Swarm dynamics and equilibria for a nonlocal aggregation model

Razvan C. Fetecau

Department of Mathematics, Simon Fraser University

http://www.math.sfu.ca/ van/work with Y. Huang (Simon Fraser Univ.) and T. Kolokolnikov (Dalhousie Univ.)

Self-organizing animal aggregations

- Animal groups with a high structural order
- The behaviour of individuals is so coordinated, that the group moves as a single coherent entity
- Examples of self-organizing biological groups
 - schooling fish
 - herds of ungulates
 - swarming insects
 - zigzaging flocks of birds

Mathematical models

- The existing models fall into 2 categories: Lagrangian and Eulerian
- Lagrangian models: trajectories of all individuals of a species are tracked according to a set of interaction and decision rules
 - a large set of coupled ODE's
 - a large set of coupled difference equations (discrete time)
- Eulerian models: the problem is cast as an evolution equation for the population density field
 - parabolic
 - hyperbolic

A nonlocal Eulerian PDE swarming model

- We study the PDE aggregation model in \mathbb{R}^n :
 - continuity equation for the density ρ :

$$\rho_t + \nabla \cdot (\rho v) = 0$$

— the velocity \boldsymbol{v} is assumed to have a functional dependence on the density

$$v = -\nabla K * \rho$$

- the potential K incorporates social interactions: attraction and repulsion
- The model was first suggested by Mogilner and Keshet, *J. Math. Biol.* [1999]
- Literature on this model has been very rich in recent years

Lagrangian description

N individuals; $X_i(t) = \text{spatial location of the } i\text{-th individual at time } t$

$$\frac{dX_i}{dt} = -\frac{1}{N} \sum_{\substack{j=1...N\\j\neq i}} \nabla_i K(X_i - X_j), \qquad i = 1...N$$

PDE: continuum approximation, as $N \to \infty$

Assumption: social interactions depend only on the relative distance between the individuals

$$K(x) = K(|x|)$$

Notation: F(r) = -K'(r)

$$\frac{dX_i}{dt} = \frac{1}{N} \sum_{\substack{j=1...N\\j \neq i}} F(|X_i - X_j|) \frac{X_i - X_j}{|X_i - X_j|}, \qquad i = 1...N$$

 $F(|X_i - X_j|) =$ magnitude of the force that the individual X_j exerts on the individual X_i , along $X_i - X_j$.

Repulsion (F(r) > 0) acts at short ranges, attraction (F(r) < 0) at long ranges.

Motivation for this work

- Equilibria of the model should have biologically relevant features:
 - finite densities
 - sharp boundaries
 - relatively constant internal population
- The main motivation for this work is to
 - design interaction potentials K which lead to such equilibria
 - investigate analytically and numerically the well-posedness
 and long time behaviour of solutions

Interaction potential K

$$K(x) = K_r + K_a$$

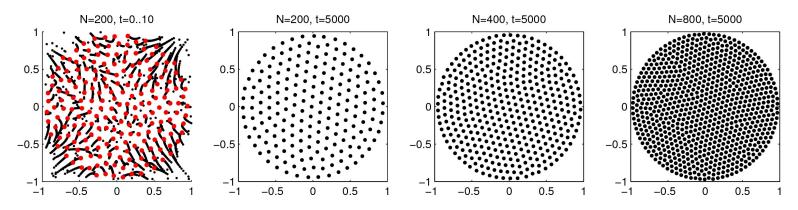
$$= \phi(x) + \frac{1}{q}|x|^q, \qquad q > 2 - n$$

 $\phi(x)$ = the free-space Green's function for $-\Delta$:

$$\phi(x) = \begin{cases} -\frac{1}{2\pi} \ln|x|, & n = 2\\ \frac{1}{n(n-2)\omega_n} \frac{1}{|x|^{n-2}}, & n \ge 3 \end{cases}$$

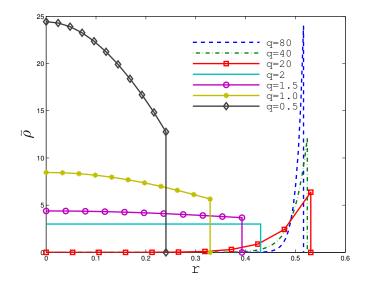
Example a.
$$n = 2, q = 2$$
: $K(x) = -\ln |x| + \frac{1}{2}|x|^2$; $F(r) = \underbrace{\frac{1}{r}}_{resultsion} - \underbrace{\frac{1}{r}}_{attraction}$

Random initial conditions inside the unit square. The solution approaches a constant density in the unit disk.



Example b. n = 3, various q

$$K(x) = \frac{1}{4\pi|x|} + \frac{1}{q}|x|^q, \qquad q > -1$$



- The equilibria are monotone in the radial coordinate: decreasing about the origin for 2 n < q < 2, increasing for q > 2, and constant for q = 2.
- ullet As $q \to \infty$, the radii of the equilibria approach a constant, and mass aggregates toward the edge of the swarm.
- As $q \searrow 2-n$, the radii of equilibria approach 0 and mass concentrates at the origin.
- Numerics suggests that all these equilibria are global attractors for the dynamics.

Benefits of the Newtonian repulsion

Our model:

$$\rho_t + \nabla \cdot (\rho v) = 0, \qquad v = -\nabla K * \rho$$

$$K(x) = \phi(x) + \frac{1}{q}|x|^q, \qquad q > 2 - n$$

Expand $\nabla \cdot$ in the equation: $\rho_t + v \cdot \nabla \rho = -\rho \operatorname{div} v$

Calculate div v:

$$\begin{aligned} \operatorname{div} v &= \operatorname{div}(-\nabla K * \rho) \\ &= -\Delta K * \rho \\ &= \rho - \Delta \left(\frac{1}{q}|x|^q\right) * \rho \end{aligned}$$

The repulsion term has become local!

Lagrangian approach

Characteristic curves: $\frac{d}{dt}X(\alpha,t) = v(X(\alpha,t),t), \qquad X(\alpha,0) = \alpha$

Evolution equation for $\rho(X(\alpha,t),t)$:

$$\frac{D\rho}{Dt} = -\rho^2 + \rho \,\Delta\left(\frac{1}{q}|x|^q\right) * \rho$$

Special case q = 2: explicit calculations

$$\Delta\left(\frac{1}{2}|x|^2\right) = n, \quad \Delta\left(\frac{1}{2}|x|^2\right) * \rho = n\underbrace{\int_{\mathbb{R}^n} \rho(y)dy}_{=M}$$

ODE along characteristics: $\frac{D\rho}{Dt} = -\rho(\rho - nM)$

Exact solution:
$$\rho(X(\alpha,t),t) = \frac{nM}{1 + \left(\frac{nM}{\rho_0(\alpha)} - 1\right)e^{-nMt}}$$

Asymptotic behaviour as $t \to \infty$?

Asymptotic behaviour $t \to \infty$

Density: $\rho(X,t) \to nM$, as $t \to \infty$, along particle paths with $\rho_0(\alpha) \neq 0$

Asymptotic behaviour of trajectories: $R_{\alpha} = \lim_{t \to \infty} |X(\alpha, t)|$

For radial solutions, it can be proved that trajectories are mapped into the ball of \mathbb{R}^n of radius $R_{\alpha} = \frac{1}{(n\omega_n)^{\frac{1}{n}}}$.

Numerics suggest that *all* solutions have this asymptotic behaviour.

Global attractor: constant, compactly supported density:

$$\bar{\rho}(x) = \begin{cases} nM & \text{if } |x| < \frac{1}{(n\omega_n)^{\frac{1}{n}}} \\ 0 & \text{otherwise} \end{cases}$$

Global existence of particle paths

$$v(x) = \int_{\mathbb{R}^n} k(x - y)\rho(y) \, dy - Mx, \tag{1}$$

where

$$k(x) = \frac{1}{n\omega_n} \frac{x}{|x|^n}$$

The convolution kernel k is singular, homogeneous of degree 1-n.

Equation (1) is analogous to Biot-Savart law, where vorticity ω is now replaced by density ρ .

Existence and uniqueness of particle paths follow similarly to that for incompressible Euler equations.

Extension to global existence: Beale-Kato-Majda criterion

$$\int_0^t \|\rho(\cdot,s)\|_{L^\infty} ds < \infty, \text{ for all finite times } t$$

Analysis extends to general exponent q > 2 - n.

Case $q \neq 2$: Non-constant steady states

Assume (based on numerics) that the model admits a steady state supported on a ball B(0,R).

Recall formula for div v: div $v = \rho - \Delta \left(\frac{1}{q}|x|^q\right) * \rho$

Equilibria supported on B(0,R):

$$v = 0$$
, hence div $v = 0$ in $B(0, R)$

A steady state $\bar{\rho}$ satisfies:

$$\bar{\rho} - (n+q-2) \int_{\mathbb{R}^n} |x-y|^{q-2} \bar{\rho}(y) dy = 0$$
 in $B(0,R)$

Define operator T_R : $T_R \bar{\rho}(x) = (n+q-2) \int_{B(0,R)} |x-y|^{q-2} \bar{\rho}(y) dy$

Solutions $\bar{\rho}$ are eigenfunctions of T_R corresp. to eigenvalue 1:

$$T_R \bar{\rho} = \bar{\rho}$$

Existence and uniqueness of equilibria

Theorem. For every q>2-n and M>0, there exists a unique radius R (that depends on q and n only) and a unique steady state $\bar{\rho}$ that is supported on B(0,R), has mass M and is continuous on its support.

Sketch of **proof**: Consider case R = 1 first.

$$T_1\bar{\rho}(x) = (n+q-2)\int_{B(0,1)} |x-y|^{q-2}\bar{\rho}(y)dy$$

 T_1 is a linear, strongly positive, compact operator that maps the space of continuous functions $C([0,1],\mathbb{R})$ into itself.

Krein-Rutman theorem: there exists a *positive* eigenfunction $\bar{\rho}_1$ such that

$$T_1\bar{\rho}_1 = \lambda\bar{\rho}_1 \tag{2}$$

 $\lambda(q,n)$ is the spectral radius of T_1 ; it is a simple eigenvalue and there is no other eigenvalue with a positive eigenvector.

Define, by rescaling: $\bar{\rho}(r) = \bar{\rho}_1(r/R)$, introduce in (2):

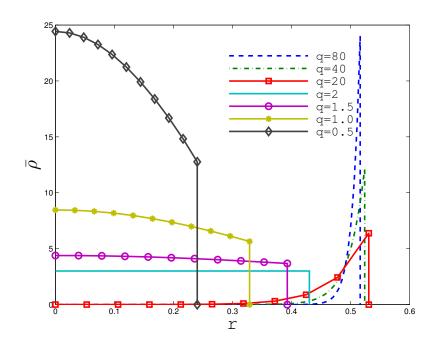
$$T_R \bar{\rho}(r) = \underbrace{R^{n+q-2} \lambda}_{=1} \bar{\rho}(r)$$

Find $R = \lambda^{-\frac{1}{n+q-2}}$.

Qualitative properties of equilibria

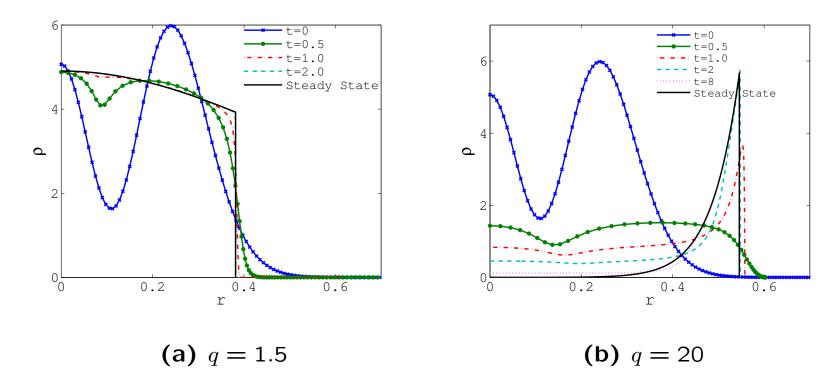
Theorem. Consider a bounded steady state $\bar{\rho}(x)$ that is supported in a ball B(0,R) of \mathbb{R}^n . Then, $\bar{\rho}$ is radially symmetric and monotone about the origin. More specifically, we distinguish two cases: (i) 2-n < q < 2, when $\bar{\rho}$ is decreasing about the origin, and (ii) q > 2, when $\bar{\rho}$ is increasing.

Proof uses the method of moving planes.



Dynamic evolution to equilibria

Numerical results in n = 3 dimensions:



The solutions approach asymptotically the steady states studied and shown in previous slides.

Numerics with a variety of other initial conditions suggests that these equilibria are global attractors for the dynamics.

Asymptotic behavior of equilibria: $q \to \infty$ and $q \searrow 2 - n$

First consider case R=1 and the eigenvalue problem

$$T_1\bar{\rho}_1(x) = \lambda\bar{\rho}_1(x), \qquad \text{for } x \in B(0,1),$$

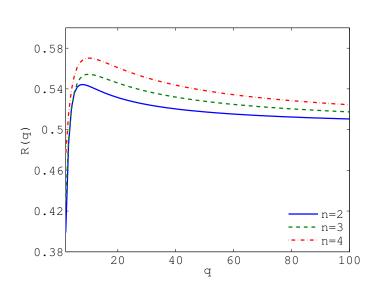
with

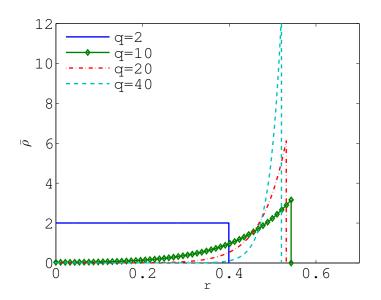
$$T_1\bar{\rho}_1(x) = (n+q-2)\int_{B(0,1)} |x-y|^{q-2}\bar{\rho}_1(y)dy$$

Goal: Use perturbation methods to find approximations for λ (spectral radius of T_1) and $\bar{\rho}_1$ (corresponding eigenvector).

Then, consider general R and find approximations to equilibrium solution $\bar{\rho}(r) = \bar{\rho}_1(r/R)$ and its radius of support $R = \lambda^{-\frac{1}{n+q-2}}$.

Asymptotic behavior $q \to \infty$





Numerics suggests: the radius of the support R approaches a constant, as $q \to \infty$ (left).

As q increases, mass aggregates toward the edge of the swarm, creating an increasingly void region in the centre (right).

$$\lambda \bar{\rho}_1(x) = (n+q-2) \int_{B(0,1)} |x-y|^{q-2} \bar{\rho}_1(y) dy$$
$$\approx (n+q-2) \bar{\rho}_1(1) \int_{B(0,1)} |x-y|^{q-2} dy.$$

Evaluate at x = 1, cancel $\bar{\rho}_1(1)$ and find a *coarse* approximation to λ .

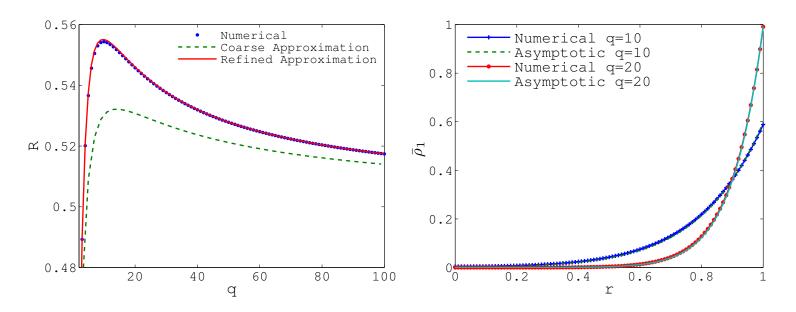
$$\lambda \approx (n-1)\omega_{n-1}2^{n+q-3}\Gamma(\frac{n-1}{2})\Gamma(\frac{n+q-1}{2})/\Gamma(n-1+\frac{q}{2})$$

Approximate $\bar{\rho}_1$:

$$\bar{\rho}_1(r) \approx C \int_0^{\pi} \sin^{n-2} \theta (\sqrt{1 - r^2 \sin^2 \theta} - r \cos \theta)^{n+q-2} d\theta,$$

Iterate the procedure to find a *refined* approximation for λ .

Find approximations for R.



n=3: Numerical and asymptotic solutions, as $q\to\infty$. There is excellent agreement between the two solutions.

Asymptotic behavior $q \searrow 2 - n$

Denote
$$q = 2 - n + \epsilon$$
, $\epsilon > 0$

Asymptotic study in the small ϵ regime

$$\lambda_{\epsilon} \bar{\rho}_{1}^{\epsilon}(x) = \epsilon \int_{B(0,1)} \frac{1}{|x-y|^{n-\epsilon}} \, \bar{\rho}_{1}^{\epsilon}(y) dy, \qquad \epsilon = q-1. \tag{3}$$

Asymptotic expansion (suggested by numerical simulations)

$$\lambda_{\epsilon} = \lambda_0 + \lambda_1 \epsilon + \lambda_2 \epsilon^2 + \cdots$$
$$\bar{\rho}_1^{\epsilon}(x) = \bar{\rho}^{(0)}(x) + \epsilon \bar{\rho}^{(1)}(x) + \epsilon^2 \bar{\rho}^{(2)}(x) + \cdots$$

The kernel $\frac{1}{|x-y|^{n-\epsilon}}$ is not integrable for $\epsilon = 0$, so we can not substitute the formal expansions into (3) directly.

Subtract on both sides $k_{\epsilon}(|x|)\bar{\rho}_{1}^{\epsilon}(x)$, where

$$k_{\epsilon}(|x|) = \epsilon \int_{B(0,1)} \frac{1}{|y-x|^{\epsilon-n}} dy$$

$$(\lambda_{\epsilon} - k_{\epsilon}(|x|)) \bar{\rho}_{1}^{\epsilon}(x) = \epsilon \int_{B(0,1)} \frac{\bar{\rho}_{1}^{\epsilon}(y) - \bar{\rho}_{1}^{\epsilon}(x)}{|y-x|^{n-\epsilon}} dy, \qquad r = |x|,$$

The integral in RHS is now O(1) for $\epsilon = 0$, provided $\bar{\rho}^{(0)}$ is Hölder continuous

Expand:
$$k_{\epsilon}(r) = n\omega_n + \frac{n\omega_n}{2}\ln(1-r^2)\epsilon + k^{(2)}(r)\epsilon^2 + O(\epsilon^3)$$

Match powers of ϵ on both sides:

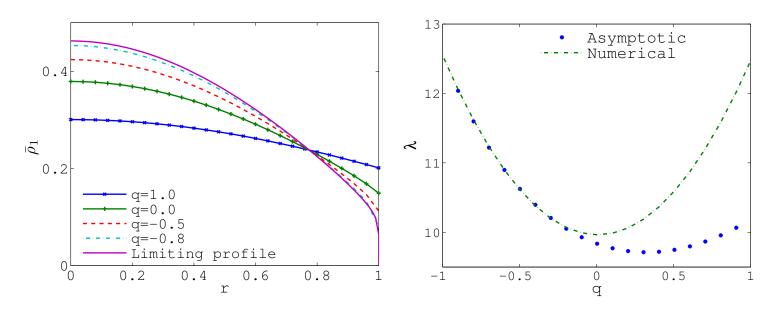
$$O(1): \lambda_0 - n\omega_n = 0$$

$$O(\epsilon): \int_{B(0,1)} \frac{\bar{\rho}^{(0)}(x) - \bar{\rho}^{(0)}(y)}{|y - x|^n} dy - (\lambda_1 - \frac{1}{2}n\omega_n \ln(1 - |x|^2))\bar{\rho}^{(0)}(x) = 0$$

Leading order: $\lambda_0 = const.$ and limiting profile $\bar{\rho}^{(0)}$ (solved by inverse iteration)

$q \searrow 2-n$: Numerics \sim asymptotics

$$n = 3$$
 (critical value $q = -1$)



Left: Equlibria $\bar{\rho}_1^{\epsilon}$ for $\epsilon = 2, 1, 0.5, 0.2$ (q = 1, 0, -0.5, -0.8).

The plain solid line is the limiting profile $\bar{\rho}^{(0)}$ found from asymptotics. As $\epsilon \to 0$, $\bar{\rho}_1^{\epsilon}$ approaches the limiting profile, confirming the asymptotic expansion.

Right: Eigenvalues obtained numerically (dots) and from the asymptotic expansion valid at order $O(\epsilon^2)$. Excellent agreement for small ϵ $(q \approx -1)$.

Remark. As $q \searrow 2-n$, radius $R=\lambda^{-1/(n+q-2)}=\lambda^{-1/\epsilon}$ of support approaches 0 exponentially fast and $\bar{\rho}(r)=\bar{\rho}_1(r/R)$ converges to a Dirac delta.

Even q: polynomial steady states

Integral equation for $\bar{\rho}$ in radial coordinates:

$$\bar{\rho}(r) = c(q, n) \int_0^R (r')^{n-1} \bar{\rho}(r') I(r, r') dr', \qquad 0 \le r < R$$

$$I(r,r') = \int_0^{\pi} (r^2 + (r')^2 - 2rr'\cos\theta)^{q/2-1}\sin^{n-2}\theta d\theta.$$

Kernel I(r, r') is separable when q is even.

Define the *i*-th order moments of the density $(m_0 = M)$:

$$m_i = n\omega_n \int_0^R r^{n+i-1} \bar{\rho}(r) dr. \tag{4}$$

Example: q = 4

$$I(r,r') = (r^2 + (r')^2) \int_0^{\pi} \sin^{n-2}\theta d\theta$$
$$\bar{\rho}(r) = (n+2)m_0r^2 + (n+2)m_2 \tag{5}$$

Plug (5) into (4): find a linear system to solve for m_0 and m_2

General q even: $\bar{\rho}(r)$ is a polynomial of even powers, of degree q-2

Inverse problem: custom designed potentials

Inverse problem: given a density $\bar{\rho}(x)$, can we find a potential K for which $\bar{\rho}(x)$ is a steady state of the model?

Answer: Yes, provided $\bar{\rho}(x)$ is radial and is a polynomial in |x|.

Theorem: In dimensions n=2 or n=3, consider a radially symmetric density $\bar{\rho}(x)=\bar{\rho}\left(|x|\right)$ of the form

$$\bar{\rho}(r) = \begin{cases} b_0 + b_2 r^2 + b_4 r^4 + \dots + b_{2d} r^{2d} & |x| < R \\ 0 & \text{otherwise.} \end{cases}$$

Then $\bar{\rho}(r)$ is the steady state corresponding to the force

$$F(r) = \frac{1}{n\omega_n} \frac{1}{r^{n-1}} - \sum_{i=0}^{d} \frac{a_{2i}}{2i+n} r^{2i+1},$$

where the constants a_0, a_2, \ldots, a_{2d} , are computed uniquely from b_0, b_2, \ldots, b_{2d} by solving a linear system.

Remark: Case d = 0 corresponds to family q = 2 from previous slides:

$$\bar{\rho}(r) = const., \qquad F(r) = \frac{1}{n\omega_n} \frac{1}{r^{n-1}} - Cr$$

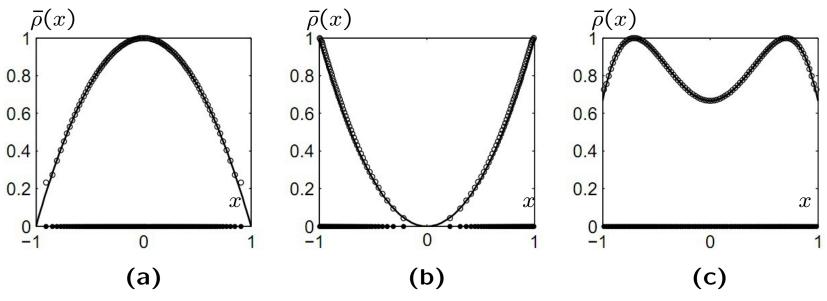
Inverse problem: examples

Examples: n = 1, R = 1

(a)
$$\bar{\rho}(x) = 1 - x^2$$
; (b) $\bar{\rho}(x) = x^2$; (c) $\bar{\rho}(x) = \frac{1}{2} + x^2 - x^4$

The corresponding forces given by the Theorem are:

(a)
$$F(x) = \frac{1}{2} - \frac{9}{10}x + \frac{1}{4}x^3$$
; (b) $F(x) = \frac{1}{2} + \frac{9}{10}x - \frac{1}{2}x^3$; (c) $F(x) = \frac{1}{2} + \frac{209425}{672182}x - \frac{2075}{2527}x^3 + \frac{3}{19}x^5$.



Filled circles along the x-axis: the steady states reached by numerical time evolution. Empty circles: density function as computed from the filled circles. Solid line: analytical expression for $\bar{\rho}$.

Regularized potentials

$$F(r) = \frac{1}{r} - r \qquad \text{regularize} \qquad F(r) = \begin{cases} C_1, & 0 \le r < r_0 \\ \frac{1}{r} - r, & r_0 \le r \le 2 \\ -C_2 \exp(-r), & 2 < r \end{cases}$$

$$(6)$$

$$F(r) = \begin{cases} C_1, & 0 \le r < r_0 \\ \frac{1}{r} - r, & r_0 \le r \le 2 \\ -C_2 \exp(-r), & 2 < r \end{cases}$$

$$F(r) = \begin{cases} C_1, & 0 \le r < r_0 \\ \frac{1}{r} - r, & r_0 \le r \le 2 \\ -C_2 \exp(-r), & 2 < r \end{cases}$$

$$F(r) = \begin{cases} C_1, & 0 \le r < r_0 \\ \frac{1}{r} - r, & r_0 \le r \le 2 \\ -C_2 \exp(-r), & 2 < r \end{cases}$$

$$F(r) = \begin{cases} C_1, & 0 \le r < r_0 \\ \frac{1}{r} - r, & r_0 \le r \le 2 \\ -C_2 \exp(-r), & 2 < r \end{cases}$$

$$F(r) = \begin{cases} C_1, & 0 \le r < r_0 \\ \frac{1}{r} - r, & r_0 \le r \le 2 \\ -C_2 \exp(-r), & 2 < r \end{cases}$$

Equilibrium states for the regularized interaction force (6). Initial conditions were chosen at random in the unit square. For $r_0 < 0.09$, the steady state is the same as for $r_0 = 0$ (uniform density in the unit circle).

Bibliography

- 1. R.C. Fetecau, Y. Huang and T. Kolokolnikov [2011]. Swarm dynamics and equilibria for a nonlocal aggregation model, *Nonlinearity*, Vol. 24, No. 10, pp. 2681-2716 (featured article)
- 2. R.C. Fetecau and Y. Huang [2012]. Equilibria of biological aggregations with nonlocal repulsive-attractive interactions, submitted

Future Directions

Energy considerations: local/global minima

$$E[\rho] = \frac{1}{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x - y) \rho(x) \rho(y) dy dx$$

The model is a gradient flow with respect to this energy:

$$\frac{d}{dt}E[\rho] = -\int_{\mathbb{R}^n} \rho(x) |\nabla K * \rho(x)|^2 dx \le 0$$