy

The model is a gradient flow with respect to this energy:

GEW = [ p@)|VK xp(a) o < 0
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