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Self-organizing animal aggregations

• Animal groups with a high structural order

• The behaviour of individuals is so coordinated, that the group

moves as a single coherent entity

• Examples of self-organizing biological groups

– schooling fish

– herds of ungulates

– swarming insects

– zigzaging flocks of birds
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Mathematical models

• The existing models fall into 2 categories: Lagrangian and
Eulerian

• Lagrangian models: trajectories of all individuals of a species
are tracked according to a set of interaction and decision
rules

– a large set of coupled ODE’s

– a large set of coupled difference equations (discrete time)

• Eulerian models: the problem is cast as an evolution equation
for the population density field

– parabolic

– hyperbolic
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A nonlocal Eulerian PDE swarming model

• We study the PDE aggregation model in Rn:

– continuity equation for the density ρ:

ρt +∇ · (ρv) = 0

– the velocity v is assumed to have a functional dependence
on the density

v = −∇K ∗ ρ

– the potential K incorporates social interactions: attrac-
tion and repulsion

• The model was first suggested by Mogilner and Keshet, J.
Math. Biol. [1999]

• Literature on this model has been very rich in recent years
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Lagrangian description

N individuals; Xi(t) = spatial location of the i-th individual at time t

dXi

dt
= −

1

N

∑
j=1...N
j 6=i

∇iK(Xi −Xj), i = 1 . . . N

PDE: continuum approximation, as N →∞

Assumption: social interactions depend only on the relative distance between
the individuals

K(x) = K(|x|)

Notation: F (r) = −K ′
(r)

dXi

dt
=

1

N

∑
j=1...N
j 6=i

F (|Xi −Xj|)
Xi −Xj

|Xi −Xj|
, i = 1 . . . N

F (|Xi − Xj|) = magnitude of the force that the individual Xj exerts on the
individual Xi, along Xi −Xj.

Repulsion (F (r) > 0) acts at short ranges, attraction (F (r) < 0) at long

ranges.
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Motivation for this work

• Equilibria of the model should have biologically relevant fea-

tures:

– finite densities

– sharp boundaries

– relatively constant internal population

• The main motivation for this work is to

– design interaction potentials K which lead to such equi-

libria

– investigate analytically and numerically the well-posedness

and long time behaviour of solutions
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Interaction potential K

K(x) = Kr +Ka

= φ(x) +
1

q
|x|q, q > 2− n

φ(x) = the free-space Green’s function for −∆:

φ(x) =

−
1

2π ln |x|, n = 2
1

n(n−2)ωn
1

|x|n−2, n ≥ 3

Example a. n = 2, q = 2: K(x) = −ln |x|+1
2
|x|2; F (r) =

1

r︸︷︷︸
repulsion

− r︸︷︷︸
attraction

Random initial conditions inside the unit square. The solution approaches a
constant density in the unit disk.
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Example b. n = 3, various q

K(x) =
1

4π|x|
+

1

q
|x|q, q > −1
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• The equilibria are monotone in the radial coordinate: decreasing about
the origin for 2− n < q < 2, increasing for q > 2, and constant for q = 2.

• As q → ∞, the radii of the equilibria approach a constant, and mass
aggregates toward the edge of the swarm.

• As q ↘ 2−n, the radii of equilibria approach 0 and mass concentrates at
the origin.

• Numerics suggests that all these equilibria are global attractors for the
dynamics.
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Benefits of the Newtonian repulsion

Our model:

ρt +∇ · (ρv) = 0, v = −∇K ∗ ρ

K(x) = φ(x) +
1

q
|x|q, q > 2− n

Expand ∇· in the equation: ρt + v · ∇ρ = −ρdiv v

Calculate div v:

div v = div(−∇K ∗ ρ)

= −∆K ∗ ρ

= ρ−∆
(1

q
|x|q

)
∗ ρ

The repulsion term has become local!
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Lagrangian approach

Characteristic curves: d
dtX(α, t) = v(X(α, t), t), X(α,0) = α

Evolution equation for ρ(X(α, t), t):

Dρ

Dt
= −ρ2 + ρ∆

(1

q
|x|q

)
∗ ρ

Special case q = 2: explicit calculations

∆
(1

2
|x|2

)
= n, ∆

(1

2
|x|2

)
∗ ρ = n

∫
Rn
ρ(y)dy︸ ︷︷ ︸
=M

ODE along characteristics: Dρ
Dt = −ρ(ρ− nM)

Exact solution: ρ(X(α, t), t) = nM

1+
(
nM
ρ0(α)

−1
)
e−nMt

Asymptotic behaviour as t→∞?
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Asymptotic behaviour t→∞

Density: ρ(X, t) → nM , as t → ∞, along particle paths with

ρ0(α) 6= 0

Asymptotic behaviour of trajectories: Rα = limt→∞ |X(α, t)|

For radial solutions, it can be proved that trajectories are mapped

into the ball of Rn of radius Rα = 1

(nωn)
1
n

.

Numerics suggest that all solutions have this asymptotic be-

haviour.

Global attractor: constant, compactly supported density:

ρ̄(x) =


nM if |x| < 1

(nωn)
1
n

0 otherwise
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Global existence of particle paths

v(x) =
∫
Rn
k(x− y)ρ(y) dy −Mx, (1)

where k(x) = 1
nωn

x
|x|n

The convolution kernel k is singular, homogeneous of degree
1− n.

Equation (1) is analogous to Biot-Savart law, where vorticity ω

is now replaced by density ρ.

Existence and uniqueness of particle paths follow similarly to that
for incompressible Euler equations.

Extension to global existence: Beale-Kato-Majda criterion∫ t
0
‖ρ(·, s)‖L∞ds <∞, for all finite times t

Analysis extends to general exponent q > 2− n.
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Case q 6= 2: Non-constant steady states

Assume (based on numerics) that the model admits a steady
state supported on a ball B(0, R).

Recall formula for div v: div v = ρ−∆
(

1
q |x|

q
)
∗ ρ

Equilibria supported on B(0, R):

v = 0, hence div v = 0 in B(0, R)

A steady state ρ̄ satisfies:

ρ̄− (n+ q − 2)
∫
Rn
|x− y|q−2ρ̄(y)dy = 0 in B(0, R)

Define operator TR: TRρ̄(x) = (n+q−2)
∫
B(0,R) |x−y|q−2ρ̄(y)dy

Solutions ρ̄ are eigenfunctions of TR corresp. to eigenvalue 1:

TRρ̄ = ρ̄
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Existence and uniqueness of equilibria

Theorem. For every q > 2− n and M > 0, there exists a unique
radius R (that depends on q and n only) and a unique steady state
ρ̄ that is supported on B(0, R), has mass M and is continuous
on its support.

Sketch of proof: Consider case R = 1 first.

T1ρ̄(x) = (n+ q − 2)

∫
B(0,1)

|x− y|q−2ρ̄(y)dy

T1 is a linear, strongly positive, compact operator that maps the space of
continuous functions C([0,1],R) into itself.

Krein-Rutman theorem: there exists a positive eigenfunction ρ̄1 such that

T1ρ̄1 = λρ̄1 (2)

λ(q, n) is the spectral radius of T1; it is a simple eigenvalue and there is no
other eigenvalue with a positive eigenvector.

Define, by rescaling: ρ̄(r) = ρ̄1(r/R), introduce in (2):

TRρ̄(r) = Rn+q−2λ︸ ︷︷ ︸
=1

ρ̄(r)

Find R = λ−
1

n+q−2 .
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Qualitative properties of equilibria

Theorem. Consider a bounded steady state ρ̄(x) that is sup-

ported in a ball B(0, R) of Rn. Then, ρ̄ is radially symmetric and

monotone about the origin. More specifically, we distinguish two

cases: (i) 2 − n < q < 2, when ρ̄ is decreasing about the origin,

and (ii) q > 2, when ρ̄ is increasing.

Proof uses the method of moving planes.
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Dynamic evolution to equilibria

Numerical results in n = 3 dimensions:
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(a) q = 1.5 (b) q = 20

The solutions approach asymptotically the steady states studied and shown
in previous slides.

Numerics with a variety of other initial conditions suggests that these equilibria

are global attractors for the dynamics.
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Asymptotic behavior of equilibria: q →∞ and q ↘ 2− n

First consider case R = 1 and the eigenvalue problem

T1ρ̄1(x) = λρ̄1(x), for x ∈ B(0,1),

with

T1ρ̄1(x) = (n+ q − 2)
∫
B(0,1)

|x− y|q−2ρ̄1(y)dy

Goal: Use perturbation methods to find approximations for λ

(spectral radius of T1) and ρ̄1 (corresponding eigenvector).

Then, consider general R and find approximations to equilibrium

solution ρ̄(r) = ρ̄1(r/R) and its radius of support R = λ
− 1
n+q−2.
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Asymptotic behavior q →∞

20 40 60 80 100
0.38

0.42

0.46

0.5

0.54

0.58

q

R
(
q
)

 

 

n=2

n=3

n=4

0 0.2 0.4 0.6
0

2

4

6

8

10

12

r

ρ̄

 

 

q=2
q=10
q=20
q=40

Numerics suggests: the radius of the support R approaches a constant, as
q →∞ (left).

As q increases, mass aggregates toward the edge of the swarm, creating an
increasingly void region in the centre (right).

λρ̄1(x) = (n+ q − 2)

∫
B(0,1)

|x− y|q−2ρ̄1(y)dy

≈ (n+ q − 2)ρ̄1(1)

∫
B(0,1)

|x− y|q−2dy.

Evaluate at x = 1, cancel ρ̄1(1) and find a coarse approximation to λ.
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λ ≈ (n− 1)ωn−12n+q−3Γ(
n− 1

2
)Γ(

n+ q − 1

2
)/Γ(n− 1 +

q

2
)

Approximate ρ̄1:

ρ̄1(r) ≈ C
∫ π

0
sinn−2 θ(

√
1− r2 sin2 θ − r cos θ)n+q−2dθ,

Iterate the procedure to find a refined approximation for λ.

Find approximations for R.
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n = 3: Numerical and asymptotic solutions, as q → ∞. There is excellent

agreement between the two solutions.
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Asymptotic behavior q ↘ 2− n

Denote q = 2− n+ ε, ε > 0

Asymptotic study in the small ε regime

λερ̄
ε
1(x) = ε

∫
B(0,1)

1

|x− y|n−ε
ρ̄ε1(y)dy, ε = q − 1. (3)

Asymptotic expansion (suggested by numerical simulations)

λε = λ0 + λ1ε+ λ2ε
2 + · · ·

ρ̄ε1(x) = ρ̄(0)(x) + ερ̄(1)(x) + ε2ρ̄(2)(x) + · · ·

The kernel 1
|x−y|n−ε is not integrable for ε = 0, so we can not

substitute the formal expansions into (3) directly.
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Subtract on both sides kε(|x|)ρ̄ε1(x), where

kε(|x|) = ε
∫
B(0,1)

1

|y − x|ε−n
dy

(λε − kε(|x|))ρ̄ε1(x) = ε
∫
B(0,1)

ρ̄ε1(y)− ρ̄ε1(x)

|y − x|n−ε
dy, r = |x|,

The integral in RHS is now O(1) for ε = 0, provided ρ̄(0) is Hölder
continuous

Expand: kε(r) = nωn + nωn
2 ln(1− r2)ε+ k(2)(r)ε2 +O(ε3)

Match powers of ε on both sides:

O(1) : λ0 − nωn = 0

O(ε) :

∫
B(0,1)

ρ̄(0)(x)− ρ̄(0)(y)

|y − x|n
dy − (λ1 −

1

2
nωn ln(1− |x|2))ρ̄(0)(x) = 0

Leading order: λ0 = const. and limiting profile ρ̄(0) (solved by
inverse iteration)
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q ↘ 2− n: Numerics ∼ asymptotics

n = 3 (critical value q = −1)
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Left: Equlibria ρ̄ε1 for ε = 2,1,0.5,0.2 (q = 1,0,−0.5,−0.8).

The plain solid line is the limiting profile ρ̄(0) found from asymptotics. As
ε→ 0, ρ̄ε1 approaches the limiting profile, confirming the asymptotic expansion.

Right: Eigenvalues obtained numerically (dots) and from the asymptotic ex-
pansion valid at order O(ε2). Excellent agreement for small ε (q ≈ −1).

Remark. As q ↘ 2− n, radius R = λ−1/(n+q−2) = λ−1/ε of support approaches

0 exponentially fast and ρ̄(r) = ρ̄1(r/R) converges to a Dirac delta.
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Even q: polynomial steady states

Integral equation for ρ̄ in radial coordinates:

ρ̄(r) = c(q, n)

∫ R

0
(r′)n−1ρ̄(r′)I(r, r′)dr′, 0 ≤ r < R

I(r, r′) =

∫ π

0
(r2 + (r′)2 − 2rr′ cos θ)q/2−1 sinn−2 θdθ.

Kernel I(r, r′) is separable when q is even.

Define the i-th order moments of the density (m0 = M):

mi = nωn

∫ R

0
rn+i−1ρ̄(r)dr. (4)

Example: q = 4

I(r, r′) = (r2 + (r′)2)

∫ π

0
sinn−2 θdθ

ρ̄(r) = (n+ 2)m0r
2 + (n+ 2)m2 (5)

Plug (5) into (4): find a linear system to solve for m0 and m2

General q even: ρ̄(r) is a polynomial of even powers, of degree q − 2
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Inverse problem: custom designed potentials

Inverse problem: given a density ρ̄(x), can we find a potential K

for which ρ̄(x) is a steady state of the model?

Answer: Yes, provided ρ̄(x) is radial and is a polynomial in |x|.

Theorem: In dimensions n = 2 or n = 3, consider a radially symmetric
density ρ̄(x) = ρ̄ (|x|) of the form

ρ̄(r) =

{
b0 + b2r2 + b4r4 + . . .+ b2dr

2d |x| < R

0 otherwise.

Then ρ̄(r) is the steady state corresponding to the force

F (r) =
1

nωn

1

rn−1
−

d∑
i=0

a2i

2i+ n
r2i+1,

where the constants a0, a2, . . . , a2d, are computed uniquely from b0, b2, . . . , b2d

by solving a linear system.

Remark: Case d = 0 corresponds to family q = 2 from previous slides:

ρ̄(r) = const., F (r) =
1

nωn

1

rn−1
− Cr
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Inverse problem: examples

Examples: n = 1, R = 1

(a) ρ̄(x) = 1− x2; (b) ρ̄(x) = x2; (c) ρ̄(x) =
1

2
+ x2 − x4

The corresponding forces given by the Theorem are:

(a) F (x) =
1

2
−

9

10
x+

1

4
x3; (b) F (x) =

1

2
+

9

10
x−

1

2
x3;

(c) F (x) =
1

2
+

209425

672182
x−

2075

2527
x3 +

3

19
x5.

ρ̄(x) ρ̄(x) ρ̄(x)

x x x

(a) (b) (c)

Filled circles along the x-axis: the steady states reached by numerical time

evolution. Empty circles: density function as computed from the filled circles.

Solid line: analytical expression for ρ̄.
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Regularized potentials

F (r) =
1

r
− r regularize−→ F (r) =

 C1, 0 ≤ r < r0
1
r
− r, r0 ≤ r ≤ 2

−C2 exp(−r), 2 < r
(6)

r

F (r)
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Equilibrium states for the regularized interaction force (6). Initial conditions
were chosen at random in the unit square. For r0 < 0.09, the steady state is
the same as for r0 = 0 (uniform density in the unit circle).
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Future Directions

Energy considerations: local/ global minima

E[ρ] =
1

2

∫
Rn

∫
Rn

K(x− y)ρ(x)ρ(y)dydx

The model is a gradient flow with respect to this energy:

d

dt
E[ρ] = −

∫
Rn

ρ(x)|∇K ∗ ρ(x)|2dx ≤ 0
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