
Γ-convergence for pattern forming 
systems with competing 

interactions

Cyrill B. Muratov
Department of Mathematical Sciences

New Jersey Institute of Technology

joint work with Dorian Goldman and Sylvia Serfaty

Wednesday, February 29, 2012



Competing interactions

- long-range forces frustrate magnetic ordering

high
energy

low
energy

Example: ferromagnetic materials

- short-range ordering of spins by exchange interactions
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Magnetization patterns
Some examples:

Figure 22: Domain branching in a cobalt crystal. Reproduced with permis-
sion from Hubert and Schäfer, Magnetic Domains, Springer 1998

In domains of infinite thickness, the uniform magnetizations m ≡ (0, 0, 1)
and m ≡ (0, 0,−1) are the ground states since all energy contributions van-
ish. In films of a finite thickness, the magnetostatic and the anisotropy con-
tributions to the energy compete: The magnetization favored by anisotropy
generates surface charges m3. But the penalization of surface charges is
“soft”: Alternating domains with m = (0, 0, 1) and m = (0, 0,−1) (bubble
domains) reduce the magnetostatic energy, see Figure 23 for a sketch of the
mesoscopic magnetization. This reduction is significant for domain widths
! smaller than the thickness, i. e.

! # t, (6.70)

since charge cancellations occur over the distance !. A dimensional argument
yields that the magnetostatic energy scales as

w−2 × magnetostatic contribution ∼ !. (6.71)

On the other hand, these domains require walls. We obviously have

w−2 × wall area ≈ !−1t. (6.72)

In order to assess the total wall energy, we need the specific wall energy.
For sufficiently thick films, the wall type is that of infinite films: the bulk
Bloch wall. It is of the form:

m = m(x1), m = (0,m2,m3), m → (0, 0,±1) as x1 → ±∞

69

these numbers over wide ranges explains the great variability and richness of
observed configurations, see Figures 1 to 4. Essentially, understanding these
patterns means understanding the interaction among the various summands
in (2.1).

Figure 1: Iron whiskers. Reproduced with permission from Hubert and
Schäfer, Magnetic Domains, Springer 1998

Figure 2: NdFeB domain patterns. Reproduced with permission from Hu-
bert and Schäfer, Magnetic Domains, Springer 1998
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iron whiskers
thick cobalt films

(from Hubert and Schafer: Magnetic domains)
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Energetics of competing short-
range and long-range interactions

Energy functional:

- local part favors phase segregation

- long-range kernel favors spatial homogeneity

- volume fraction of one phase fixed
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Energetics of competing short-
range and long-range interactions

(cont.)

Ginzburg-Landau framework:

is the dimensionless interfacial thickness
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of special physical interest is the large domain case
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Canonical model
Ginzburg-Landau energy + squared negative Sobolev norm:

here:

need “neutrality” condition:
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(u(x)− ū)(u(y)− ū)
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ū ∈ (−1, 1), � = O(1), ε � 1 ⇒

u ∈ H1(Td
� ) Td

� = [0, �)d 0 < α < d

1

�d

�

Td
�

u dx = ū � � 1
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Canonical model (cont.)
Ginzburg-Landau energy + squared negative Sobolev norm:

physical cases:

α = 1, d = 3  - ceramic compounds, various polymer systems, etc.

α = 1, d = 2  - magnetic bubble materials, high-Tc sueperconductors, etc.

α = “0”, d = 2  - ordering during surface deposition, etc. 

α = “3”, d = 2  - ultra-thin ferromagnetic films 

non-locality of Coulombic origin
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Canonical model (cont.)
Alternative rescaling:
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(u(x)− ū)(u(y)− ū)
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Long-range Coulomb 
repulsion

u - charge density on a torus in

G0 - Green’s function of the Laplace’s equation

charge neutrality condition: 

Ohta-Kawasaki model (diblock copolymers)
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|x− y|α dx dy (4)

E [u] =

�

Ω

�
ε2

2
|∇u|2 +W (u)

�
dx

+
1

2

�

Ω

�

Ω
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ON THE PHASE DIAGRAM FOR DIBLOCK COPOLYMERS 1713

Fig. 1. Top: a diblock copolymer macromolecule. Bottom: microphase separation of diblock
copolymers.

the relative molecular weight measuring the relative length of the A-monomer chain
compared with the length of the whole macromolecule, i.e., f = NA/N . The one
relevant dimensional parameter is the Kuhn statistical length, l, which can be thought
of as the average monomer space size. We will concern ourselves with a system
of diblock copolymers of fixed relative molecular weight f and where the A and B
monomers have the same Kuhn statistical length.

In the vast physics literature on block copolymers, the state of the art for the-
oretically predicting the phase diagram is via the self-consistent mean field theory
(SCMFT) [26, 16, 42]. Here one simulates the interactions of the incompatible A
and B monomers via (self-consistent) external fields acting separately on the distinct
monomer chains. This transforms the formidable task of integrating contributions to
the partition function from many-chain interactions to the computation of the con-
tribution of one polymer in a self-consistent field. An approximation is then used
to write the partition function and Gibbs free energy explicitly in terms of coupled
order parameters—the macroscopic monomer densities and the external fields which
generate them: The coupling is via a modified diffusion equation derived from the
Feynman–Kac integration theory. With the adoption of an ansatz (assumed symme-
try) for the phase structure with one or two degrees of freedom, and respective basis
functions of the Laplacian which share the symmetry, one can then minimize the free
energy. Comparing the minimum energies for the different ansatzes yields the phase
diagram (cf. [26]). In this mean field theory, where thermal fluctuations are ignored,
one finds that the parameter dependence is based solely on the products χ N and f .
Figure 2(left) shows the results of such a calculation showing the predicted structure
for different values of χ N and f , while Figure 2(right) enables a comparison with
experimental observations for polyisoprene-styrene diblocks by Khandpur et al. [25].

As was shown in [12], linearization of the dependence of the monomer density on
the external fields (via the modified diffusion equations) yields a density functional
theory, first proposed by Ohta and Kawasaki [30] (see also [28, 29]). This density
functional theory entails minimization of a nonlocal Cahn–Hilliard-like free energy
defined over one order parameter (the relative monomer difference). Here, the stan-
dard Cahn–Hilliard free energy is supplemented with a nonlocal term, reflecting the

qualitative model for mesophases under strong segretation

(Leibler’80; Stillinger’83; Ohta, Kawasaki’86; 
Choksi, Ren’03)
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Block copolymer morphologies

0.2 0.4 0.6 0.8 1.0

FIGURE 3. PHASE DIAGRAM for linear AB diblock copolymers, comparing theory and experiment, a: Self-consistent mean-field
theory8 predicts four equilibrium morphologies: spherical (S), cylindrical (C), gyroid (G) and lamellar (L), depending on the
composition/and combination parameter \N. Here, \ ls the segment-segment interaction energy (proportional to the heat of
mixing A and B segments) and N is the degree of polymerization (number of monomers of all types per macromolecule). b:
Experimental phase portrait for poly(isoprene-styrene) diblock copolymers.9 The resemblance to the theoretical diagram is
remarkable, though there are important differences, as discussed in the text. One difference is the observed PL phase, which is
actually metastable. Shown at the bottom of the figure is a representation of the equilibrium microdomain structures as fA is
increased for fixed ^N, with type A and B monomers confined to blue and red regions, respectively.

dissimilar monomer pairs in which there are no strong
specific interactions (hydrogen bonding, charges or the
like), XAB ^s positive and small compared with unity (for
example, ^s/ between styrene and isoprene is of order 0.1).
Moreover, XAB usually varies inversely with temperature,
so that mixing is promoted as the temperature rises.
Virtually all modern theories of microphase separation
employ this simple one-parameter thermodynamic descrip-
tion of the driving force for microphase separation.

If the blocks of a copolymer melt were not connected
by covalent bonds to each other, the thermodynamic forces
described above would lead to a macrophase separation
that is very different from the knitting pattern. Macro-
phase separation is a state of coexistence of bulk phases,
just as oil and vinegar separate into macroscopically sized
droplets in a salad dressing. In a block copolymer melt,
however, the thermodynamic forces driving separation are
counterbalanced by entropic forces from the covalent link-
ages. These forces, sometimes called chain elasticity,
reflect the requirement that, to keep the dissimilar A and
B portions of each molecule apart, copolymers must adopt
extended configurations. As there are fewer configura-
tions available to extended polymer chains than to those
in their native randomly coiled state, an entropic restoring
force is generated that serves to limit the phase separation
between A and B blocks to mesoscopic dimensions. The
entropic force law is approximately Hookian, and provides
the basis for understanding the elasticity of rubberlike
materials. For a chain or block of N monomers extended
to a distance R, the elastic free energy that leads to the
entropic force can be expressed as Fe = 3kBTR2/(2Na2),
where a is a monomer size scale that depends on the local

structure of the polymer chain (roughly the diameter of
either of the magnified circles shown in the AB configu-
ration of figure 1).

The primary challenge for theories of microphase
separation is to accurately sum the competing free-energy
contributions of interaction energy and elastic energy
within the unit cell of a periodic microphase structure.
Minimization of the free energy for a particular geometry
(compared to all other candidate geometries) indicates the
most likely configuration and scale lengths for a block
copolymer of a given composition and molecular weight.
An important constraint in such calculations is the essen-
tial incompressibility of a polymer melt, which is most
simply ensured by holding constant the total monomer
density in a unit cell.

Birth of a phase
As a simple illustration of such a theory, consider a
symmetric diblock copolymer melt with equal volume
fractions of the A and B blocks that is self-assembled into
a lamellar phase as depicted in figure 2a. Two parameters
characterize the block molecular structure: (1) the overall
degree of polymerization ]V, which is the total number of
monomers per macromolecule, and (2) the composition fA
= NA/N, where NA is the number of A monomers per
molecule. For the symmetric diblock, fA= fB= 1/2.

At low temperatures (large XAB^ the segregation is
strong, leading to microdomains that are nearly pure in
A and B, separated by interfaces that are much narrower
than the lamellar domain period A. By further assuming
that the chains are all uniformly stretched, we can write
the following expression for the sum of the interaction
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many local minimizers:
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(a) γ = 5, m = 0 (b) γ = 10, m = 0 (c) γ = 20, m = 0.1

(d) γ = 5, m = 0.2 (e) γ = 10, m = 0.3 (f) γ = 20, m =
0.3

(g) γ = 5, m = 0.3 (h) γ = 10, m = 0.45 (i) γ = 20, m = 0.5

(j) γ = 5, m = 0.5 (k) γ = 10, m = 0.48 (l) γ = 20, m = 0.75

Fig. 5. The u = m level sets of steady state simulations of (2.6) with random initial data.
In all cases we have chosen ε = 0.04 and taken L = π/2 on the left and L = π for the other two
columns.
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(a) γ = 5, m = 0 (b) γ = 10, m = 0 (c) γ = 20, m = 0.1
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(j) γ = 5, m = 0.5 (k) γ = 10, m = 0.48 (l) γ = 20, m = 0.75

Fig. 5. The u = m level sets of steady state simulations of (2.6) with random initial data.
In all cases we have chosen ε = 0.04 and taken L = π/2 on the left and L = π for the other two
columns. (Choksi, Peletier and Williams’09)
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(a) Double gyroid, m = 0.2, γ = 5 (b) Detail of one part of (a)

(c) Overhead view of a perforated
lamellar solution, m = 0.45 and γ = 10

(d) Same as (c), viewed from a perpen-
dicular direction

Fig. 6. Views of double-gyroid and perforated lamellar solutions.

It is important to stress that all numerical simulations outside of Region I can be
considered only as potentially locally stable or even metastable states. Solutions to the
one-dimensional Cahn–Hilliard equation are known to show metastability where the
linearized evolutionary operator about stripe-like profiles can have unstable eigenval-
ues of size O(e−c/ε) [44]. This means that transient solutions can appear stationary for
times O(ec/ε). Figure 5 has two solutions not expected to be minimizers: In (0.3, 20),
not all the cylinders are of uniform size, and in (0.1, 20), we expect the oscillations in
the stripes with γ = 20 to eventually diminish.

We also note that, in order to capture fully the symmetry of the phase boundary,
one needs to take L sufficiently large. For example, because of finite-size effects the
array of cylinders for γ = 10 is on a rectangular rather than hexagonal grid which we
believe to be generic. This is also the case for the perforated lamellae of Figure 6(c),
where we expect a hexagonal configuration of the connecting tubes, and for all the
spherical simulations for which we expect BCC symmetry.

We also performed experiments for the same parameters but different initial data
(or several runs with random initial data). For certain parameters, we found different
steady state configurations for different initial data—for example, both single and
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Sharp interface energy
reduced energy

(M’98;  M’02)where

Upon suitable rescaling, this is precisely the H−1 gradient flow for the energy
E , i.e., we have ut = ∆(δE/δu), where u is a rescaling of φ. In particular,
minimizers of E are ground states of the considered system in equilibrium in
the mean-field limit. We note that the adsorption and desorption rates k± can
be quite small compared to the hopping rate, resulting in very small values of
ε ∼ k1/2. Therefore, one can achieve a very good scale separation between the
interfacial thickness (atomic scales) and the size of adsorbate clusters (micro-
scale) in this experimental setup.

Our paper is organized as follows. In Sec. 2, we present heuristic arguments
and give the statements of main results, in Sec. 3, we perform a detailed analysis
of the sharp interface energy E, in Sec. 4 we establish a connection between the
sharp interface energy E and the diffuse interface energy E . Finally, in Sec. 5
we conclude the proofs of the theorems.

Throughout the paper, the symbols Lp, Hk, W k,p, Ck,α, BV denote the
usual function spaces, | · | denotes the d-dimensional Lebesgue measure or the
(d− 1)-dimensional Hausdorff measure of a set, depending on the context, and
C, c, etc., denote generic positive constants that can change from line to line.
The symbols O(1) and o(1) denote, as usual, uniformly bounded and uniformly
small quantities, respectively, in the limit ε→ 0, etc. Finally, we will say that a
statement holds for ε � 1, etc., if there exists ε0 > 0 such that that statement
is true for all 0 < ε ≤ ε0. For simplicity of notation, the subscript ε is omitted
for all quantities depending on ε.

2 Heuristics and main results

Let us begin our investigation by setting d = 2 and making a simplifying assump-
tion that the domain Ω is a torus: Ω = [0, 1)2. Let us also specify the domains
of definition for the functionals E and E. Formally, the diffuse interface energy
E [u] will be defined for all u ∈ H1(Ω) subject to

�
Ω u dx = ū, whereas the sharp

interface energy E[u] will be defined for all u ∈ BV (Ω; {−1, 1}).
The assumption that Ω is a torus, which is common in the considered class

of problems, eliminates the need to deal with the boundary effects and, even
more importantly, restores the translational invariance inherent in the problem
on the whole of Rd (note that the choice of the size of Ω is inconsequential,
the obtained energy of the minimizers scales linearly with |Ω|). As a result, the
kernel of the non-local part of the energy becomes a function of x−y only. With
a slight abuse of notation, in the following we will, therefore, replace G(x, y)
with G(x− y) everywhere below.

On heuristic grounds one would expect that the minimizers of E at ε � 1
would be periodic with period R ∼ ε1/3, whenever |ū| < 1 and |ū| is not too close
to 1 [9,13,14,19]. A simple scaling analysis shows that in this case E ∼ ε2/3 as
ε → 0 with ū fixed. Our first result gives a justification for this energy scaling
without any assumptions about the minimizers (for statements about existence
and regularity of minimizers, see the following sections).

5

and

this limit. Let us also mention that numerical evidence shows that generally

max |u| > 1, even for minimizers and ε� 1.

We now turn to estimating the minimal energy of E from below by the

minimal energy of E. For u ∈ H
1
(Ω) with

�
u dx = ū, let us separate the

domain Ω into three pairwise-disjoint subdomains:

Ω =Ω δ
+ ∪ Ωδ

− ∪ Ωδ
0. (4.4)

where

Ωδ
+ = {x ∈ Ω : u(x) ≥ 1− δ}, (4.5)

Ωδ
− = {x ∈ Ω : u(x) ≤ −1 + δ}, (4.6)

Ωδ
0 = {x ∈ Ω : −1 + δ < u(x) < 1− δ}, (4.7)

Next, let us introduce the following three auxiliary functionals (for simplicity of

notation, we will suppress the index δ in the definition of each functional):

E1[u] =

�

Ωδ
0

�
ε2

2
|∇u|2 + W (u)

�
dx, (4.8)

E2[u] =
1

2κ2

�

Ωδ
+∪Ωδ

−

(u− u0)
2
dx

+
1

2

�

Ω

�

Ω
(u(x)− ū)G0(x− y)(u(y)− ū)dxdy, (4.9)

where u0(x) = ±1 whenever x ∈ Ωδ
±, respectively, with

κ =
1�

W ��(1)
, (4.10)

and

E3[u] =

�

Ωδ
+∪Ωδ

−

�
W (u)− 1

2κ2
(u− u0)

2

�
dx. (4.11)

It is clear that the energy E can be estimated from below as

E ≥ E1 + E2 + E3. (4.12)

Hence, we are going to establish a lower bound for E by considering the lower

bounds for each term in the sum above.

We start with the part of energy that is associated with the interfaces:

Lemma 4.2. Let δ > 0 be sufficiently small, let u ∈ H
1
(Ω) and suppose that

|Ωδ
− ∪ Ωδ

+| > 0. Then there exists u0 ∈ BV (Ω; {−1, 1}) such that u0(x) = ±1

whenever x ∈ Ωδ
±, and

E1[u] ≥ ε

2
(1− a1δ

2
)

�

Ω
|∇u0|dx (4.13)

for some a1 > 0 independent of δ and ε.
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Theorem:

E ∝
� �

a2|∇φ|2

2
− b

2
φ2 +

c

4
φ4 +

α

2

�
|b|2

�
d3r

∇ · b = −φ, ∇× b = 0. (5)

α ∼ 1
a2n2

1
|Ω|

�
φ d2r = φ̄

(i) W ∈ C3(R), W (u) = W (−u), and W ≥ 0,

(ii) W (+1) = W (−1) = 0 and W ��(+1) = W ��(−1) > 0.

(iii) W ��(|u|) is monotonically increasing for |u| ≥ 1, lim|u|→∞W ��(u) = +∞,
and |W �(u)| ≤ C(1 + |u|q), for some C > 0 and q > 1.

(iv)
� 1
−1

�
2W (u) du = 1.

min E
minE

→ 1 as ε→ 0

2

Theorem 2.1. Let W satisfy the assumptions (i)–(iv) at the beginning of Sec.
4, and let ū ∈ (−1, 1) be fixed. Then there exist ε0 > 0 and C > c > 0, such
that

cε2/3 ≤ minE, min E ≤ Cε2/3 (2.1)

for all ε ≤ ε0.

Observe also that for E this result still holds when Ω = [0, 1)d for any d, while
for E it holds at least for d < 6 (see Sec. 4). We note that for ū = 0 and |u| ≤ 1
such a result was obtained by Choksi, using somewhat different techniques [9].
On the level of E (with κ = 0), Alberti, Choksi and Otto recently proved, among
many other interesting results, a stronger statement that in the limit ε→ 0, the
constants in the upper and lower bounds in (2.1) can be chosen to be arbitrarily
close to each other [36]. We note that the case κ = 0 and ū ∈ (−1, 1) fixed
can be treated as the limit of energy E considered by us as κ → 0, when the
constraint

�
Ω u dx = ū gets automatically enforced (see (5.2)).

Thus, when ū ∈ (−1, 1) is fixed, the energy E admits a non-trivial minimizer,
whose energy scales as in (2.1) when ε� 1. What about the case |ū| > 1? Here,
in fact, it is easy to see that the only minimizers admitted by E are the trivial
ones. Consider, for example, the case ū < −1, the other case is equivalent
by symmetry. In this case the problem admits the unique global minimizer
u = −1. To see this, let us introduce the characteristic function χΩ+ of the set
Ω+ = {u = +1} for a given u ∈ BV (Ω; {−1, 1}). Then u = 2χΩ+ − 1, and by a
straightforward computation

E[u] ≥ 1
2

�

Ω

�

Ω
(2χΩ+(x)− 1− ū)G(x− y)(2χΩ+(y)− 1− ū)dxdy

≥ (1 + ū)2

2κ2
− 2(1 + ū)

κ2
|Ω+|. (2.2)

Thus, when ū < −1, the second term in the last inequality in (2.2) is positive,
hence, is minimized by |Ω+| = 0. But in this case u = −1 attains equality in
(2.2), so u = −1 is the minimizer. Thus, when |ū| > 1, non-trivial minimizers
of E do not exist, and, therefore, at |ū| = 1 a bifurcation occurs in the limit
ε→ 0.

The main purpose of this paper is to investigate the transition between the
trivial and the non-trivial minimizers of E and E that occurs in the neighborhood
of |ū| = 1 for ε � 1. The energy E captures most of the difficulty associated
with the considered problem. Therefore, we will spend most of our effort in this
paper to the studies of E (see Sec. 3). At the same time, as we show later
(see Sec. 4), the statements about the behavior of minE also extend to that of
min E for ε� 1 (the correspondence of minimizers of the two energies will be a
subject of future study).

When Ω = [0, 1)2, the kernel G has an explicit representation

G(x) =
1
2π

�

n∈Z2

K0(κ|x− n|), (2.3)

6

if                and d =2, then

non-trivial minimizers

E =

� �g
2
|∇u|2 + f(u)

�
dx+

α

2

��
u(x)G0(x, y)u(y) dx dy

−∆G0(x, y) = δ(x− y)− 1

�N
,

�

TN
�

G0(x, y)dx = 0

0 < ε � 1 Ω ⊂ R3 or R2

ū ∈ (−1, 1), � = O(1), ε � 1 ⇒

u ∈ H1(TN
� ) TN

� = [0, �)N 0 < α < N

1

�N

�

TN
�

u dx = ū � � 1

E [u] =

�

TN
�

�
ε2

2
|∇u|2 +W (u)

�
dx

+
1

2

�

TN
�

�

RN

(u(x)− ū)(u(y)− ū)

|x− y|α dx dy (1)

E [u] =

�

TN
�

�
1

2
|∇u|2 +W (u)

�
dx

+
εN−α

2

�

TN
�

�

RN

(u(x)− ū)(u(y)− ū)

|x− y|α dx dy (2)

E [u] =

�

Ω

�
ε2

2
|∇u|2 +W (u)

�
dx

+
1

2

�

Ω

�

Ω
(u(x)− ū)G0(x, y)(u(y)− ū)dx dy (3)

δ2E [u] = 1

2

� �
|∆1/2δu|2 +W ��(u)|δu|2 + ε2|∆−1/2δu|2

�
dx

≥ (ε+ 1
2 minW ��)

�
|δu|2 dx (4)

ε = εc = O(1) ε � 1 diamΩ = O(ε1/3) L = 1

ε � 1 ε � 1 diamΩ � O(1)

1

the rest of the talk is in two space dimensions

ε = εc = O(1) ε � 1 diamΩ = O(ε1/3) L = 1

ε � 1 ε � 1 diamΩ � O(1)

δ2E [ū] δ2E [ū] = 1

2

� �
W

��(ū)|δu|2 + |∆−1/2δu|2
�
dx ε = 0

⇒

E ∝
� �

1

2
|∇φ|2 − ξ−2

2
φ2 +

g

4
φ4

�
d
3r

+
α

2

��
(φ(r)− φ̄)(φ(r�)− φ̄)

|r− r�| d
3r d3r� (6)

α =
12

N2f(1− f)

E

kBT
= ρ0

� �
a2|∇φ|2

24φ
+

1

N
φ lnφ+ (1− φ) ln(1− φ) + χφ(1− φ)

�
d
3r

+
e2ρ20

2�dkBTN2

��
(φ(r)− φ̄)(φ(r)− φ̄)

|r− r�| d
3r d3r� (7)

E ∝
� �

a2|∇φ|2

2
− b

2
φ2 +

c

4
φ4 +

α

2

�
|b|2

�
d
3r

∇ · b = −φ, ∇× b = 0. (8)

α ∼ 1

a2n2

1

|Ω|

�
φ d

2r = φ̄

(i) W ∈ C3(R), W (u) = W (−u), and W ≥ 0,

(ii) W (+1) = W (−1) = 0 and W ��(+1) = W ��(−1) > 0.

(iii) W ��(|u|) is monotonically increasing for |u| ≥ 1, lim|u|→∞ W ��(u) = +∞,
and |W �(u)| ≤ C(1 + |u|q), for some C > 0 and q > 1.

(iv)
� 1
−1

�
2W (u) du = 1.

2

Ēε[u] :=
1

| ln ε|
�

i

�
P ε
i − 2δ̄

κ2
Aε

i

�
+ 2

�

T2
�

�

T2
�

G(x− y)dµε(x)dµε(y). (1)

E[u] =

�

Rd

|∇u| dx+
�

Rd

�

Rd

u(x)u(y)

|x− y|α dx dy, u ∈ BV (Rd, {0, 1}) :
�

Rd

u dx = m.

�

T2
�

dµε =
1

2
δ̄�2

E[u] =
ε

2

�

Td
�

|∇u| dx+
1

2

�

Td
�

�

Td
�

(u(x)− ū)G(x, y)(u(y)− ū) dx dy (2)

G(x) =
1

2π

�

n∈Z2

K0(κ|x− n�|), (3)

E [u] =
� �

1

2
|∇u|2 + f(u)

�
dx+

α

2

��
g[u(x)]G0(x, y)g[u(y)] dx dy

−∆G0(x, y) = δ(x− y)− 1

�d
,

�

Td
�

G0(x, y)dx = 0

−∆G(x) + κ2G(x) = δ(x)

0 < ε � 1 Ω ⊂ R3 or R2 � ∼ ε1/3

ū ∈ (−1, 1), � = O(1), ε � 1 ⇒ � � 1

u ∈ H1(Td
� ) Td

� = [0, �)d 0 < α < d

1

�d

�

Td
�

u dx = ū � � 1

E [u] =

�

Td
�

�
ε2

2
|∇u|2 +W (u)

�
dx

+
1

2

�

Td
�

�

Rd

(u(x)− ū)(u(y)− ū)

|x− y|α dx dy (4)
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�
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�
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Non-trivial minimizers with high 
compositional asymmetry

- pattern with sharp interface
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Figure 1: A multi-droplet pattern: density plot of u in a local minimizer of
E [u] with W (u) = 1

4 (1 − u2)2 obtained numerically for ū = −0.5, ε = 0.025,
and Ω = [0, 11.5) × [0, 10), with periodic boundary conditions. Dark regions
correspond to u ≈ −1, and light regions correspond to u ≈ 1 (from [14]).

The parameter ε > 0 in (1.1) determines both the scale of the short-range
interaction and the magnitude of the interfacial energy between the regions
with different values of u when ε is sufficiently small. In fact, it is known
that no patterns can form in the system if ε is sufficiently large [13, 14, 38].
On the other hand, when ε � 1, the first term in the functional E becomes
a singular perturbation, giving rise to “domain structures” (see Fig. 1), which
are of particular physical interest. These patterns consist of extended regions
in which u is close to one of the minima of the potential W , separated by
narrow domain walls. In this situation one can reduce the energy functional
appearing in (1.1) to an expression in terms of the interfaces alone. In [13, 14],
such a reduction was performed for E using formal asymptotic techniques (see
also [30, 35, 39, 40]) and leads to the following reduced energy (for simplicity of
notation, we choose the normalizations in such a way that the parameter ε is,
in fact, the domain wall energy, see Sec. 4 for details):

E[u] =
ε

2

�

Ω
|∇u| dx +

1
2

�

Ω

�

Ω
(u(x)− ū)G(x, y)(u(y)− ū) dx dy. (1.4)

Here the function u takes on values ±1 throughout Ω, and the kernel G is the
screened Coulomb kernel, i.e., it solves the Neumann problem for

−∆G(x, y) + κ2G(x, y) = δ(x− y), (1.5)

with some κ > 0. The constant κ has the physical meaning of the inverse of the
Debye screening length [13,14]. Note that the sharp interface energy E with the

3

- identical disk-shaped droplets

c
)

t 
=

 0
t 

=
 3

0
t 

=
 2

0
0

t 
=

 2
5
0
0

Figure 1: A multi-droplet pattern: density plot of u in a local minimizer of
E [u] with W (u) = 1

4 (1 − u2)2 obtained numerically for ū = −0.5, ε = 0.025,
and Ω = [0, 11.5) × [0, 10), with periodic boundary conditions. Dark regions
correspond to u ≈ −1, and light regions correspond to u ≈ 1 (from [14]).

The parameter ε > 0 in (1.1) determines both the scale of the short-range
interaction and the magnitude of the interfacial energy between the regions
with different values of u when ε is sufficiently small. In fact, it is known
that no patterns can form in the system if ε is sufficiently large [13, 14, 38].
On the other hand, when ε � 1, the first term in the functional E becomes
a singular perturbation, giving rise to “domain structures” (see Fig. 1), which
are of particular physical interest. These patterns consist of extended regions
in which u is close to one of the minima of the potential W , separated by
narrow domain walls. In this situation one can reduce the energy functional
appearing in (1.1) to an expression in terms of the interfaces alone. In [13, 14],
such a reduction was performed for E using formal asymptotic techniques (see
also [30, 35, 39, 40]) and leads to the following reduced energy (for simplicity of
notation, we choose the normalizations in such a way that the parameter ε is,
in fact, the domain wall energy, see Sec. 4 for details):
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correspond to u ≈ −1, and light regions correspond to u ≈ 1 (from [14]).

The parameter ε > 0 in (1.1) determines both the scale of the short-range
interaction and the magnitude of the interfacial energy between the regions
with different values of u when ε is sufficiently small. In fact, it is known
that no patterns can form in the system if ε is sufficiently large [13, 14, 38].
On the other hand, when ε � 1, the first term in the functional E becomes
a singular perturbation, giving rise to “domain structures” (see Fig. 1), which
are of particular physical interest. These patterns consist of extended regions
in which u is close to one of the minima of the potential W , separated by
narrow domain walls. In this situation one can reduce the energy functional
appearing in (1.1) to an expression in terms of the interfaces alone. In [13, 14],
such a reduction was performed for E using formal asymptotic techniques (see
also [30, 35, 39, 40]) and leads to the following reduced energy (for simplicity of
notation, we choose the normalizations in such a way that the parameter ε is,
in fact, the domain wall energy, see Sec. 4 for details):
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The parameter ε > 0 in (1.1) determines both the scale of the short-range
interaction and the magnitude of the interfacial energy between the regions
with different values of u when ε is sufficiently small. In fact, it is known
that no patterns can form in the system if ε is sufficiently large [13, 14, 38].
On the other hand, when ε � 1, the first term in the functional E becomes
a singular perturbation, giving rise to “domain structures” (see Fig. 1), which
are of particular physical interest. These patterns consist of extended regions
in which u is close to one of the minima of the potential W , separated by
narrow domain walls. In this situation one can reduce the energy functional
appearing in (1.1) to an expression in terms of the interfaces alone. In [13, 14],
such a reduction was performed for E using formal asymptotic techniques (see
also [30, 35, 39, 40]) and leads to the following reduced energy (for simplicity of
notation, we choose the normalizations in such a way that the parameter ε is,
in fact, the domain wall energy, see Sec. 4 for details):
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Here the function u takes on values ±1 throughout Ω, and the kernel G is the
screened Coulomb kernel, i.e., it solves the Neumann problem for

−∆G(x, y) + κ2G(x, y) = δ(x− y), (1.5)

with some κ > 0. The constant κ has the physical meaning of the inverse of the
Debye screening length [13,14]. Note that the sharp interface energy E with the
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- energy reduces to pair 
  interactions (M’10):

(ii) If τ1 < τ < τ2, with τ2 = τ1 +2π 3
√

9 minG, the minimizer of E is a single
droplet.

(iii) If τn < τ < τn+1, all minimizers of E consist of precisely n droplets. The

droplet centers {xi} nearly minimize V =
n−1�

i=1

n�

j=i+1

G(xi − xj).

Let us mention that local minimizers of E without screening (i.e. with
κ → 0) which are close to disks of the same radius centered at the minimizers
of V were constructed perturbatively in a recent work of Ren and Wei [32, 33].
We note that when τ = O(1), existence of these solutions easily follows from
our analysis, if one notices that in the considered regime the excess energy of
a minimizing sequence controls the isoperimetric deficit of each droplet and
enforces O(1) distance between them. Therefore, solutions with a prescribed
number of droplets may be obtained by minimizing over all u ∈ BV (Ω; {−1, 1}),
such that the support of 1 + u has a fixed number of disjoint components. In
turn, by Proposition 3.20 the global minimizers of E belong to this class.

4 Connection to the diffuse interface energy

We now turn to the study of the relationship between the sharp interface energy
E and the diffuse interface energy E . Since most of our analysis here does not
rely on any particular assumptions on the dimensionality of space, we will treat
the general case of Ω being a d-dimensional torus: Ω = [0, 1)d. We assume that
W is a symmetric double-well potential with non-degenerate minima at u = ±1,
together with some natural technical assumptions:

(i) W ∈ C3(R), W (u) = W (−u), and W ≥ 0,

(ii) W (+1) = W (−1) = 0 and W ��(+1) = W ��(−1) > 0.

(iii) W ��(|u|) is monotonically increasing for |u| ≥ 1, lim|u|→∞W ��(u) = +∞,
and |W �(u)| ≤ C(1 + |u|q), for some C > 0 and q > 1, with q <

d+2
d−2 if

d > 2.

Since we are setting the surface tension to ε, we need to additionally normalize
W as follows:

(iv) We have
� 1

−1

�
2W (u) du = 1. (4.1)

Note that these assumptions are satisfied for, e.g., the rescaled version of the
classical Ginzburg-Landau energy: W (u) = 9

32 (1 − u2)2 for d ≤ 3. Also note
that this assumption is not restrictive, since it is always possible to make (4.1)
hold by an appropriate rescaling.
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Energy of interacting droplets
where K0 is the modified Bessel function of the first kind. In particular, G > 0

and we have the following asymptotic expansion from the power series repre-

sentation of K0 [45]:
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and γ ≈ 0.5772 is the Euler’s constant. We also have G(x) bounded whenever

|x| > δ, for any δ > 0, and (2.4) can be used to estimate derivatives of G to

O(|x| ln |x|) as well.

Consider the case in which the value of ū approaches ū = −1 from above,

with ε� 1 fixed. Clearly, for large enough deviations there exists a non-trivial

minimizer. As can be seen from the arguments in the proof of Theorem 2.1,

the size of the set where u = 1 on the minimizer goes to zero as ū → −1.

Heuristically, one would, therefore, expect that in this situation the minimizer

will consist of a number of isolated droplets where u = +1 of small size in

the background where u = −1. Moreover, since on the scale of a droplet the

interfacial energy will give a dominant contribution, these droplets are expected

to be nearly circular. This motivates an introduction of the following reduced

energy:
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4 )
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which describes the energy of interaction of N well separated disk-shaped droplets

of radius ri centered at xi, to the leading order. More precisely, the first term

(2.6) stands for the interfacial energy of all the droplets, the second term is the

energy of interactions between the droplets and the background, the third term

is the self-interaction energy of each droplet, and the last term is the interaction

energy of each droplet pair (for the case of a single droplet in R2
, see [14]).

We can use the reduced energy in (2.6) to obtain the leading order scal-

ing of various quantities for ε � 1 by balancing different terms. From the

balance of interfacial energy and the self-interaction energy, one should have

ri = O(ε1/3| ln ε|−1/3
). Balancing this with the second term leads, in turn, to

δ̄ = ε−2/3| ln ε|−1/3
(1 + ū) (2.7)

being an O(1) quantity. Similarly, balancing the last term with the first three

leads to N = O(| ln ε|), and the expected behavior of minEN = O(ε4/3| ln ε|2/3
).
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|x− y|α dx dy (4)

E [u] =

�

Ω

�
ε2

2
|∇u|2 +W (u)

�
dx

+
1

2

�

Ω

�

Ω
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What is the limit behavior 
of the minimizers?

can be analyzed via the Euler-Lagrange equation, etc. (M’10)

infinity (see also [8, 48]). Their results, however, do not provide any further information
about the structure of the energy-minimizing patterns. Note in passing that the question
of proving any periodicity of minimizers for multi-dimensional energies is unsolved even
for systems of point particles forming simple crystals (see e.g. [30, 46]), with a notable
exception of certain two-dimensional particle systems with short-range interactions which
somehow reduce to packing problems [41,51,53]. Naturally, the situation can be expected
to be more complicated for pattern forming systems in which the constitutive elements are
“soft” objects, such as, e.g., droplets of the minority phase in the matrix of the majority
phase in the Ohta-Kawasaki model.

Here we are going to focus on the two-dimensional case and the situation where one
phase is in strong majority with respect to the other, which is imposed by taking ū very close
to −1 as ε → 0. Thus we can expect a distribution of small droplets of u = +1 surrounded
by a sea of u = −1. In this regime, Choksi and Peletier analyzed the asymptotic properties
of a suitably rescaled version of the sharp interface energy (1.4) with no screening in [14],
as well as (1.1) in [15]. They work in the setting of a fixed domain Ω, and in a regime where
the number of droplets remains finite as ε → 0. They showed that the energy minimizing
patterns concentrate to a finite number of point masses, whose magnitudes and locations
are determined via a Γ-expansion of the energy [6]. We note that Γ-convergence of (1.1)
to the functional (1.4) with no screening and for fixed volume fractions was established by
Ren and Wei in [43], who also analyzed local minimizers of the sharp interface energy in
the strong asymmetry regime in two space dimensions [42].

All these works are in the finite domain Ω setting, while we are generally interested in
the large volume (macroscopic) limit, i.e., the regime when the number of droplets tends
to infinity. A rather comprehensive study of the behavior of the minimizers for the Ohta-
Kawasaki energy in macroscopically large domains was recently performed in [36], still in
the regime ū close to −1. There the two-dimensional Ohta-Kawasaki energy was considered
in the case when Ω is a unit square with periodic boundary conditions. The interesting
regime corresponds to the parameters ε � 1 and 1+ ū = O(ε2/3| ln ε|1/3) � 1. It is shown
in [36] that under these assumptions on the parameters and some technical assumptions
on W , (1.4) gives the correct asymptotic limit of the minimal energy in (1.1). Moreover,
it is shown that when δ̄ := ε−2/3| ln ε|−1/3(1 + ū) becomes greater than a certain critical
constant δ̄c, the minimizers of E in (1.4) consist of O(| ln ε|) simply connected, nearly
round droplets of radius � 31/3ε1/3| ln ε|−1/3, and uniformly distributed throughout the
domain [36]. Thus, the following hierarchy of length scales is established in the considered
regime:

ε � ε1/3| ln ε|−1/3 � | ln ε|−1/2 � 1, (1.6)

where the scales above correspond to the width of the interface, the radius of the droplets,
the average distance between the droplets, and the screening length, respectively. The
multiscale nature of the energy minimizing pattern is readily apparent from (1.6).
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as ε → 0.
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natural approach via Γ-convergence
difficulty:

multiple scales! (see also Alberti, Choksi and Otto’08; Spadaro’09; 
Ren and Wei’07; Choksi and Peletier’10 and ’11)

(an easier case is           ) 
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Setting for Γ-convergence
study via the sharp interface energy

We note that at the level of the energy minimizers the relation between the two functionals
was established in [36].

The energy Eε may alternatively be written in terms of the level sets of u. Indeed,
the set Ω+ := {u = +1} is a set of finite perimeter (for precise definitions, see e.g. [3]),
and when |∂Ω+| is sufficiently small, the set Ω+ may be uniquely decomposed into an at
most countable union of connected components Ω+

i , where the boundaries ∂Ω+
i of each

connected component are Jordan curves which are essentially disjoint (after an extension
to the whole of R2 and up to negligible sets, see e.g. [2, Corollary 1 and Theorem 8]). In
the context of Γ-convergence the sets Ω+

i may be viewed as a suitable generalization of the
droplets introduced earlier in the studies of energy minimizing patterns [36]. Note, however,
that the sets Ω+

i lack the regularity properties of the energy minimizers in [36] and may
in general be fairly ill-behaved (in particular, they do not have to be simply connected).
Nevertheless, they are fundamental for the description of the low energy states associated
with Eε and, in particular, will be shown to be close, in some average sense, to disks of
prescribed radii for almost minimizers of energy.

In terms of the droplets, from the above discussion we have

u = −1 + 2
�

i

χΩ+
i
, (2.6)

where χΩ+
i
are the characteristic functions of Ω+

i . Inserting this into (2.2), expressing the

result via G that solves

−∆G(x) + κ2G(x) = δ(x) in T2
� , (2.7)

expanding all the terms and using the fact that
�
T2
�
G(x)dx = κ−2, we arrive at (see

also [36])

Eε[u] =
�2(1 + ūε)2

2κ2

+
�

i

�
ε|∂Ω+

i |− 2κ−2(1 + ūε)|Ω+
i |
�
+ 2

�

i,j

�

Ω+
i

�

Ω+
j

G(x− y) dx dy, (2.8)

where we took into account the translational symmetry of the problem in T2
� . Moreover,

since the optimal configurations for Ω+
i are expected to consist of droplets of size of order

ε1/3| ln ε|−1/3 (see (1.6) and the discussion around), it is convenient to introduce the rescaled
area and perimeter of each droplet:

Ai := ε−2/3| ln ε|2/3|Ω+
i |, Pi := ε−1/3| ln ε|1/3|∂Ω+

i |. (2.9)

Similarly, let us introduce the suitably rescaled measure dµ associated with the droplets:

dµ(x) := ε−2/3| ln ε|−1/3
�

i

χΩ+
i
(x)dx =

1

2
ε−2/3| ln ε|−1/3(1 + u) dx. (2.10)
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Setting for Γ-convergence
The rescaled energy:

Then the energy Eε[u] may be rewritten as

E
ε
[u] = ε4/3| ln ε|2/3

�
δ̄2�2

2κ2
+ Ē

ε
[u]

�
, (2.11)

where
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ε
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| ln ε|
�
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�
Pi −

2δ̄

κ2
A

ε
i

�
+ 2

�

T2
�

�

T2
�

G(x− y)dµ(x)dµ(y). (2.12)

Observe that for the nontrivial minimizers we know from [36] that Ēε = O(1), Ai = O(1)

and Pi = O(1) (and even more precisely Ai � 32/3π and Pi � 2 · 31/3π), the number of

droplets is N = O(| ln ε|), and µ closely approximates the sum of Dirac masses at the

droplet centers with weights of order | ln ε|−1. Observe also that if (uε) ∈ A is such that

lim supε→0 Ē
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G(x− y)dµ
ε
(x)dµ
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�

T2
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dµ
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+

2
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��

T2
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dµ
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�2
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where we used the well-known fact that for any u ∈ L2(T2
� ) we have

�

T2
�

�
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�

G(x− y)u(x)u(y)dx dy ≥
�

1

�2

�
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�

G(x) dx

���

T2
�

u(x) dx
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which is readily obtained by Fourier transform. Then it follows that
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�

dµ
ε ≤ δ̄�2 + κ�

���max(0, E
ε
[u

ε
])

���
1/2

, (2.17)

implying both statements in (2.13).
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the study of ferromagnetism, where the role of vortices is played by the slender needle-like

domains of opposite magnetization at the onset magnetization reversal [28].

Our paper is organized as follows. In Sec. 2, we introduce the considered scaling

regime and state our main results; in Sec. 3 we prove the Γ-convergence result in the

sharp interface setting; in Sec. 4 we prove the results on the characterization of almost

minimizers of sharp interface energy; and in Sec. 5 we treat the Γ-limit for the case of the

diffuse interface energy.

Some notations. We use the notation (uε) ∈ A to denote sequences of functions uε ∈ A
as ε = εn → 0, where A is an admissible class. We also use the notation µ ∈ M(Ω)
to denote a positive finite Radon measure dµ on the domain Ω. With a slight abuse of

notation, we will often speak of µ as the “density” on Ω. The symbols H
1(Ω), BV (Ω),

C(Ω) and H
−1(Ω) denote the usual Sobolev space, space of functions of bounded variation,

space of continuous functions, and the dual of H1(Ω), respectively.

2 Statement of results

Throughout the rest of the paper the domain Ω is assumed to be a flat two-dimensional

torus of side length �, i.e., when Ω = T2
� = [0, �)2, with periodic boundary conditions.

Given the parameters κ > 0, δ̄ > 0 and � > 0, for every ε > 0 we define

ū
ε
:= −1 + ε2/3| ln ε|1/3δ̄. (2.1)

Then the sharp interface version of the Ohta-Kawasaki energy (cf. (1.4)) can be written as

E
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[u] =

ε

2

�

T2
�

|∇u| dx+
1

2

�

T2
�

(u− ū
ε
)(−∆+ κ2)−1

(u− ū
ε
) dx, (2.2)

for all u ∈ A, where

A := BV (T2
� ; {−1, 1}). (2.3)

We wish to understand the asymptotic properties of the energy E
ε in (2.2) as ε → 0 when

all other parameters are fixed. We then relate our conclusions based on the study of this

energy to its diffuse interface version, which under the same scaling assumptions takes the

form

Eε
[u] =

�

T2
�

�
ε2

2
|∇u|2 +W (u) +

1

2
(u− ū

ε
)(−∆)

−1
(u− ū

ε
)

�
dx, (2.4)

for all u ∈ Aε, where

Aε
:=

�
u ∈ H

1
(T2

� ) :
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�2
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T2
�

u dx = ū
ε

�
. (2.5)
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compactness w.r.t. convergence of measures
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Ē
ε
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�
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G(x) dx
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Ēε[u] :=
1

| ln ε|
�

i

�
P ε
i − 2δ̄

κ2
Aε

i

�
+ 2

�

T2
�

�

T2
�

G(x− y)dµε(x)dµε(y). (1)

E[u] =

�

Rd

|∇u| dx+
�

Rd

�

Rd

u(x)u(y)

|x− y|α dx dy, u ∈ BV (Rd, {0, 1}) :
�

Rd

u dx = m.

�

T2
�

dµε =
1

2
δ̄�2

E[u] =
ε

2

�

Td
�

|∇u| dx+
1

2

�

Td
�

�

Td
�

(u(x)− ū)G(x, y)(u(y)− ū) dx dy (2)

G(x) =
1

2π

�

n∈Z2

K0(κ|x− n�|), (3)

E [u] =
� �

1

2
|∇u|2 + f(u)

�
dx+

α

2

��
g[u(x)]G0(x, y)g[u(y)] dx dy

−∆G0(x, y) = δ(x− y)− 1

�d
,

�

Td
�

G0(x, y)dx = 0

−∆G(x) + κ2G(x) = δ(x)− 1

�d

0 < ε � 1 Ω ⊂ R3 or R2 � ∼ ε1/3

ū ∈ (−1, 1), � = O(1), ε � 1 ⇒ � � 1

u ∈ H1(Td
� ) Td

� = [0, �)d 0 < α < d

1

�d

�

Td
�

u dx = ū � � 1

E [u] =

�

Td
�

�
ε2

2
|∇u|2 +W (u)

�
dx

+
1

2

�

Td
�

�

Rd

(u(x)− ū)(u(y)− ū)

|x− y|α dx dy (4)

1
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Sharp interface energy
a suitable notion of convergence is, therefore, in terms of weak 
convergence of measures

Main result:

1

| ln ε|G(ε1/3| ln ε|−1/3(x̄− ȳ)) =
1

6π
− ln | ln ε|

6π| ln ε| −
1

2π| ln ε| ln(κ̄|x̄− ȳ|) + o(ε1/3)

|x̄i − x̄j | = O(ε−1/3| ln ε|−1/6)

Theorem. Let W = 9
32 (1− u2)2, let ū = −1 + ε2/3| ln ε|1/3δ̄, with some δ̄ > 0

fixed, and let κ = 2
3 . Then

(i) If δ̄ ≤ 1
2

3
√
9κ2, then ε−4/3| ln ε|−2/3�−2 min E → 1

2κ
−2δ̄2,

(ii) If δ̄ > 1
2

3
√
9κ2, then ε−4/3| ln ε|−2/3�−2 min E →

3√9
2

�
δ̄ −

3√9
4 κ2

�
,

as ε → 0.

Theorem. (Γ-convergence of Eε) Fix δ̄ > 0, κ > 0 and � > 0, and let Eε

and ūε be as before. Then, as ε → 0 we have that

ε−4/3| ln ε|−2/3Eε Γ→ E0[µ] :=
δ̄2�2

2κ2
+

�
32/3 − 2δ̄

κ2

��

T2
�

dµ+2

�

T2
�

�

T2
�

G(x−y)dµ(x)dµ(y),

where µ ∈ M(T2
�) ∩H−1(T2

�).

5
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6π| ln ε| −
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fixed, and let κ = 2
3 . Then

(i) If δ̄ ≤ 1
2

3
√
9κ2, then ε−4/3| ln ε|−2/3�−2 min E → 1

2κ
−2δ̄2,

(ii) If δ̄ > 1
2

3
√
9κ2, then ε−4/3| ln ε|−2/3�−2 min E →

3√9
2

�
δ̄ −

3√9
4 κ2

�
,

as ε → 0.

Theorem. (Γ-convergence of Eε) Fix δ̄ > 0, κ > 0 and � > 0, and let Eε

and ūε be as before. Then, as ε → 0 we have that

ε−4/3| ln ε|−2/3Eε Γ→ E0[µ] :=
δ̄2�2

2κ2
+

�
32/3 − 2δ̄

κ2

��

T2
�

dµ+2

�

T2
�

�

T2
�

G(x−y)dµ(x)dµ(y),

where µ ∈ M(T2
�) ∩H−1(T2

�).

Corollary. For given δ̄ > 0, κ > 0 and � > 0, let (uε) ∈ BV ({−1,+1}) be
minimizers of Eε. Then, as ε → 0 we have

µε �

�
0
1
2 (δ̄ − δ̄c)

in (C(T2
�))

∗, ε−4/3| ln ε|−2/3�−2 minEε →
�

δ̄2

2κ2

δ̄c
2κ2 (2δ̄ − δ̄c),

when δ̄ ≤ δ̄c or δ̄ > δ̄c, respectively, with δ̄c :=
1
23

2/3κ2.

5

(M’10)
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Sharp interface energy
characterization of almost minimizers:

Theorem. Let (uε) ∈ A be a sequence of almost minimizers of Eε with pre-
scribed limit density µ. For every γ ∈ (0, 1) define the set Iεγ := {i ∈ N :

32/3πγ ≤ Aε
i ≤ 32/3πγ−1}. Then

lim
ε→0

1

| ln ε|
�

i

�
P ε
i −

�
4πAε

i

�
= 0,

lim
ε→0

1

| ln ε|
�

i∈Iε
γ

�
Aε

i − 32/3π
�2

= 0,

lim
ε→0

1

| ln ε|
�

i �∈Iε
γ

Aε
i = 0.

6

most droplets are nearly circular of radius

δ2E [u] = 1

2

� �
|∆1/2δu|2 +W

��(u)|δu|2 + ε2|∆−1/2δu|2
�
dx

≥ (ε+ 1
2 minW ��)

�
|δu|2 dx (6)

ε = εc = O(1) ε � 1 diamΩ = O(ε1/3) L = 1

ε � 1 ε � 1 diamΩ � O(1)

δ2E [ū] δ2E [ū] = 1

2

� �
W

��(ū)|δu|2 + |∆−1/2δu|2
�
dx ε = 0

⇒

E ∝
� �

1

2
|∇φ|2 − ξ−2

2
φ2 +

g

4
φ4

�
d
3r

+
α

2

��
(φ(r)− φ̄)(φ(r�)− φ̄)

|r− r�| d
3r d3r� (7)

α =
12

N2f(1− f)

E

kBT
= ρ0

� �
a2|∇φ|2

24φ
+

1

N
φ lnφ+ (1− φ) ln(1− φ) + χφ(1− φ)

�
d
3r

+
e2ρ20

2�dkBTN2

��
(φ(r)− φ̄)(φ(r)− φ̄)

|r− r�| d
3r d3r� (8)

E ∝
� �

a2|∇φ|2

2
− b

2
φ2 +

c

4
φ4 +

α

2

�
|b|2

�
d
3r

∇ · b = −φ, ∇× b = 0. (9)

α ∼ 1

a2n2

1

|Ω|

�
φ d

2r = φ̄

(i) W ∈ C3(R), W (u) = W (−u), and W ≥ 0,

(ii) W (+1) = W (−1) = 0 and W ��(+1) = W ��(−1) > 0.

2

then makes sense to talk about almost minimizers of the energy E
ε with prescribed limit

density µ by viewing them as almost minimizers of E
ε −

�
T2
�
ϕdµε. Also, observe that

almost minimizers with the particular prescribed density µ̄ from Corollary 2.2 are simply
almost minimizers of Eε. Below we give a precise definition.

Definition 2.3. For given δ̄ > 0, κ > 0, � > 0 and a given µ ∈ M(T2
� ) ∩ H

−1(T2
� ), we

will call every recovery sequence (uε) ∈ A in Theorem 1(ii) almost minimizers of Eε with
prescribed limit density µ.

For almost minimizers with prescribed limit density, we show that in the limit ε → 0
most of the droplets, with the exception of possibly many tiny droplets comprising a van-
ishing fraction of the total droplet area, converge to disks of radius r = 31/3ε1/3| ln ε|−1/3.
More precisely, we have the following result.

Theorem 2. Let (uε) ∈ A be a sequence of almost minimizers of Eε with prescribed limit
density µ. For every γ ∈ (0, 1) define the set Iεγ := {i ∈ N : 32/3πγ ≤ A

ε
i ≤ 32/3πγ−1}.

Then

lim
ε→0

1

| ln ε|
�

i

�
P

ε
i −

�
4πAε

i

�
= 0, (2.24)

lim
ε→0

1

| ln ε|
�

i∈Iεγ

�
A

ε
i − 32/3π

�2
= 0, (2.25)

lim
ε→0

1

| ln ε|
�

i �∈Iεγ

A
ε
i = 0, (2.26)

where {Aε
i} and {P ε

i } are given by (2.9) with u = u
ε.

Note that we may use the isoperimetric deficit terms present in (2.24) to control the
Fraenkel asymmetry of the droplets. The Fraenkel asymmetry measures the deviation of
the set E from the ball of the same area that best approximates E and is defined for any
Borel set E ⊂ R2 by

α(E) = min
|E�B|
|E| , (2.27)

where the minimum is taken over all balls B ⊂ R2 with |B| = |E|, and � denotes the
symmetric difference between sets. Note that the following sharp quantitative isoperimetric
inequality holds for α(E) [21]:

per(E)−
�
4π|E| ≥ Cα(E)

�
|E|, (2.28)

with some universal constant C > 0. As a direct consequence of Theorem 2 and (2.14), we
then have the following result.

11

in the limit the charge separates into droplets equally
Wednesday, February 29, 2012



Diffuse interface energy
sharp interface results cannot be applied directly:

Then the energy Eε[u] may be rewritten as

E
ε
[u] = ε4/3| ln ε|2/3

�
δ̄2�2

2κ2
+ Ē

ε
[u]

�
, (2.11)

where

Ē
ε
[u] :=

1

| ln ε|
�

i

�
Pi −

2δ̄

κ2
A

ε
i

�
+ 2

�

T2
�

�

T2
�

G(x− y)dµ(x)dµ(y). (2.12)

Observe that for the nontrivial minimizers we know from [36] that Ēε = O(1), Ai = O(1)

and Pi = O(1) (and even more precisely Ai � 32/3π and Pi � 2 · 31/3π), the number of

droplets is N = O(| ln ε|), and µ closely approximates the sum of Dirac masses at the

droplet centers with weights of order | ln ε|−1. Observe also that if (uε) ∈ A is such that

lim supε→0 Ē
ε[uε] < +∞, we have

lim sup
ε→0

1

| ln ε|
�

i

P
ε
i < +∞, lim sup

ε→0

1

| ln ε|
�

i

A
ε
i < +∞, (2.13)

where {Aε
i}, {P ε

i } and µε are associated with uε. Indeed, by (2.9) and (2.10) we have

1

| ln ε|
�

i

A
ε
i =

�

T2
�

dµ
ε
, (2.14)

and thus, from (2.12) we obtain

Ē
ε
[u] ≥ −2δ̄

κ2

�

T2
�

dµ
ε
+ 2

�

T2
�

�

T2
�

G(x− y)dµ
ε
(x)dµ

ε
(y)
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�

T2
�

dµ
ε
+

2

κ2�2

��

T2
�

dµ
ε
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, (2.15)

where we used the well-known fact that for any u ∈ L2(T2
� ) we have

�

T2
�

�

T2
�

G(x− y)u(x)u(y)dx dy ≥
�

1

�2

�

T2
�

G(x) dx

���

T2
�

u(x) dx

�2

, (2.16)

which is readily obtained by Fourier transform. Then it follows that

�

T2
�

dµ
ε ≤ δ̄�2 + κ�

���max(0, E
ε
[u

ε
])

���
1/2

, (2.17)

implying both statements in (2.13).
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is not fixed on the sharp interface level, but

�

T2
�

dµε =
1

2
δ̄�2

E[u] =
ε

2

�

Td
�

|∇u| dx+
1

2

�

Td
�

�

Td
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(u(x)− ū)G(x, y)(u(y)− ū) dx dy (1)
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1

2π

�
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−∆G(x) + κ2G(x) = δ(x)− 1

�d

0 < ε � 1 Ω ⊂ R3 or R2 � ∼ ε1/3

ū ∈ (−1, 1), � = O(1), ε � 1 ⇒ � � 1

u ∈ H1(Td
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� = [0, �)d 0 < α < d
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u dx = ū � � 1

E [u] =
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|∇u|2 +W (u)
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dx

+
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�
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E [u] =

�

Td
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|∇u|2 +W (u)
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dx
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�
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Rd
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E [u] =

�

Ω

�
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2
|∇u|2 +W (u)

�
dx

+
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Ω
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1

on the diffuse interface level

intimately related to screening:

r

�1.0

�0.5

0.5

1.0

u

Figure 2: A qualitative form of the u-profile for a single droplet from the Euler-Lagrange

equation associated with E . The horizontal line shows the level corresponding to ū. Charge
is transferred from the region where u < ū (depletion shown in green) to the region where

u > ū (excess shown in orange).

compensating charges that move into their vicinity [35]. For a single radially symmetric

droplet the solution of the Euler-Lagrange equation associated with Eε
will have the form

shown in Fig. 2.

In order to be able to extract the limit behavior of the energy, we need to take into

consideration the redistribution of charge discussed above and define almost minimizers

with prescribed limit density that belong to Aε
and for which the screening charges are re-

moved from the consideration of convergence to the limit density. Hence, given a candidate

function uε ∈ Aε
, we define a new function

uε0(x) :=

�
+1, uε(x) > 0,

−1, uε(x) ≤ 0,
(2.31)

whose jump set coincides with the zero level set of uε. This introduces a nonlinear filter-

ing operation that eliminates the effect of the small deviations of uε from ±1 in almost

minimizers on the limit density (compare also with [28]). The density is now defined as

dµε
0 :=

1
2ε

−2/3| ln ε|−1/3
(1 + uε0(x))dx. (2.32)

We can follow the ideas of [36] to establish an analog of Theorem 1 for the diffuse
interface energy. To avoid many technical assumptions, we formulate the result for a

specific choice of W . A general result may easily be reconstructed. Also, we make a

technical assumption to avoid dealing with the case lim supε→0 �uε�L∞(T2
� )

> 1, when spiky

configurations in which |uε| significantly exceeds 1 in regions of vanishing size may appear.

We note that this condition is satisfied by the minimizers of Eε
[36, Proposition 4.1].
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Diffuse interface energy
introduce:
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Figure 2: A qualitative form of the u-profile for a single droplet from the Euler-Lagrange

equation associated with E . The horizontal line shows the level corresponding to ū. Charge
is transferred from the region where u < ū (depletion shown in green) to the region where

u > ū (excess shown in orange).
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� )

> 1, when spiky

configurations in which |uε| significantly exceeds 1 in regions of vanishing size may appear.

We note that this condition is satisfied by the minimizers of Eε
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Figure 2: A qualitative form of the u-profile for a single droplet from the Euler-Lagrange

equation associated with E . The horizontal line shows the level corresponding to ū. Charge
is transferred from the region where u < ū (depletion shown in green) to the region where

u > ū (excess shown in orange).

compensating charges that move into their vicinity [35]. For a single radially symmetric

droplet the solution of the Euler-Lagrange equation associated with Eε
will have the form

shown in Fig. 2.

In order to be able to extract the limit behavior of the energy, we need to take into

consideration the redistribution of charge discussed above and define almost minimizers

with prescribed limit density that belong to Aε
and for which the screening charges are re-

moved from the consideration of convergence to the limit density. Hence, given a candidate

function uε ∈ Aε
, we define a new function

uε0(x) :=

�
+1, uε(x) > 0,

−1, uε(x) ≤ 0,
(2.31)

whose jump set coincides with the zero level set of uε. This introduces a nonlinear filter-

ing operation that eliminates the effect of the small deviations of uε from ±1 in almost

minimizers on the limit density (compare also with [28]). The density is now defined as

dµε
0 :=

1
2ε

−2/3| ln ε|−1/3
(1 + uε0(x))dx. (2.32)

We can follow the ideas of [36] to establish an analog of Theorem 1 for the diffuse
interface energy. To avoid many technical assumptions, we formulate the result for a

specific choice of W . A general result may easily be reconstructed. Also, we make a

technical assumption to avoid dealing with the case lim supε→0 �uε�L∞(T2
� )

> 1, when spiky

configurations in which |uε| significantly exceeds 1 in regions of vanishing size may appear.

We note that this condition is satisfied by the minimizers of Eε
[36, Proposition 4.1].
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Main result:

Theorem. Let (uε) ∈ A be a sequence of almost minimizers of Eε with pre-
scribed limit density µ. For every γ ∈ (0, 1) define the set I

ε
γ := {i ∈ N :

32/3πγ ≤ A
ε
i ≤ 32/3πγ−1}. Then

lim
ε→0

1

| ln ε|
�

i

�
P

ε
i −

�
4πAε

i

�
= 0,

lim
ε→0

1

| ln ε|
�

i∈Iε
γ

�
A

ε
i − 32/3π

�2
= 0,

lim
ε→0

1

| ln ε|
�

i �∈Iε
γ

A
ε
i = 0.

Theorem. (Γ-convergence of Eε) Fix δ̄ > 0 and � > 0, and let W (u) =
9
32 (1− u

2)2. Then, as ε → 0 we have that

ε−4/3| ln ε|−2/3Eε Γ→ E
0[µ] :=

δ̄2�2

2κ2
+

�
32/3 − 2δ̄

κ2

��

T2
�

dµ+2

�

T2
�

�

T2
�

G(x−y)dµ(x)dµ(y),

where µ ∈ M(T2
�) ∩H

−1(T2
�) and κ = 2

3 .

6

Corollary (for almost minimizers):

Theorem 3. (Γ-convergence of Eε) Fix δ̄ > 0 and � > 0, and let Eε be defined by (2.4)
with W (u) = 9

32(1− u
2)2 and ū

ε given by (2.1). Then, as ε → 0 we have that

ε−4/3| ln ε|−2/3Eε Γ→ E
0[µ] :=

δ̄2�2

2κ2
+

�
32/3 − 2δ̄

κ2

��

T2
�

dµ+ 2

�

T2
�

�

T2
�

G(x− y)dµ(x)dµ(y),

where µ ∈ M(T2
� ) ∩H

−1(T2
� ) and κ = 2

3 . More precisely, we have

i) (Lower Bound) Let (uε) ∈ Aε be such that lim supε→0 �uε�L∞(T2
� )

≤ 1 and

lim sup
ε→0

ε−4/3| ln ε|−2/3Eε[uε] < +∞, (2.33)

and let µε
0(x) be defined by (2.31) and (2.32).

Then, up to extraction of subsequences, we have

µ
ε
0 � µ in (C(T2

� ))
∗
,

as ε → 0, where µ ∈ M(T2
� )∩H−1(T2

� ). Moreover, we have lim supε→0 �uε�L∞(T2
� )

= 1
and

lim inf
ε→0

ε−4/3| ln ε|−2/3Eε[uε] ≥ E
0[µ].

ii) (Upper Bound) Conversely, given µ ∈ M(T2
� ) ∩H

−1(T2
� ), there exist (uε) ∈ Aε such

that lim supε→0 �uε�L∞(T2
� )

= 1 and for µ
ε
0 defined by (2.31) and (2.32) we have

µ
ε
0 � µ in (C(T2

� ))
∗
,

as ε → 0, and
lim sup

ε→0
ε−4/3| ln ε|−2/3Eε[uε] ≤ E

0[µ].

Based on the result of Theorem 3, we have the following analog of Corollary 2.2 for the
diffuse interface energy Eε.

Corollary 2.5. For given δ̄ > 0 and � > 0, let ūε be given by (2.1) and let (uε) ∈ Aε be
minimizers of Eε defined in (2.4) with W (u) = 9

32(1−u
2)2. Then, if uε0 and µ

ε
0 are defined

via (2.31) and (2.32), respectively, as ε → 0 we have

µ
ε
0 �

�
0
1
2(δ̄ − δ̄c)

in (C(T2
� ))

∗
, ε−4/3| ln ε|−2/3�−2min Eε →

�
δ̄2

2κ2 ,

δ̄c
2κ2 (2δ̄ − δ̄c),

(2.34)

when δ̄ ≤ δ̄c or δ̄ > δ̄c, respectively, with δ̄c :=
1
23

2/3κ2 and κ = 2
3 .

Remark 2.6. The choice of the zero level set of uε in the definition of the truncated version
u
ε
0 of uε in (2.31) was arbitrary. We could equivalently use the level set {uε = c} for any

c ∈ (−1, 1) fixed.
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Key points of proofs

3 Analysis of the sharp interface problem

Our plan for the analysis of the sharp interface problem consists of a number of

steps which we list below:

1. Introduce a suitably rescaled energy Ē and domain Ω̄.

2. Establish existence and regularity of the minimizers of Ē (subsets of Ω̄
where u = 1).

3. Establish some a priori estimates for the geometry of the minimizers of Ē

and uniform bounds on the induced long-range potential.

4. Establish that different connected components of minimizers of Ē are sep-

arated by large distances in Ω̄.

5. Establish that each connected component of a minimizer of Ē is close to

a disk (hence the term “droplet”).

6. Establish equivalence between min Ē and min ĒN (the suitably rescaled

version of EN ).

7. Improve the estimate for the separation distance between different droplets.

8. Prove uniform convergence of the rescaled droplet radii to a universal

constant.

9. Prove convergence of min Ē to a limit and convergence of the normalized

droplet density in the original, unscaled domain Ω to a limit, as ε→ 0.

This plan is carried out in the rest of this section via a series of lemmas and

propositions.

3.1 Scaling

We begin by introducing a suitable rescaling, in which the main quantities of

interest become O(1) quantities in the limit ε→ 0. Motivated by the discussion

of Sec. 2, we define the rescaled energy Ē (with the energy of the uniform state

u = −1 subtracted) and a new coordinate x̄ ∈ Ω̄ = [0, ε1/3| ln ε|−1/3)2, where Ω̄
is a two-dimensional torus with period ε1/3| ln ε|−1/3:

E = ε4/3| ln ε|2/3
(
1
2κ−2δ̄2

+ Ē), x =
ε1/3

| ln ε|1/3
x̄. (3.1)

The energy Ē can be conveniently expressed in term of the set Ω̄+ ⊂ Ω̄ in which

u = 1:

Ē = | ln ε|−1
�
|∂Ω̄+|− 2δ̄κ−2|Ω̄+|

�

+ 2| ln ε|−2

�

Ω̄+

�

Ω̄+
G

�
ε1/3| ln ε|−1/3

(x̄− ȳ)
�
dx̄ dȳ. (3.2)
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rescaled interfacial energy:

a priori estimates:

convenience, the computation is reproduced in Appendix C):

| ln ε|
dĒ(Ω̄+

a )

da

����
a=0

=

�

∂Ω̄+
(K(x̄)− 2δ̄κ−2

+ 4v(x̄))ρ(x̄) dH1
(x̄), (3.6)

| ln ε|
d2Ē(Ω̄+

a )

da2

����
a=0

=

�

∂Ω̄+

�
|∇ρ(x̄)|

2
+ 4ν(x̄) ·∇v(x̄) ρ2

(x̄)
�
dH1

(x̄)

+

�

∂Ω̄+
(4v(x̄)− 2δ̄κ−2

)K(x̄)ρ2
(x̄) dH1

(x̄)

+4| ln ε|−1

�

∂Ω̄+

�

∂Ω̄+
G(ε1/3

| ln ε|−1/3
(x̄− ȳ))ρ(x̄)ρ(ȳ) dH1

(x̄)dH1
(ȳ). (3.7)

where K(x̄) is the curvature at point x̄ ∈ ∂Ω̄+, with the sign convention that

K > 0 if Ω̄+ is convex, and ν(x̄) is the outward unit normal to ∂Ω̄+ at that

point. The associated Euler-Lagrange equation for ∂Ω̄+ reads

K(x̄) = 2δ̄κ−2 − 4v(x̄), (3.8)

which also allows to simplify the expression in (3.7) evaluated on a minimizer

to

| ln ε|
d2Ē(Ω̄+

a )

da2

����
a=0

=

�

∂Ω̄+

�
|∇ρ(x̄)|

2
+ 4ν(x̄) ·∇v(x̄) ρ2

(x̄)−K2
(x̄)ρ2

(x̄)
�
dH1

(x̄)

+4| ln ε|−1

�

∂Ω̄+

�

∂Ω̄+
G(ε1/3

| ln ε|−1/3
(x̄− ȳ))ρ(x̄)ρ(ȳ) dH1

(x̄)dH1
(ȳ). (3.9)

We will use these equations later on to establish some properties of the

minimizers for ε � 1. Meanwhile, let us begin our analysis with some basic

estimates.

Lemma 3.3. Let Ω̄+ be a minimizer of Ē. Then there exists C > 0 such that

|Ω̄+
| ≤ C| ln ε|, (3.10)

|∂Ω̄+
| ≤ C| ln ε|. (3.11)

for ε� 1.

Proof. First of all, by representation (2.3) we have G(x − y) ≥ c > 0 for all

x, y ∈ Ω. Therefore, in view of the fact that min Ē ≤ 0 (since Ē = 0 if Ω̄+ = ∅),

from (3.2) we have

0 ≥ | ln ε| Ē ≥ 2| ln ε|−1

�

Ω̄+

�

Ω̄+
G

�
ε1/3

| ln ε|−1/3
(x̄− ȳ)

�
dx̄− 2δ̄κ−2

|Ω̄+
|

≥ 2c| ln ε|−1
|Ω̄+

|
2 − 2δ̄κ−2

|Ω̄+
|, (3.12)

which gives (3.10). On the other hand, we also have

|∂Ω̄+
| ≤ 2δ̄κ−2

|Ω̄+
|. (3.13)

Therefore, from (3.10) we immediately obtain (3.11).

12

As a corollary, it follows from (3.11) that the diameter of each connected

subset Ω̄+
i of Ω̄+ is bounded by O(| ln ε|)

diam(Ω̄+
i ) ≤ C| ln ε|, (3.14)

for some C > 0 independent of ε� 1.

Our next step is to show that the area of each connected component of

Ω̄+ �= ∅ is uniformly bounded above and below independently of ε.

Lemma 3.4. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē, where Ω̄+

i are
the disjoint connected components of Ω̄+. Then, there exist C > c > 0 such that

c ≤ |Ω̄+
i |, |∂Ω̄+

i | ≤ C, diam(Ω̄+
i ) ≤ C, (3.15)

for ε� 1.

Proof. First, note that since by Corollary 3.2 the set ∂Ω̄+ is of class C3,α we

have N <∞. To see that (3.15) holds, we first write Ē as

| ln ε| Ē =

N�

i=1

�
|∂Ω̄+

i |− 2δ̄κ−2|Ω̄+
i |

+ 2| ln ε|−1

�

Ω̄+
i

�

Ω̄+
i

G(ε1/3| ln ε|−1/3
(x̄− ȳ)) dx̄dȳ

+ 2| ln ε|−1
�

j �=i

�

Ω̄+
i

�

Ω̄+
j

G(ε1/3| ln ε|−1/3
(x̄− ȳ)) dx̄dȳ

�
. (3.16)

In view of (3.14) and (2.4), the integral in the second line in (3.16) is bounded

from below by
1
6π (1 − δ)| ln ε| |Ω̄+

i |2 for any δ > 0, provided ε is small enough.

Therefore, removing the set Ω̄+
i from Ω̄+ will result in the change of energy ∆Ē

estimated as

| ln ε| ∆Ē ≤ −
�

|∂Ω̄+
i |− 2δ̄κ−2|Ω̄+

i | +
1
3π (1− δ)|Ω̄+

i |2
�

≤ −
�

2
√

π |Ω̄+
i |1/2 − 2δ̄κ−2|Ω̄+

i | +
1
3π (1− δ)|Ω̄+

i |2
�

, (3.17)

where in the first line we took into account that G > 0 and in the second line

used the isoperimetric inequality. Then, by direct inspection (see also Fig. 3)

we have ∆Ē < 0, contradicting minimality of Ē on Ω̄+, unless c ≤ |Ω̄+
i | ≤ C for

some C > c > 0, independently of ε � 1. Finally, the lower bound for |∂Ω̄+
i |

follows from the isoperimetric inequality, and the upper bound is obtained by

applying the previous argument to the first line in (3.17).

Following the same arguments, we also immediately arrive at the following

non-existence result:

Proposition 3.5. Let δ̄ <
1
2

3
√

9 κ2 be fixed. Then the unique minimizer of Ē

is Ω̄+ = ∅ for ε� 1.
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allows to expand the kernel

Proposition 6. Let Ω̄+ = ∪N
i=1Ω̄

+
i be a non-trivial minimizer of Ē, where Ω̄+

i
are the disjoint connected components of Ω̄+, and let r̄i be as in Proposition 3.
Then r̄i → 3

√
3 uniformly as ε→ 0.

Proposition 7. Let δ̄ > 1
2

3
√

9 κ2, and let ρ(x) = 1
| ln ε|

�N
i=1 δ(x − xi), with

xi = ε1/3| ln ε|−1/3x̄i, where x̄i are as in Proposition 3. Then

min Ē → − 1
2κ2

�
δ̄ −

3
√

9
2

κ2

�2

,

and

ρ→ 1
2π 3
√

3

�
δ̄ −

3
√

9
2

κ2

�

weakly in the sense of measures, as ε→ 0.

1
| ln ε|G(ε1/3| ln ε|−1/3(x̄− ȳ)) =

1
6π
− ln | ln ε|

6π| ln ε| −
1

2π| ln ε| ln(κ̄|x̄− ȳ|) + o(ε1/3)

5

insensitive to shape!
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Key points of proofs (cont.)
lower bound = isoperimetric inequality + expansion of the kernel

bounded from below as follows:

Ēε
self ≥

1

| ln ε|
�

i

|Aε
i |2

�
1

3π
− C

�
ln | ln ε|
| ln ε|

�
− 1

π|Aε
i |2| ln ε|

�

Ω
+
i

�

Ω
+
i

ln |x− y| dx dy
�

≥ 1

| ln ε|
�

i

|Aε
i |2

�
1

3π
− C

�
ln | ln ε|
| ln ε|

�
− 1

π| ln ε| lnP
ε
i

�
(3.10)

≥ 1

| ln ε|
�

i

|Aε
i |2

�
1

3π
− C

�
ln | ln ε|
| ln ε|

��
,

for some C > 0 independent of ε (which changes from line to line).
Now observe that the term in parentheses appearing in the right-hand side of (3.10)

is positive for ε sufficiently small. Using this and the fact that Aε
i ≥ Ãε

i , from (3.10) we
obtain

Ēε
self ≥

1

| ln ε|
�

i

|Ãε
i |2

�
1

3π
− C

�
ln | ln ε|
| ln ε|

��
, (3.11)

where C > 0 is a constant independent of ε. It is also clear from the definition of Ãε
i that

there exists a constant c > 0 such that

|Ãε
i |2 ≤ cAε

i . (3.12)

Combining this inequality with (3.11) and choosing any δ > 0, for ε small enough we have

δ > Cc ln | ln ε|
| ln ε|2 and, therefore, from (3.8) we obtain

Ēε[uε] ≥Iεdef +
1

| ln ε|
�

i

��
4πAε

i −
�
2δ̄

κ2
+ δ

�
Aε

i +
1

3π
|Ãε

i |2
�

+ 2

��
Gρ(x− y)dµε(x)dµε(y). (3.13)

Step 2: Optimization over Aε
i .

Focusing on the second term in the right-hand side of (3.13), we define

f(x) :=
2
√
π√
x

+
1

3π
x, (3.14)

and observe that f is strictly convex and attains its minimum of 32/3 at x = 32/3π, with

f ��(x) =
3
√
π

2x5/2
. (3.15)
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where

3 Proof of Theorem 1

Throughout all the proofs below, the values of Aε
i and P ε

i are always the rescaled areas
and perimeters, defined in (2.9), of the connected components Ω+

i of Ω+ = {u = +1} for a
given u = uε, as in Sec. 2. The presentation is clarified by working with the rescaled energy
Ēε defined by (2.12) rather than Eε directly. We begin by proving Part i) of Theorem 1,
the lower bound.

3.1 Proof of lower bound, Theorem 1 i)

Step 1: Estimate of Ēε in terms of Aε
i and P ε

i .

First, for a fixed γ ∈ (0, 1) we define a truncated rescaled droplet area:

Ãε
i :=

�
Aε

i , if Aε
i < 32/3πγ−1

(32/3πγ−1)1/2|Aε
i |1/2 if Aε

i ≥ 32/3πγ−1,
(3.1)

and the isoperimetric deficit

Iεdef :=
1

| ln ε|
�

i

�
P ε
i −

�
4πAε

i

�
≥ 0, (3.2)

which will be used throughout the proof. The purpose of defining the truncated droplet
area in (3.1) will become clear later. We will make repeated use of the basic fact that the
diameter of an indecomposable set of finite perimeter in the plane is essentially controlled
by its perimeter (i.e., modulo a set of measure zero):

ess diam ω ≤ 1

2
|∂ω| ∀ω ⊂ R2, 0 < |ω| < ∞. (3.3)

The proof follows, e.g., from [2, Theorem 7 and Lemma 4] by noting that in view of [2,
Proposition 6(ii)] it is sufficient to consider only simple sets [2, Definition 3].

We start by writing µε =
�

i µ
ε
i , with

dµε
i (x) := ε−2/3| ln ε|−1/3χΩ+

i
(x)dx, (3.4)

where Ω+
i are the connected components of Ω+ = {uε = +1}, and the index ε was omit-

ted from Ω+
i to avoid cumbersome notation. For small enough ε this is justified by the

discussion of Sec. 2, in view of the fact that for some C > 0 we have

|∂Ω+| ≤ ε−1Eε[uε] ≤ Cε1/3| ln ε|2/3, (3.5)
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We claim that we can bound the second term in the right-hand side of (3.13) from below
by the sum I + II + III of the following three terms:

I =
1

| ln ε|

�
32/3 − 2δ̄

κ2
− δ

��

i

Aε
i +

1

| ln ε|
�

Aε
i>32/3πγ−1

32/3(3−1γ−1 − 1)Aε
i , (3.16)

II =
1

| ln ε|
γ5/2

4π2 · 32/3
�

Aε
i<32/3πγ

Aε
i (A

ε
i − 32/3π)2, (3.17)

III =
1

| ln ε|
γ7/2

4π

�

32/3πγ≤Aε
i≤32/3πγ−1

(Aε
i − 32/3π)2. (3.18)

Before proving this, observe that defining

M ε := Ēε[uε]− 1

| ln ε|

�
32/3 − 2δ̄

κ2
− δ

��

i

Aε
i − 2

��
Gρ(x− y)dµε(x)dµε(y), (3.19)

we have from (3.13) and (3.16)–(3.18) that if Iεγ is as in Theorem 2, then

M ε ≥ c1
| ln ε|

�

i/∈Iεγ

Aε
i +

c2
| ln ε|

�

i∈Iεγ

(Aε
i − 32/3π)2 + Iεdef ≥ 0 ∀γ ∈ (0, 13), (3.20)

for some constants c1, c2 > 0 depending only on γ.
We now argue in favor of the lower bound based on (3.16)–(3.18). First observe that

by (3.1) we have for all Aε
i ≥ 32/3πγ−1:

�
4πAε

i +
1

3π
|Ãε

i |2 −
�
2δ̄

κ2
+ δ

�
Aε

i ≥
�
32/3 − 2δ̄

κ2
− δ

�
Aε

i + 32/3(3−1γ−1 − 1)Aε
i . (3.21)

When Aε
i < 32/3πγ−1, which corresponds to both (3.17) and (3.18), we utilize convexity of

f and (3.15):

�
4πAε

i +
1

3π
|Ãε

i |2 −
�
2δ̄

κ2
+ δ

�
Aε

i = Aε
i

�
2
√
π�
Aε

i

+
1

3π
Aε

i −
2δ̄

κ2
− δ

�

= Aε
i

�
f(Aε

i )−
2δ̄

κ2
− δ

�
(3.22)

≥
�
32/3 − 2δ̄

κ2
− δ

�
Aε

i +
1

2
Aε

if
��
�
32/3πγ−1

�
(Aε

i − 32/3π)2,

where the last line follows from the second order Taylor formula for f(x) about x = 32/3π
and the fact that f ��(x) is decreasing. Combining (3.19), (3.21) and (3.22) yields M ε ≥
I + II + III.
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bounded from below as follows:

Ēε
self ≥

1

| ln ε|
�

i

|Aε
i |2

�
1

3π
− C

�
ln | ln ε|
| ln ε|

�
− 1

π|Aε
i |2| ln ε|

�

Ω
+
i

�

Ω
+
i

ln |x− y| dx dy
�

≥ 1

| ln ε|
�

i

|Aε
i |2

�
1

3π
− C

�
ln | ln ε|
| ln ε|

�
− 1

π| ln ε| lnP
ε
i

�
(3.10)

≥ 1

| ln ε|
�

i

|Aε
i |2

�
1

3π
− C

�
ln | ln ε|
| ln ε|

��
,

for some C > 0 independent of ε (which changes from line to line).
Now observe that the term in parentheses appearing in the right-hand side of (3.10)

is positive for ε sufficiently small. Using this and the fact that Aε
i ≥ Ãε

i , from (3.10) we
obtain

Ēε
self ≥

1

| ln ε|
�

i

|Ãε
i |2

�
1

3π
− C

�
ln | ln ε|
| ln ε|

��
, (3.11)

where C > 0 is a constant independent of ε. It is also clear from the definition of Ãε
i that

there exists a constant c > 0 such that

|Ãε
i |2 ≤ cAε

i . (3.12)

Combining this inequality with (3.11) and choosing any δ > 0, for ε small enough we have

δ > Cc ln | ln ε|
| ln ε|2 and, therefore, from (3.8) we obtain

Ēε[uε] ≥Iεdef +
1

| ln ε|
�

i

��
4πAε

i −
�
2δ̄

κ2
+ δ

�
Aε

i +
1

3π
|Ãε

i |2
�

+ 2

��
Gρ(x− y)dµε(x)dµε(y). (3.13)

Step 2: Optimization over Aε
i .

Focusing on the second term in the right-hand side of (3.13), we define

f(x) :=
2
√
π√
x

+
1

3π
x, (3.14)

and observe that f is strictly convex and attains its minimum of 32/3 at x = 32/3π, with

f ��(x) =
3
√
π

2x5/2
. (3.15)
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pass to the limit           , then          , then 

Theorem. Let ū = −1 + ε2/3| ln ε|1/3δ̄, with some δ̄ > 0 fixed. Then for any

σ > 0 sufficiently small there exists ε0 > 0 such that for all ε ≤ ε0:

(i) If δ̄ <
1
2

3
√
9κ2

, then u = −1 is the unique global minimizer of E, with

ε−4/3| ln ε|−2/3 minE = 1
2κ

−2δ̄2.

(ii) If δ̄ >
1
2

3
√
9κ2

, there exists a non-trivial minimizer of E. The minimizer

is

u(x) = −1 + 2
N�

i=1

χΩ+
i
(x),

where χΩ+
i
are characteristic functions of N disjoint simply connected sets

Ω+
i ⊂ Ω with boundary of class C3

, and N = O(| ln ε|). The boundary of

each set Ω+
i is O(ε2/3−σ)-close (in Hausdorff sense) to a circle of radius

ri centered at xi. Furthermore,

minE = 1
2ε

4/3| ln ε|2/3κ−2δ̄2 + EN ({ri}, {xi}) +O(ε5/3−σ),

with EN = O(ε4/3| ln ε|2/3), ri = O(ε1/3| ln ε|−1/3), and

|xi − xj | > εσ, ∀j �= i.

(iii) If δ̄ >
1
2

3
√
9κ2

, in the limit ε → 0 we have

ε−1/3| ln ε|1/3ri → 3
√
3

uniformly,

1

| ln ε|

N�

i=1

δ(x− xi) → 1

2π 3
√
9

�
δ̄ −

3
√
9

2
κ2

�
,

weakly in the sense of measures, and

ε−4/3| ln ε|−2/3 minE →
3
√
9

2

�
δ̄ −

3
√
9

4
κ2

�
.

Ω̄+

4

Now using (3.19) and (3.20) with γ sufficiently small, we deduce that

Ē
ε[uε] ≥ 1

| ln ε|

�
32/3 − 2δ̄

κ2
− δ

��

i

A
ε
i + 2

��
Gρ(x− y)dµε(x)dµε(y). (3.23)

Step 3: Passage to the limit.

We may in fact conclude from (2.12), (2.13), (2.18) and (2.20), that

lim sup
ε→0

�

T2
l

|∇v
ε|2 + κ2|vε|2 < +∞, (3.24)

while (µε) is bounded in the sense of measures from (2.13) and (2.14).
Consequently, up to a subsequence

v
ε � v in H

1(T2
� ), (3.25)

µ
ε ∗
� µ in C(T2

� ), (3.26)

where

−∆v + κ2v = µ (3.27)

holds in the distributional sense. Now passing to the limit in (3.23) and recalling (2.14),
we obtain

lim inf
ε→0

Ē
ε[uε] ≥

�
32/3 − 2δ̄

κ2
− δ

��
dµ+ 2

��
Gρ(x− y)dµ(x)dµ(y), (3.28)

using continuity of Gρ. An application of the monotone convergence theorem then yields

lim inf
ε→0

Ē
ε[uε] ≥

�
32/3 − 2δ̄

κ2

��
dµ+ 2

��
G(x− y)dµ(x)dµ(y), (3.29)

upon sending ρ → 0 and then δ → 0. �

We now argue in favor of the corresponding upper bound in Theorem 1. The construc-
tion resembles quite closely that of the vortex construction in [44] for the two dimensional
Ginzburg-Landau functional and indeed we borrow several ideas from that proof and oc-
casionally refer the reader to that paper for details.
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Key points of proofs (cont.)
upper bound: use construction for the magnetic GL vortices

(Sandier and Serfaty’00)

approximate:

3.2 Proof of the Upper Bound, Theorem 1 ii)

As in the proof of the lower bound, we set dµε
i (x) as in (3.4), so that µε =

�
µε
i . Using the

approximation argument of Proposition II.2 in [44] we may assume that the limit measure
µ satisfies

dµ(x) = g(x)dx, c ≤ g ≤ C, (3.30)

for some C > c > 0.

Step 1: Construction of the configuration.

We claim that for ε sufficiently small it is possible to place a total of N(ε) disjoint spherical
droplets, where

N(ε) =
1

32/3
| ln ε|
π

µ(T2
� ) + o(| ln ε|), (3.31)

with centers {ai} in T2
� and radius

r = 31/3ε1/3| ln ε|−1/3, (3.32)

and satisfying for all i �= j

d(ε) := min |ai − aj | ≥
C�
N(ε)

, (3.33)

for some constant C > 0 depending only on µ. Indeed, given µ satisfying (3.30), for ε
sufficiently small we can partition T2

� into disjoint squares {Ki} of side length δε > 0
(hereafter simply denoted δ) satisfying

| ln ε|−1/2 � δ � 1. (3.34)

In each Ki we place

NKi(ε) =

�
1

32/3
| ln ε|
π

µ(Ki)

�
(3.35)

points ai (here m = �x� denotes the smallest integer m ≤ x) satisfying (3.33) and in
addition

dist (ai, ∂Ki) ≥
C�
N(ε)

, N(ε) :=
�

i

NKi . (3.36)

As argued in [44], our ability to do this follows from the estimate:

cδ2 ≤ µ(Ki) ≤ Cδ2, (3.37)
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solutions exist and are balls for m     1

Open problems
back to:

E[u] =
ε

2

�

Td
�

|∇u| dx+
1

2

�

Td
�

�

Td
�

(u(x)− ū)G(x, y)(u(y)− ū) dx dy (1)

G(x) =
1

2π

�

n∈Z2

K0(κ|x− n�|), (2)

E [u] =
� �

1

2
|∇u|2 + f(u)

�
dx+

α

2

��
g[u(x)]G0(x, y)g[u(y)] dx dy

−∆G0(x, y) = δ(x− y)− 1

�d
,

�

Td
�

G0(x, y)dx = 0

−∆G(x) + κ2G(x) = δ(x)− 1

�d

0 < ε � 1 Ω ⊂ R3 or R2

ū ∈ (−1, 1), � = O(1), ε � 1 ⇒

u ∈ H1(Td
� ) Td

� = [0, �)d 0 < α < d

1

�d

�

Td
�

u dx = ū � � 1

E [u] =

�

Td
�

�
ε2

2
|∇u|2 +W (u)

�
dx

+
1

2

�

Td
�

�

Rd

(u(x)− ū)(u(y)− ū)

|x− y|α dx dy (3)

E [u] =

�

Td
�

�
1

2
|∇u|2 +W (u)

�
dx

+
εd−α

2

�

Td
�

�

Rd

(u(x)− ū)(u(y)− ū)

|x− y|α dx dy (4)

E [u] =

�

Ω

�
ε2

2
|∇u|2 +W (u)

�
dx

+
1

2

�

Ω

�

Ω
(u(x)− ū)G0(x, y)(u(y)− ū)dx dy (5)

1

main difficulty for α > 0 is to minimize:

E[u] =

�

Rd

|∇u| dx+
�

Rd

�

Rd

u(x)u(y)

|x− y|α dx dy, u ∈ BV (Rd, {0, 1}) :
�

Rd

u dx = m.

�

T2
�

dµε =
1

2
δ̄�2

E[u] =
ε

2

�

Td
�

|∇u| dx+
1

2

�

Td
�

�

Td
�

(u(x)− ū)G(x, y)(u(y)− ū) dx dy (1)

G(x) =
1

2π

�

n∈Z2

K0(κ|x− n�|), (2)

E [u] =
� �

1

2
|∇u|2 + f(u)

�
dx+

α

2

��
g[u(x)]G0(x, y)g[u(y)] dx dy
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(u(x)− ū)(u(y)− ū)
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|x− y|α dx dy (3)

E [u] =

�

Td
�

�
1

2
|∇u|2 +W (u)

�
dx

+
εd−α

2

�

Td
�

�

Rd
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