
Nonlocal models of biological aggregations:
Asymptotic dynamics and exotic equilibria

Chad M. Topaz
Dept. of Mathematics, Statistics,
and Computer Science
Macalester College

DMS-0740484, DMS-1009633



DMS-0740484, DMS-1009633

How can one equation cause so much f***ing trouble?

Chad M. Topaz
Dept. of Mathematics, Statistics,
and Computer Science
Macalester College



Background



IPAM Nonlocal PDE - Feb. 28, 2012 - Los Angeles, CA

Aggregations display coordinated movement.

Parrish & Keshet, Nature, 1999
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Aggregations propagate without a leader.

Dorset W
ildlife Trust
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Aggregations consist of socially interacting organisms.

UNFAO
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Aggregations may consist of socially interacting organisms.

UNFAO
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Many aggregations have sharp boundaries, constant density.

Sinclair, 1977
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Aggregations have impacts at long spatiotemporal scales.
“Social behaviors [that] on short time and space scales lead to the 
formation and maintenance of groups… lead at larger time and 
space scales to differences in spatial distributions of populations 
and rates of encounter and interaction with populations of 
predators, prey, competitors and pathogens…  At the largest time 
and space scales, aggregation has profound consequences for 
ecosystem dynamics and for evolution of behavioral, 
morphological, and life history traits.”

--Okubo, Keshet, Grunbaum,“The dynamics of animal grouping”
in Diffusion and Ecological Problems, Springer (2001)
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What is this talk really about?

population
density

velocity social potential
(endogenous)

external potential
(exogenous)

⇢t +r · (v⇢) = 0, v = �rQ ⇤ ⇢�rF

Biological question:
How are individual behaviors and group behavior connected?
Mathematical question:
How do Q, F affect the macroscopic behavior of solutions?
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Selected, (very) abbreviated background

Well-posedness, blow-up in 
various dimensions (F=0, mostly 
for simple Q)

• Bodnar & Velasquez 
• Bertozzi, Brandman, Carrillo, 

Huang, Garnett, Laurent, 
Rosado, Slepcev...

Collapse when Q is pointy, 
attractive at short distances

Well-posedness, steady states in 
Rn (attractive/repulsive Q, F=0)

• Fetecau, Huang, Kolokolnikov Uniform density inside a ball

Stability (F ≠ 0) • Raoul
• Fellner & Raoul

Sums of δ-masses can be stable 
even for Q that are repulsive at 
short distances

Asymptotic behavior (in 1-d, for 
fairly general Q, F = 0)

• Leverentz, Topaz & Bernoff Spreading, blow-up,  or 
compactly-supported steady 
state

Equilibria (in 1-d, for fairly general 
Q, F ≠ 0)

• Bernoff & Topaz Steady states with compact 
support and possibly δ-
concentrations

⇢t +r · (v⇢) = 0, v = �rQ ⇤ ⇢�rF



Motivation
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Desert locusts form giant, destructive swarms.

1010 locusts

100 km2

10 - 100 km/day
days or weeks

$10 billion/yr for pesticides (all insects)
$100 million/yr for control (Africa)
$100 million/yr in crop loss (Africa)

(EPA, UNFAO
)

National Geographic,
 “A Perfect Swarm”
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Migrating locust swarms travel with a rolling motion.

Uvarov, Grasshoppers & Locusts (1977)

wind

Takeoff Resting Landing

small

varia
tio

n
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Abstract. We construct an individual-based kinematic model of rolling migratory
locust swarms. The model incorporates social interactions, gravity, wind, and
the effect of the impenetrable boundary formed by the ground. We study the
model using numerical simulations and tools from statistical mechanics, namely
the notion of H-stability. For a free-space swarm (no wind and gravity), as the
number of locusts increases, the group approaches a crystalline lattice of fixed
density if it is H-stable, and in contrast becomes ever denser if it is catastrophic.
Numerical simulations suggest that whether or not a swarm rolls depends on the
statistical mechanical properties of the corresponding free-space swarm. For a
swarm that is H-stable in free space, gravity causes the group to land and form
a crystalline lattice. Wind, in turn, smears the swarm out along the ground until
all individuals are stationary. In contrast, for a swarm that is catastrophic in
free space, gravity causes the group to land and form a bubble-like shape. In the
presence of wind, the swarm migrates with a rolling motion similar to natural
locust swarms. The rolling structure is similar to that observed by biologists, and
includes a takeoff zone, a landing zone, and a stationary zone where grounded
locusts can rest and feed.

1 Introduction

Biological swarms provide fascinating examples of natural pattern formation on short time
scales, and on longer time scales may have significant ecological and environmental conse-
quences [1,2]. The most dramatic example, arguably, is that of locusts, which cause famines
worldwide. Of particular interest are species such as the African migratory locust Locusta
migratoria migratorioides and the desert locust Schistocerca gregaria, whose habitats together
cover the vast majority of northern Africa, the Middle East, and southwestern Asia [3]. These
locusts, like many others, exhibit an intriguing phase polymorphism. Individuals in the solitar-
ious phase avoid social contact. In contrast, adult locusts in the gregarious phase form flying
swarms. These swarms may contain up to 1010 members, cover cross-sectional areas of up to
1000 km2, and travel up to 102 km per day for a period of days or weeks as they feed [3] causing
devastating crop loss [4]. The mechanism for the switch to the dangerous gregarious phase is
complex, and has been a subject of significant biological inquiry. A suite of factors recently has
been implicated, including fractal geometry of the vegetation landscape [5] and mechanosensory
stimulus of the locusts’ back legs [6]. In this paper, we focus on a group of insects already in
the gregarious phase and build a mathematical model for the destructive flying swarms.
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!̇xi =


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j=1

dp

dr
(|!rij |)

!rij

|!rij |



−Gêz+Uêx, p(r) = −FLe−r/L+e−r, !rij = !xj−!xi

We built a discrete, 2-d model for locust swarms.

x (downwind)

z 
(a

bo
ve

 g
ro

un
d)

F < 1
L > 1

G

interactions windgravity

r = interlocust distance

U Interorganism potential p(r)
for two interacting locusts
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In some parameter regimes, the model forms rolling 
swarms similar to those observed in nature.

Takeoff Resting Landing
Uvarov, Grasshoppers & Locusts (1977)



Asymptotic Dynamics
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Pairwise social forces that differ only quantitatively can 
produce qualitatively different aggregate behaviors.

ẋi = −∇iEfs, Efs =
1

2

N∑

i=1

N∑

j=1

p(rij), p(r) = −FLe−r/L + e−r
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Pairwise social forces that differ only quantitatively can 
produce qualitatively different aggregate behaviors.
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Pairwise social forces that differ only quantitatively can 
produce qualitatively different aggregate behaviors.
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ae�|x|/xa re�|x|/xr

Attraction Repulsion Reference

Breder (1954)

Sakai (1973)

Breder (1954), Niwa (1994)

Beecham & Farnsworth (1999)

Mogilner & Keshet (1999)

Various

Modelers use a variety of functional forms to describe 
pairwise social forces.
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Asymptotic Dynamics of Attractive-Repulsive Swarms∗

Andrew J. Leverentz†, Chad M. Topaz‡, and Andrew J. Bernoff†

Abstract. We classify and predict the asymptotic dynamics of a class of swarming models. The model consists
of a conservation equation in one dimension describing the movement of a population density field.
The velocity is found by convolving the density with a kernel describing attractive-repulsive social
interactions. The kernel’s first moment and its limiting behavior at the origin determine whether
the population asymptotically spreads, contracts, or reaches steady state. For the spreading case,
the dynamics approach those of the porous medium equation. The widening, compactly supported
population has edges that behave like traveling waves whose speed, density, and slope we calculate.
For the contracting case, the dynamics of the cumulative density approach those of Burgers’ equation.
We derive an analytical upper bound for the finite blow-up time after which the solution forms one
or more δ-functions.

Key words. swarm, aggregation, integrodifferential equation, attractive-repulsive, asymptotic dynamics, porous
medium, burgers, blow-up

AMS subject classifications. 92, 35

DOI. 10.1137/090749037

1. Introduction. Biological aggregations such as fish schools, bird flocks, ungulate herds,
and insect swarms have drawn considerable attention from mathematical modelers in recent
years. These animal groups—which for brevity we refer to simply as swarms—have implica-
tions for ecological dynamics, human food supply availability, disease transmission, and, on
the longest spatiotemporal scales, evolution [19, 23]. Increasingly, they serve as prototypes
for the development of algorithms in robotics, engineering, and artificial intelligence [6, 22].
Furthermore, biological swarms are a rich and versatile source of pattern-forming behavior,
taking on morphologies including vortices, advancing fronts, branched dendritic structures,
and more exotic patterns [12, 20].

The emergent organization of swarms can be mediated by exogenous influences such as
nutrients, light, or gravity, as well as by endogenous ones, namely social interactions between
individuals. Since some species swarm even in the absence of meaningful external stimuli, one
concludes that social interactions play a key role. The most important social forces are thought
to be attraction, repulsion, and alignment [9, 12, 13]. Attraction refers to the evolutionarily
preprogrammed tendency of conspecific organisms to move towards each other, which offers
benefits such as protection and mate choice, while repulsion refers to the tendency to move

∗Received by the editors February 8, 2009; accepted for publication (in revised form) by J. Sneyd April 15, 2009;
published electronically DATE. The first and second authors were partially supported by the NSF through grant
DMS-0740484. The third author was also supported by the NSF through grant DMS-0807347.

http://www.siam.org/journals/siads/x-x/74903.html
†Department of Mathematics, Harvey Mudd College, Claremont, CA 91711 (aleverentz@gmail.com, ajb@hmc.

edu).
‡Department of Mathematics and Computer Science, Macalester College, St. Paul, MN 55105 (ctopaz@

macalester.edu).
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What properties of the social interaction function really 
matter in determining the asymptotic behavior?
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We construct a minimal continuum model to investigate 
how long-time behavior depends on social forces.

Odd
Finite first moment
Cont. & piecewise diff. (x ≠ 0)
Jump discontinuity (x = 0)
Crosses zero for exactly one |x|
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The swarm can asymptotically spread, reach a finite steady 
state, or contract.
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Qualitative asymptotic behavior depends on two 
parameters directly computable from social force function.

long waves spread

long waves contract

Long wave limit:
Porous medium

⇢
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= (⇢2)
xx

,  =
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Z 1

�1
xq(x) dx
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Qualitative asymptotic behavior depends on two 
parameters directly computable from social force function.

short waves spread short waves contract

Short wave limit:
Burgers
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Qualitative asymptotic behavior depends on two 
parameters directly computable from social force function.

long waves spread
short waves spread
SPREADING �

long waves spread
short waves contract
BLOW-UP

long waves contract
short waves spread
STEADY STATE

long waves contract
short waves contract
BLOW-UP
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Theory agrees with asymptotic behavior seen in numerical 
simulations of the full model.
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Theory agrees with asymptotic behavior seen in numerical 
simulations of the full model.
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In the spreading regime, the solution asymptotically 
approaches Barenblatt’s self-similar profile.
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In the blow-up regime, an analytical upper bound for blow-
up time agrees with numerical simulations.
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The gap in the locust swarm is crucial, allowing for rolling 
migration in the presence of wind.

Takeoff Resting Landing
Uvarov, Grasshoppers & Locusts (1977)
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Some solutions contain a gap and a mass concentration at 
the boundary.

A PRIMER OF SWARM EQUILIBRIA 3
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Fig. 1.1. Numerical simulation of the two-dimensional locust swarm model of [34], given
by (1.1). The downwind coordinate is x and the vertical (above-ground) coordinate is z. (a) The
simulation begins with a randomly distributed initial state. (b) With gravity but no wind (U = 0),
the swarm’s equilibrium is a bubble-like shape on the ground, consisting of a dense, grounded group
of locusts and an airborne group. The two are separated by a gap that is void of insects. (c) For
the full simulation with wind, by the time t = 2, the swarm again coheres into a bubble and travels
to the right with a rolling motion. Individuals in the back of the swarm take off to join the flying
group and individuals reaching the front of the flying swarm land on the ground, where they remain
motionless until taking off again. (d) The trajectory of one individual locust from t = 0 to t = 20
demonstrates the periodic landing and takeoff. The parameters in (1.1) are N = 200, G = 0.5,
L = 10, g = 1 and U = 1.

The general model (1.2) displays at least three solution types as identified in [9].
Populations may concentrate to a point, reach a finite steady state, or spread. In [23],
we identified conditions on the social interaction force q for each behavior to occur.
These conditions map out a “phase diagram” dividing parameter space into regions
associated with each behavior. Similar phase diagrams arise in a dynamic particle
model [14] and its continuum analog [12]. Models that break the antisymmetry of q
(creating an asymmetric response of organisms to each other) display more compli-
cated phenomena, including traveling swarms [26].

Many studies have sought conditions under which the population concentrates to
a point mass. In a one-dimensional domain, collapse occurs when the force q is finite
and attractive at short distances [9]. The analogous condition in higher dimensions
also leads to collapse [3–7]. One may also consider the case when the velocity includes
an additional term describing an exogenous force,

V (x) =

∫

R

q(x− y)ρ(y) dy + f(x). (1.3)

Initial Condition Steady State (no wind)

Mass Concentration Gap
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We have calculated some swarm equilibria in 1-d.
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How can we study equilibrium swarms analytically?

Dynamics:

Velocity:

Energy: W(x1, . . . , xN ) =
1
2

NX

i=1

NX

j=1
i 6=j

mQ(xi � xj) +
NX

k=1

F (xk)

Vi(x1, . . . , xN ) =
NX

j=1
j 6=i

mq(xi � xj) + f(xi)

dxi

dt

= Vi(x1, . . . , xN )0 = ⇢
t

+ (⇢V )
x

V =
Z

⌦
q(x� y)⇢(y) dy + f(x)

W =
1
2

Z

⌦

Z

⌦
⇢(x)⇢(y)Q(x� y) dx dy +

Z

⌦
F (x)⇢(x) dx

⇢ = Population Density

Q = Social Interaction Potential

F = External Potential
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There is a convenient correspondence between discrete 
and continuum solutions.
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Equilibrium solutions and their stability follow from analysis 
of the continuum energy.

W [�] =
1

2

Z

⌦

Z

⌦
�(x)�(y)Q(x� y) dx dy +

Z

⌦
F (x)�(x) dxEnergy:

Z

�⇢̄

Q(x� y)⇥̄(y) dy + F (x) = � for x 2 �⇢̄.Equilibrium:
(First Variation)

�(x) ⌘
Z

�⇢̄

Q(x� y)⇥̄(y) dy + F (x) � � for x 2 ⇥�̄
c.Local Minimizer:

Endogenous Exogenous

Global Minimizer:
(Second Variation) Hard(er)

Constant energy
felt by test mass

Support



IPAM Nonlocal PDE - Feb. 28, 2012 - Los Angeles, CA

We can find analytical solutions to the continuum problem.

Energy Fredholm
equationfirst

variation

Z �

↵
Q(x� y)⇥(y) dy = �� F (x),

Z �

↵
⇥(x) dx = M
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We can find analytical solutions to the continuum problem.

Energy Fredholm
equationfirst

variation

“invert”
integral

operator

Q(x) = �GLe�|x|/L + e�|x| ! (�
xx

� 1)(L2�
xx

� 1)
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We can find analytical solutions to the continuum problem.

ODE

Energy Fredholm
equationfirst

variation

“invert”
integral

operator

Solution
calculus

plug in

2L2(G� 1)⇥
xx

� 2(GL2 � 1)⇥ = (⇤
xx

� 1)(L2⇤
xx

� 1)[�� F (x)]
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Attractive-repulsive interactions with no external force can 
yield compactly supported solutions.

G = 0.5, L = 2
N = 40

�(x) = A+B cos(µx)

x

Q(x� y) = �GLe�|x�y|/L + e�|x�y|

 
(Local Minimizer)
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Repulsive interactions with a quadratic potential also yield 
compactly supported groups.

γ = 1
N = 40

Q(x� y) = e�|x�y|, F (x) = �x2

x

�(x) = A�Bx2

 
(Global Minimizer)
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The dimensionality of the repulsive potential matters.

y

x

Quasi 2-d potential:
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Quasi-2d potential yields a mass concentration, a classical 
swarm, and a gap separating the components.

1-D

Quasi
2-D

Organism column Density profile
ρ

z

ρ
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In conclusion...

⇢t +r · (v⇢) = 0, v = �rQ ⇤ ⇢�rF

• For F = 0 (endogenous forces only), asymptotic dynamics 
depend on -∇Q via first moment and jump size at origin

• For F ≠ 0 (endogenous and exogenous forces), the model 
agrees with (even small N) discrete systems, and has a 
variational formulation from which we find exact solutions, 
typically with features such as jump discontinuities and 
concentrations.
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Meet two locusts.

Locust A Locust B

Color
Size

Body composition
Fecundity
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These are two “phases” of the same locust species.

Solitary Gregarious

Behavior
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These are two “phases” of the same locust species.

Solitary Gregarious

Behavior
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We model locust phase change with two-phase 
aggregation equations including reaction terms.

the locust-locust interaction scale. Our results suggest that environ-
mental interventions that reduce individual locust mutual attraction
(e.g., by manipulating plant distribution or local hydrology) may also
control large scale outbreaks of locust plagues. They also suggest
several future biological experiments which would measure key mi-
croscopic and macroscopic properties of gregarious swarm forma-
tion.

Results
Model construction. Locusts in a group are subject to attractive
and/or repulsive forces based on combined sensory, chemical, and
mechanical cues that affect their motion. We assume that such sens-
ing is directionally isotropic, a reasonable approximation [32] for or-
ganisms receiving sensory inputs of a variety of types, although direc-
tional models are possible as well [33]. Rather than tracking individ-
ual locusts, we consider a population density field ⇢(x, t) moving at
velocity v(x, t). Continuum population modeling [34, 35] allows us
to apply well-known analytical tools in order to characterize swarm
formation and structure. Our work draws from classic swarm model-
ing in which a conserved population density ⇢ moves at a velocity v

that arises from social interactions:

⇢t +r · (⇢v) = 0, v = �
Z

⌦

rQ(x� x

0)⇢(x0, t)dx0. [1]

The velocity v is a convolution of the density ⇢(x, t) and the so-
cial interaction field Q(x� x

0), which describes the influence of the
locust population at location x

0 on that at location x. We use the
notation v = �rQ ⇤ ⇢ to denote the convolution in Eqns. [1] and
assume that Q(x � x

0) is radially symmetric and depends only on
the distance between x and x

0. We provide further background on
Eqns. [1] in the Supporting Information (SI).

To adapt Eqns. [1] to biphasic desert locust swarms, we in-
troduce separate density fields for solitary and gregarious locusts,
s(x, t) and g(x, t), respectively, and the total density ⇢ = s + g.
With marching locusts in mind, we choose a two-dimensional spa-
tial domain ⌦ and spatial coordinate x = (x, y). We also include
a density-dependent rate f

1

(⇢) to model the transition from the gre-
garious to the solitary state and f

2

(⇢) for the opposite switch. Our
model thus reads

ṡ+r · (vss)= �f
2

(⇢)s+ f
1

(⇢)g, [2a]
ġ +r · (vgg)= f

2

(⇢)s� f
1

(⇢)g, [2b]

where the velocities are given by

vs = �r(Qs ⇤ ⇢), vg = �r(Qg ⇤ ⇢). [3]

These equations are complete once we specify the solitary and gre-
garious social interactions Qs,g and the density-dependent conver-
sion rates f

1,2. Since solitary locusts are crowd-avoiding, we model
Qs as purely repulsive. Gregarious locusts, on the other hand, are
assumed to be attracted to others, except for short-distance repulsion
due to excluded volume effects. Hence, we model Qs and Qg with
the interaction functions

Qs(x) = Rse
�|x|/rs , Qg(x) = Rge

�|x|/rg �Age
�|x|/ag , [4]

where Rs, Rg, Ag are interaction amplitudes and rs, rg and ag are
interaction length scales. For cohesiveness to occur, the parameters
in Qg must lie in the regime that leads to clumping, with the condi-
tions as stated in [8]. Specifically, we require Rgag � Agrg > 0 so
that repulsion dominates at short length scales, and Aga

2

g�Rgr
2

g > 0
so that attraction dominates at longer ones. We model the phase con-
version rates with the rational functions

f
1

(⇢) =
�
1

1 + (⇢/k
1

)2
, f

2

(⇢) =
�
2

(⇢/k
2

)2

1 + (⇢/k
2

)2
. [5]

Here, �
1,2 are maximal phase transition rates and k

1,2 are characteris-
tic locust densities at which f

1,2 take on half of their maximal values.
Note that f

1

decreases with ⇢, capturing the inverse relationship be-
tween solitarization rate and density, while f

2

increases with ⇢ and
saturates at �

2

describing speedier gregarization at higher densities.
Our complete model consists of Eqs. [2]-[5] together with ini-

tial conditions specifying s(x, 0) and g(x, 0). We consider a spa-
tially periodic domain, which simplifies both numerical simulation
and mathematical analysis. We do not include locust reproduction or
death as these occur on much longer time scales than phase change.

Parameter selection. To estimate the parameters in Eqn. [5] we
draw upon the experimental results of [20]. Since phase changes take
approximately four hours, we set �

1,2 = � = 0.25 hr�1. The critical
density for gregarization is reported to be about 50 - 80 locusts/m2.
We assume that the solitarization process has the same critical den-
sity, and set k

1,2 = k = 65 locusts/m2. To estimate the social in-
teraction length scale parameters in Eqs. [4], we apply the results of
[25, 27], which identify the “sensing range” of a locust as 0.14 m,
and the “repulsion range” as 0.04 m, of the same order of magni-
tude as the approximately 0.08 m body length of a mature individual.
For the gregarious phase we thus set the repulsion length scale at
rg = 0.04 m and the attractive one at ag = 0.14 m, corresponding to
the experimental sensing range. These choices agree with field obser-
vations where insect attraction typically occurs at longer length scales
than repulsion. We also assume that solitary locusts are repelled from
others at their sensing range, so that rs = 0.14 m. These choices sat-
isfy rg < ag = rs which is assumed for the remainder of this paper.
Finally, we estimate Rs, Rg , and Ag via explicit velocity computa-
tions. The speed of a locust when it is alone varies between 72–216
m/hr, depending on diet [27]. At the upper end, this is roughly one
body length per second. When it is moving in a group, the speed
varies in a tighter range of 144–216 m/hr [27]. Using these biologi-
cal measurements and Eqn. [3], we find Rs = 11.87 m3/(hr·locust),
Rg = 5.13 m3/(hr·locust), and Ag = 13.33 m3/(hr·locust). Details
are given in the SI.

Homogeneous steady states. The solitary s
0

and gregarious g
0

ho-
mogeneous steady-state (HSS) solutions of Eqn. [2] can be written
in terms of the total uniform density ⇢

0

, which is simply the mean
value of ⇢ for a specified initial condition. The full expressions for
s
0

and g
0

in terms of ⇢
0

appear in the SI; in the small ⇢
0

limit these
are approximately

s
0

⇡ ⇢
0

� �
2

�
1

k2

2

⇢3
0

, g
0

⇡ �
2

�
1

k2

2

⇢
0

, [6]

while in the limit of large ⇢
0

we find

s
0

⇡ �
1

k2

2

�
2

⇢
0

, g
0

⇡ ⇢
0

� �
1

k2

2

�
2

⇢
0

. [7]

The low density HSS is thus composed mostly of solitary locusts and
vice versa for the high-density case, showing the non-monotonicity
of s

0

with respect to total density ⇢
0

. In Fig. 1(a) we plot the HSS
s
0

(solid blue) and g
0

(broken green) for our biological estimates
k = 65 locusts/m2 and � = 0.25 hr�1. A calculation incorporat-
ing detuning from the case k

1

= k
2

, �
1

= �
2

appears in the SI. To
account for greater variation from our parameter estimates, we also
calculate s

0

and g
0

for parameter sets chosen randomly from uniform
distributions centered at our estimated values for {�

1

, �
2

, k
1

, k
2

}.
As shown, s

0

initially increases with ⇢
0

. At a critical density ⇢
⇤

,
s
0

reaches a maximum, whereas g
0

keeps increasing monotonically.
Fig. 1(b) shows a blow-up of the region near ⇢

⇤

. For our chosen bi-
ological parameters, the maximum value smax

0

is attained at ⇢
⇤

= k,
the same density value for which solitary and gregarious densities
coincide so that smax

0

= s
0

(⇢
⇤

) = g
0

(⇢
⇤

) = k/2. Our results
show that in the limit of large locust densities and for a large range
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the locust-locust interaction scale. Our results suggest that environ-
mental interventions that reduce individual locust mutual attraction
(e.g., by manipulating plant distribution or local hydrology) may also
control large scale outbreaks of locust plagues. They also suggest
several future biological experiments which would measure key mi-
croscopic and macroscopic properties of gregarious swarm forma-
tion.

Results
Model construction. Locusts in a group are subject to attractive
and/or repulsive forces based on combined sensory, chemical, and
mechanical cues that affect their motion. We assume that such sens-
ing is directionally isotropic, a reasonable approximation [32] for or-
ganisms receiving sensory inputs of a variety of types, although direc-
tional models are possible as well [33]. Rather than tracking individ-
ual locusts, we consider a population density field ⇢(x, t) moving at
velocity v(x, t). Continuum population modeling [34, 35] allows us
to apply well-known analytical tools in order to characterize swarm
formation and structure. Our work draws from classic swarm model-
ing in which a conserved population density ⇢ moves at a velocity v

that arises from social interactions:

⇢t +r · (⇢v) = 0, v = �
Z

⌦

rQ(x� x

0)⇢(x0, t)dx0. [1]

The velocity v is a convolution of the density ⇢(x, t) and the so-
cial interaction field Q(x� x

0), which describes the influence of the
locust population at location x

0 on that at location x. We use the
notation v = �rQ ⇤ ⇢ to denote the convolution in Eqns. [1] and
assume that Q(x � x

0) is radially symmetric and depends only on
the distance between x and x

0. We provide further background on
Eqns. [1] in the Supporting Information (SI).

To adapt Eqns. [1] to biphasic desert locust swarms, we in-
troduce separate density fields for solitary and gregarious locusts,
s(x, t) and g(x, t), respectively, and the total density ⇢ = s + g.
With marching locusts in mind, we choose a two-dimensional spa-
tial domain ⌦ and spatial coordinate x = (x, y). We also include
a density-dependent rate f

1

(⇢) to model the transition from the gre-
garious to the solitary state and f

2

(⇢) for the opposite switch. Our
model thus reads

ṡ+r · (vss)= �f
2

(⇢)s+ f
1

(⇢)g, [2a]
ġ +r · (vgg)= f

2

(⇢)s� f
1

(⇢)g, [2b]

where the velocities are given by

vs = �r(Qs ⇤ ⇢), vg = �r(Qg ⇤ ⇢). [3]

These equations are complete once we specify the solitary and gre-
garious social interactions Qs,g and the density-dependent conver-
sion rates f

1,2. Since solitary locusts are crowd-avoiding, we model
Qs as purely repulsive. Gregarious locusts, on the other hand, are
assumed to be attracted to others, except for short-distance repulsion
due to excluded volume effects. Hence, we model Qs and Qg with
the interaction functions

Qs(x) = Rse
�|x|/rs , Qg(x) = Rge

�|x|/rg �Age
�|x|/ag , [4]

where Rs, Rg, Ag are interaction amplitudes and rs, rg and ag are
interaction length scales. For cohesiveness to occur, the parameters
in Qg must lie in the regime that leads to clumping, with the condi-
tions as stated in [8]. Specifically, we require Rgag � Agrg > 0 so
that repulsion dominates at short length scales, and Aga

2

g�Rgr
2

g > 0
so that attraction dominates at longer ones. We model the phase con-
version rates with the rational functions

f
1

(⇢) =
�
1

1 + (⇢/k
1

)2
, f

2

(⇢) =
�
2

(⇢/k
2

)2

1 + (⇢/k
2

)2
. [5]

Here, �
1,2 are maximal phase transition rates and k

1,2 are characteris-
tic locust densities at which f

1,2 take on half of their maximal values.
Note that f

1

decreases with ⇢, capturing the inverse relationship be-
tween solitarization rate and density, while f

2

increases with ⇢ and
saturates at �

2

describing speedier gregarization at higher densities.
Our complete model consists of Eqs. [2]-[5] together with ini-

tial conditions specifying s(x, 0) and g(x, 0). We consider a spa-
tially periodic domain, which simplifies both numerical simulation
and mathematical analysis. We do not include locust reproduction or
death as these occur on much longer time scales than phase change.

Parameter selection. To estimate the parameters in Eqn. [5] we
draw upon the experimental results of [20]. Since phase changes take
approximately four hours, we set �

1,2 = � = 0.25 hr�1. The critical
density for gregarization is reported to be about 50 - 80 locusts/m2.
We assume that the solitarization process has the same critical den-
sity, and set k

1,2 = k = 65 locusts/m2. To estimate the social in-
teraction length scale parameters in Eqs. [4], we apply the results of
[25, 27], which identify the “sensing range” of a locust as 0.14 m,
and the “repulsion range” as 0.04 m, of the same order of magni-
tude as the approximately 0.08 m body length of a mature individual.
For the gregarious phase we thus set the repulsion length scale at
rg = 0.04 m and the attractive one at ag = 0.14 m, corresponding to
the experimental sensing range. These choices agree with field obser-
vations where insect attraction typically occurs at longer length scales
than repulsion. We also assume that solitary locusts are repelled from
others at their sensing range, so that rs = 0.14 m. These choices sat-
isfy rg < ag = rs which is assumed for the remainder of this paper.
Finally, we estimate Rs, Rg , and Ag via explicit velocity computa-
tions. The speed of a locust when it is alone varies between 72–216
m/hr, depending on diet [27]. At the upper end, this is roughly one
body length per second. When it is moving in a group, the speed
varies in a tighter range of 144–216 m/hr [27]. Using these biologi-
cal measurements and Eqn. [3], we find Rs = 11.87 m3/(hr·locust),
Rg = 5.13 m3/(hr·locust), and Ag = 13.33 m3/(hr·locust). Details
are given in the SI.

Homogeneous steady states. The solitary s
0

and gregarious g
0

ho-
mogeneous steady-state (HSS) solutions of Eqn. [2] can be written
in terms of the total uniform density ⇢

0

, which is simply the mean
value of ⇢ for a specified initial condition. The full expressions for
s
0

and g
0

in terms of ⇢
0

appear in the SI; in the small ⇢
0

limit these
are approximately
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⇡ ⇢
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� �
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�
1
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2

⇢3
0

, g
0

⇡ �
2

�
1

k2

2

⇢
0

, [6]

while in the limit of large ⇢
0

we find
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1

k2

2

�
2

⇢
0

, g
0

⇡ ⇢
0

� �
1

k2

2

�
2

⇢
0

. [7]

The low density HSS is thus composed mostly of solitary locusts and
vice versa for the high-density case, showing the non-monotonicity
of s

0

with respect to total density ⇢
0

. In Fig. 1(a) we plot the HSS
s
0

(solid blue) and g
0

(broken green) for our biological estimates
k = 65 locusts/m2 and � = 0.25 hr�1. A calculation incorporat-
ing detuning from the case k

1

= k
2

, �
1

= �
2

appears in the SI. To
account for greater variation from our parameter estimates, we also
calculate s

0

and g
0

for parameter sets chosen randomly from uniform
distributions centered at our estimated values for {�

1

, �
2

, k
1

, k
2

}.
As shown, s
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initially increases with ⇢
0

. At a critical density ⇢
⇤

,
s
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reaches a maximum, whereas g
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keeps increasing monotonically.
Fig. 1(b) shows a blow-up of the region near ⇢

⇤

. For our chosen bi-
ological parameters, the maximum value smax

0

is attained at ⇢
⇤

= k,
the same density value for which solitary and gregarious densities
coincide so that smax

0

= s
0

(⇢
⇤

) = g
0

(⇢
⇤

) = k/2. Our results
show that in the limit of large locust densities and for a large range
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ṡ+r · (~vss)= �f2(⇢)s+ f1(⇢)g, (1)

ġ +r · (~vgg)= f2(⇢)s� f1(⇢)g, (2)

ṡ+r · (~vss)= �f2(⇢)s+ f1(⇢)g, (1)

ġ +r · (~vgg)= f2(⇢)s� f1(⇢)g, (2)

Topaz, D’Orsogna, Edelstein-Keshet, Bernoff (2012, preprint)
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Above a critical total density, aggregations form.
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Spatially-homogeneous and spatially-segregated model 
reductions approximate the bulk dynamics.

ṡ+r · (~vss)= �f2(⇢)s+ f1(⇢)g, (1)

ġ +r · (~vgg)= f2(⇢)s� f1(⇢)g, (2)
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Spatially-homogeneous and spatially-segregated model 
reductions approximate the bulk dynamics.

ṡ+r · (~vss)= �f2(⇢)s+ f1(⇢)g, (1)

ġ +r · (~vgg)= f2(⇢)s� f1(⇢)g, (2)

ṡ+r · (~vss)= �f2(⇢)s+ f1(⇢)g, (1)

ġ +r · (~vgg)= f2(⇢)s� f1(⇢)g, (2)X
spatially homogeneous
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Spatially-homogeneous and spatially-segregated model 
reductions approximate the bulk dynamics.

ṡ+r · (~vss)= �f2(⇢)s+ f1(⇢)g, (1)

ġ +r · (~vgg)= f2(⇢)s� f1(⇢)g, (2)

spatially segregated

�̇s = ��̇g = � c1�3
s

1 + c2�2
s

+
c3�g

1 + c4�2
g

soliatry/gregarious
fraction
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Spatially-homogeneous and spatially-segregated model 
reductions approximate the bulk dynamics.
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Some open analytical problems

For the dynamic problem:
• Rigorous proof of convergence to the Barenblatt solution?

For swarm equilibria:
• What is a global minimizer for Morse (and other) potentials?
• When are global minimizers global attractors?
• Rates of convergence to attractors?

For the two-phase (locust) problem:
• Proof of (and convergence to) spatially segregated state?



The End


