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Denoising Algorithm
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Denoising Algorithm

e NL-means: Baudes, Coll, Morel 2005
- Optimal estimator
- Single iteration
- A is large block of pixels
- 0 IS related to image noise

e UINTA: Awate, Whitaker 2005
= Entropy formulation
- Iterate
- A is a random subset of image
- o optimized through cross validation
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NL-Means Fformulation

e Markov random field
- Pixels are random variables
- Conditional distributions depend on neighbors
- P(Xy|I\X,) = P(X,|Y,) (+consistency)

e Stationarity

e Mixing property

lim  |P(Xu, X,) — P(X.)P(Xy)| = 0;YX,, X, € X

[|[u—v||—o0
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Image Model

e Noise model
G=G+N
e Goal: estimate ¥ from I

e Strategy
- Construct function of pixel nbhd: ﬁz A f@z)
- Optimize f

argmingE [(gi — f(yi))Q]
F@) = B [XIV =5 = B[X]Y = 5]
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Estimating Conditional
Expectation
e Nonparametric regression (Nadaraya-Watson)

1> 2 K(y — i)

P =ol=4 > i1 K(y — i)

e (x,,y,) independent samples from joint
distribution

e Asymptotic convergence (pointwise) n->infty
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Estimation from Image Neighborhoods

e MRF -> the image pixels are samples from
the conditional
e Independence: strictly, not so

- Mixing property (Levina 1998) => asymp.
unbiased as n->infty

e SO..
- Can estimate f(7;)
with lots of image samples
e NL-means

- Each pixel becomes a weighted average of
pixels with similar nieghborhoods
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Practical Considerations

e Set A need not be random
- Large block of pixels
e Images are not fully stationary
- Nearby statistics dominate
- Choose A to be near the pixel in question

e Bandwidth of kernel (Gaussian) is important
- Too small -> estimates are noisy
- Too large -> estimates are biased

e Computation time is significant

TTTTTTTTT



What Does the NL-Means Theory

Tell Us?

e One pass is enough
- “optimal”
- Yet, in practice, many people iterate

e What about the center pixel?
- In theory, Y excludes the center pixel
e You cannot condition a random variable on itself

- In practice, everyone includes the center pixel
in the nbhd comparisons
e What better indicator is there of a pixels value?

TTTTTTTTT



Affects of Center Pixel




Visualizing NL-Means - No
Center Pixel

Neighborhood space and P(X,Y) ‘ 5




Visualizing NL-Means - with
Center Pixel

Neighborhood space and P(X,Y) | ‘ ;




Center Pixel

e It makes “sense” to use the center pixel in
comparing neighborhoods
- Results are quantifiably better

e Is there a theory that explains why the
center pixel helps?
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Iterations

e Some researchers have noticed iterating
helps in_some cases

Multiples iterations

One iteration One iteration - smaller o - smaller ©




Conditional Distributions of the
Observed Image

e Optimal for f(7)

- But the neighborhoods are noisy
e W.r.t. the ideal image
E [X|17 - y]
is biased (error beyond variability of G)
e Ideally we would like

BIX]Y =y
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Measurement Noise In Regression

noise
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Optimal Nonparametric Regression
with Measurement Noise

e Difficult, open problem
e Some work in statistics
e Known noise -> deconvolution problem
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An Alternate formulation

e Consider the joint distribution of pixels and
their neighborhoods

P(X,Y) = P(Z)

e The entropy of this distribution describes:
- inherent stochasticity in image
- the repeatability of image neighborhoods

- the degree to which the image “looks like
itself”

- the amount of noise in the image
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Entropy
(Shannon 1948)

e Entropy of a random variable X (instance x)
- Measure of uncertainty - information content of a

h(X) = = [ pla)log p(a)de = ~E, logp(X)]

() Low entropy

High entropy
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UINTA Strategy
Awate & Whitaker 2005

e Treat the entropy of the image as a
measure of “regularity” or “goodness”
- An alternative geometric quantities such as TV

e Estimate the entropy with nonparametric
density estimation

e Use an iterative strategy to reduce entropy
- Combine with other terms, noise models, etc.
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Estimating Entropy Nonparametrically

e Expectation of log(P) via sample mean
h(X) =~ —Z( logP(a:)

e Estimate P for neighborhoods (Z) using
Parzen windowing

P(z;) =~ Y Ga(zi — z4; ¥ ), where

uc A,

IAtI
t & A.

G() - Gaussian kernel
p Covariance/bandwidth S 2
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Computations on Entropy

e Select kernel bandwidth to minimize entropy
- Maximum likelihood with cross validation

> 4 6 8
Parzen-window size
(b)

Figure 3.1. Optimal kernel bandwidth. (a) The Lena image. (b) The entropy estimate
for the Lena image as a function of Parzen-window kernel o. SC| 2
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Samples and Bandwidth
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Entropy Minimization

e Entropy as sample mean

hZ) —E,[log p(Z)]
57 2icp logp (2:)

ﬁ D icp 108 (ﬁ 2 jen Gzi = 2, ?P))

- Set B: all pixels in image

al

Q

- Set A: a small random selection of pixels
- Z, shorthand for z(s;)

e Stochastic approximation
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Entropy Minimization

e Stochastic approximation
- Reduce O(/BF) to 0(IAlIB)
- Efficient optimization

e Stochastic-gradient descent

)\ Oh(X|Y=y)

Ax 5

o ! G(zj—2z,¥)
~ > XTi—XT
B A _ J
| B| JjE E:keAG(zk 2,0)
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Mean-Shift Procedure
(Fukunaga et al. 1975)

e fixed point: derivative=0, weights
lag <-> mean shift
xi%Zwijxj

J
e Mean-shift - a mode seeking procedure
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Mean-Shift Procedure
(Fukunaga et al. 1975)

e Data filtering to reduce noise
- #and tuned parameters
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Relationships to Other Image
Filters

e Bilateral filter

- Lowpass blurring (averaging locally in image
space)

- B.L. filter (averaging locally in space+intensity)

e UINTA/NL-means

- Averaging locally in the space if image
neighborhoods

TTTTTTTTT



Entropy Scale Space?
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Adding a Noise Model
E(u) = )\/(u—g)zda:—l—/|Vu|2dx Dirichlet

E(u) = )\/(u — g)QdI + / |Vu|d$ Total Variation

E(u) = A / (w— gz + H(Z,)  entropy




fixed Point Algorithm
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MRI Tissue Classification

e Algorithm: 1) initialize with atlas, 2)
iteratively relabel to reduce tissue-wise nhd

entropy
6M Classification Performance vs Noise
o7 Level
95
93
91
89
87
Proposed & Leemput
-~ 85
e aa 0% 1% 3% 5% 7% 9%
MRI Input 6M, WM, CSF Seg. Comparison: SOTA-EM w/MRFs § Atlas

(Leemput et al.)
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Texture Segmentation

e Reassign class labels to reduce in-
class entropy
- Deformable model to keep spatial
coherence
e Recompute pdfs from new class
labels

- Random samples + nonparametric nhd
statistics Min entropy

e Iterate
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Texture Segmentation
Awate et al., 2005

e Initialization -> checkerboard

e Deformable model -> level sets (Tsai and Seglmi, 2004)




Is There A Variational
formulation?




Continuous formulation

1. Convert updates to PDE

2. Entropy formulation directly to images/
functions

u(x), u: R?+— RN image

n(z), n: R*+> R Neighborhood
mask
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Differences of Neighborhoods
K xR =R
(2, y) =K( / <u<x+a>—u<y+a>>2n2<a>da)

Cis a normalization- something
P(zy) = C / k(x,y)dy to do with supp(u)




Entropy
H(Z) = /P(z) lg P(2)dz

}ﬂzgs/ﬁ4/k@wm4dm+0

H (1) = / lg [ / K ( / (u(z + @) — uly + a))2n2(a)da> dy] iz




How Do We Make Sense of This?
(Hand Waving and Speculation)

N.(y) : ®* — F
Nu(y) : n(y)u(r + y)
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More Speculation on Continuous Case

A
e Think of M, as a measure F My,
- density dM, from u(x) :

e for Z in ¥
= M induces a potential field

U(z) =IgM® K]
- U(z) is related to distance
to a smoothed version of M )j

fer, K(f)=K(fllL2)
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Continous Continued...

e The entropy is an integral over M
- accounting for local density

dH _ dH M
du dM du
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