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Introduction Derivation of the equation

Summary

I We consider the equation:

∂tu − ∂x (u3∂x (−∂xx )1/2(u)) = 0 for x ∈ Ω, t > 0.

I Goal: Prove the existence of non-negative solutions (for non-negative
initial data)
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Introduction Derivation of the equation

Outline

I Motivation (Hydraulic fracture) - Derivation of the equation

I Definition of the fractional laplacian on a bounded domain

I The porous media equation, the thin film equation and our equation

I Integral inequalities

I Existence results
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Introduction Derivation of the equation

Hydraulic Fracture
Hydraulic Fracturing: Propagation of fractures in a rock layer caused by the
presence of a pressurized fluid

I Occur naturally (volcanic dikes causes by magma pressure)
I Fracking: Artificial injection of a highly-pressurized fluid to create new

channels in the rock, to increase the extraction rate of oil and natural gas
(shale gas)

Fracture

High Pressure Fluid

Rock
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Introduction Derivation of the equation

KGD model (Khristianovic, Geertsma and De Klerk)
Model developed by Khristianovic and Zheltov (’55) and Geertsma and De
Klerk (’69).

I invariant with respect to z
I symmetric with respect to y

The fracture can then be entirely described by its opening u(x , t) in the y
direction:

y

x
u(x,t)
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Introduction Derivation of the equation

Derivation: Lubrication approximation
I Conservation of mass for the fluid inside the fracture:

∂t (ρu) + ∂x (ρuv) = 0 in R

where
I ρ= density of the fluid (constant)
I v = 1

u

R u/2
−u/2 vH(t , x , y) dy (averaged horizontal velocity of the fluid)

I Lubrication approximation: Navier-Stokes equations reduce to

µ
∂2vH

∂y2 (t , x , y) = ∂xp(x , t)

I Assuming a no-slip boundary condition v = 0 at y = ±u/2, we deduce

v(x , t) = − u2

12µ
∂xp(x , t).

∂tu − ∂x

(
u3

12µ
∂xp
)

= 0
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Introduction Derivation of the equation

Pressure law (Ref.: A. Pierce)

Pressure p(x , t) = Pressure exerted by the rock on the fluid.

Linear elasticity:
I The stress tensor components are denoted by
σxx , σyy , σzz , σxy = σyx , σxz = σzx and σyz = σzy .

I The displacement components are denoted by ux , uy and uz .

I The strain tensor is related to the displacement components as follows:

exx =
∂ux

∂x
, eyy =

∂uy

∂y
, ezz =

∂uz

∂z

exy =
1
2

(
∂ux

∂y
+
∂uy

∂x

)
, exz =

1
2

(
∂ux

∂z
+
∂uz

∂x

)
, eyz =

1
2

(
∂uy

∂z
+
∂uz

∂y

)
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Introduction Derivation of the equation

Equations for plane-strain
We assume that the solid is in a state of plane-strain:

uz = 0, ux and uy independent of the z coordinate

I Equilibrium conditions: 
∂σxx

∂x
+
∂σxy

∂y
= 0

∂σyy

∂y
+
∂σxy

∂x
= 0

I Stress-strain relations
exx = 1

2G [σxx − ν(σxx + σyy )]

eyy = 1
2G [σyy − ν(σxx + σyy )]

exy = 1
2Gσxy

where ν is Poisson’s ratio and G is the shear modulus.

We get 5 equations with 5 unknowns: σxx , σyy , σxy , ux , uy .
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Introduction Derivation of the equation

Fracture in an infinite solid
y

x

w(x , t)/2

σxy(x , 0) = 0, uy(x , 0) = w(x)/2

I Airy stress function: There exists a bi-harmonic potential U(x , y) such
that

σxx =
∂2U
∂y2 , σyy =

∂2U
∂x2 , σxy = − ∂2U

∂x∂y
.

Equilibrium conditions are satisfied.
I Use Fourier transform with respect to x to solve the stress-strain

relations.
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Introduction Derivation of the equation

Fracture in an infinite solid, cont.
Using the boundary conditions, we find

Û(k , y) = A(k)(1 + y |k |)e−|k|y for all k ∈ R, y > 0.

with
A(k) =

G
2(1− ν)

1
|k |

ŵ(k).

The pressure exerted by the rock in the y direction along y = 0 is given by

p̂(k) := −σ̂yy (k ,0) = k2Û(k ,0) =
G

2(1− ν)
|k |ŵ(k) for all k ∈ R.

p(x) =
G

2(1− ν)
(−∆)1/2w(x) for x ∈ R.

∂tu − ∂x (u3∂x (−∂xx )1/2(u)) = 0
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Introduction Derivation of the equation

Fracture in a constrained solid
The solid is constrained by rigid lubricated walls on both sides:

I the horizontal displacement is zero
I the wall does not transmit a shear stress to the solid

σxy(−a, y) = 0σxy(−a, y) = 0

y

x

w(x , t)/2

σxy(x , 0) = 0, uy(x , 0) = w(x)/2

ux(a, y) = 0ux(−a, y) = 0

Remark: On the lateral boundary, we have exy = 0 and so

∂uy

∂x
= 0 on ∂Ω× R.
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Introduction Derivation of the equation

Fracture in a contraint solid, cont.
We use Fourier sine series for ux and Fourier cosine series for uy :

Theorem

Assume Ω = (0, π). If
w(x) =

∑
k∈N

ŵ(k) cos(kx),

then the pressure p(x) is given by

p(x) =
G

2(1− ν)

∑
k∈N

kŵ(k) cos(kx).

We denote
p(x) = I(w)

where I is a nonlocal elliptic operator of order 1.

∂tu − ∂x (u3∂x I(u)) = 0
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Introduction Derivation of the equation

Other definitions of the operator I
I Spectral definition: We denote by (λk , ϕk ) eigenvalues/eigenfunctions

of the Laplace operator with Neumann boundary conditions on Ω.

I :
∞∑

k=0

ckϕk 7−→
∞∑

k=0

ckλ
1
2
k ϕk

(The same operator, with Dirichlet boundary condition, is studied by
Cabré-Tan ’10)

I Dirichlet-to-Neumann map: Let v be the following harmonic extension
of w in Ω× (0,∞):

−∆v = 0 in Ω× (0,∞),

v(x ,0) = w(x) on Ω,

∂νv = 0 on ∂Ω× (0,∞).

(1)

Then
I(w) = −∂y v(·,0).
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Introduction Derivation of the equation

Other definition of the operator I

I Singular integral definition:

I(w)(x) =

∫
Ω

[w(x)− w(y)] ν(x , y)dy

where

ν(x , y) =
π

2

(
1

1− cos(π(x − y))
+

1
1− cos(π(x + y))

)
(if Ω = (0,1)).
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Introduction Derivation of the equation

The Hydraulic Fracture Equation
Conclusion:

I The opening u(x , t) of the fracture solves a degenerate nonlocal
parabolic equation of order 3:

∂tu − ∂x (u3∂x I(u)) = 0 for x ∈ Ω, t > 0

where I is a nonlocal elliptic operator of order 1 (half laplacian with
Neumann boundary conditions).

I Boundary conditions:

∂xu = 0, u3∂x I(u) = 0 for x ∈ ∂Ω, t > 0

(the second condition ensures zero fluid loss)

I Initial condition:
u(x ,0) = u0(x) for x ∈ Ω.
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Introduction Derivation of the equation

References

I Derivation of the model
I Khristianovic and Zheltov (’55)
I Geertsma and de Klerk (’69)

I Numerical computations and formal asymptotic results
I Spence and Sharp (’85)
I Adachi and Detournay (’94)
I Mitchel, Kuske and Peirce (’06,’07)
I Adachi and Peirce (’08)
I . . .
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Introduction Derivation of the equation

The porous media equation, the thin film equation and our
equation

Antoine Mellet (UMD) February 2012 17 / 35



Introduction Derivation of the equation

A (slightly) more general model
The lubrication approximation gave us

∂tu − ∂x (u3∂xp) = 0

If we replace the no-slip condition for the fluid in contact with the rock by a
Navier slip condition, we get a coefficient of the form

u3 + Λu ∼ Λu for small u

or
u3 + Λu2 ∼ Λu2 for small u

instead of u3.

So it makes sense to consider the general equation

∂tu − ∂x (un∂x I(u)) = 0

for n ≥ 1.
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Introduction Derivation of the equation

Porous media and thin film equations

This equation belongs to the general class of equations of the form:

∂tu − ∂x (un∂x Iα(u)) = 0

where
Iα(u) = (−∂xx )α(u)

Then
I α < 0, n = 1: Non-local porous media equation
I α = 0, n > 0: Porous media equation
I α = 1/2, n ∈ [1,3]: Hydraulic fracture equation
I α = 1, n > 0: Thin film equation

For α > 0, there is no maximum principle: the existence of non-negative
solutions is non-trivial, and uniqueness results are very difficult to obtain.

For α ∈ (0,1), the equation is non-local.
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Introduction Derivation of the equation

Both the porous media and thin film equation have nice properties:
I Existence of a non-negative solution (for non-negative initial data)

I Optimal regularity result

I Finite speed of propagation of the support (compact support remains
compact)

I Existence of source-type solutions

I Initial waiting time phenomenon

References for the thin film equation:
I Bernis-Friedman (’90)
I Bernis (’86,’96,’96,’96)
I Beretta-Bertsch-Dal Passo (’95)
I Bertozzi-Pugh (’94,’96)
I Bertozzi (’98)
I Grün (’95,’01,’01,’02,’03)
I ...
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Introduction Derivation of the equation

A free boundary problem
The derivation of the equation for u(x , t) was only valid inside the fracture, so
we should really write a free boundary problem:

∂tu − ∂x (un∂x I(u)) = 0 for x ∈ {u > 0}, t > 0

On ∂{u > 0}, we have
u = 0, un∂x I(u) = 0

(zero width and no fluid loss at the tip of the fracture).

We need an additional free boundary condition:

Spence and Sharp (’85) show that at the tip of the fracture, we should have

u(x , t) ∼ K (x0 − x)
1/2
+ as x → x0 ∈ ∂{u > 0}

for some coefficient K ≥ 0 related to the rock toughness.

Similar situation arises with the thin film equation. In that case, the free
boundary condition is u(x , t) ∼ α(x0 − x)+ (contact angle condition).
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Introduction Derivation of the equation

Zero toughness model

Instead of considering this free boundary problem, we assume that the
equation is satisfied throughout Ω.

I This is the standard approach for the porous media equation.

I This approach is classically used for the thin film equation.

I In both cases, the support propagates with finite speed (so a free
boundary is implicitly defined).

I For the thin film equation, this leads to solutions satisfying a zero contact
angle condition (complete wetting, or precursor film regime).

For our problem, we expect support of the solutions to propagate with finite
speed and we should have

u(x , t) = o
(

(x0 − x)
1/2
+

)
at the tip of the crack

This is the zero toughness model (K = 0) or pre-fractured rock.
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Introduction Derivation of the equation

The exponent n = 3
In 1971, Huh and Scriven noted that for n = 3, the motion of the contact line
leads to infinite dissipation of energy for the thin film equation:

The velocity of the fluid is given by

v = −u2∂xp

and the dissipation of energy is given by

D(u) =

∫
u3(∂xxxu)2 dx =

∫
v2

u

If u ∼ x+ and v 6= 0 at the free boundary this is infinite.

For the Hydraulic fractures, we have u ∼ x1/2
+ , so the dissipation is finite

even when v 6= 0.
In fact, a similar argument shows that n = 4 is the critical exponent for our
equation.
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Energy and entropy estimates

Existence results

Our goal: Existence theorem for the zero toughness regime

Remark:
I No maximum principle
I Integral inequalities similar to the thin film equation
I Non-locality of the operator I complicates things considerably.
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Energy and entropy estimates

Integral inequalities (Lyapunov functionals)

Three important inequalities
I Conservation of mass ∫

Ω

u(t , x) dx =

∫
Ω

u0(x) dx

I Energy inequality

d
dt

∫
Ω

u I(u) dx +

∫
Ω

un(∂x I(u))2 dx = 0

I Entropy inequality

d
dt

∫
Ω

G(u) dx +

∫
Ω

ux I(u)x dx = 0

where G is a non-negative convex function satisfying G′′(s) = s−n.
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Energy and entropy estimates

Functional spaces
Recall that I :

∞∑
k=0

ckϕk 7−→
∞∑

k=0

ckλ
1
2
k ϕk

We define

Hs
N(Ω) =

{
u =

∞∑
k=0

ckϕk ;
∑

(1 + λs
k )c2

k <∞

}
with the norm

‖u‖2
Hs

N
=

∑
(1 + λs

k )c2
k

I If 0 ≤ s < 3/2, then Hs
N(Ω) = Hs(Ω)

I If 3/2 < s < 7/2, then Hs
N(Ω) = {u ∈ Hs(Ω) ; uν = 0 on ∂Ω}.

I if s = 3/2, then

H3/2
N (Ω) =

{
u ∈ H3/2(Ω) ;

∫
Ω

u2
x

d(x)
dx <∞

}
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Energy and entropy estimates

Integral inequalities (Lyapunov functionals)

With these norms, we can rewrite the integral inequalities as follows:

I Conservation of mass ∫
Ω

u(t , x) dx =

∫
Ω

u0(x) dx

I Energy inequality

d
dt
||u||2

Ḣ
1
2

+

∫
Ω

un(∂x I(u))2 dx = 0

I Entropy inequality
d
dt

∫
Ω

G(u) dx + ||u||2
Ḣ

3
2

N

= 0
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Energy and entropy estimates

Existence theorem

Theorem (Imbert-M. (2011))
Consider u0 ∈ H

1
2 (Ω) such that

∫
Ω

G(u0)dx < +∞. There exists a

non-negative weak solution u.

Moreover, for a.e. t ∈ (0,T ),

I (Mass)
∫

Ω

u(t) dx =

∫
Ω

u0 dx;

I (Energy) ‖u(t)‖2
H

1
2 (Ω)

+ 2
∫ t

0

∫
Ω

g2(s, x) dx ds ≤ ‖u0‖2
H

1
2 (Ω)

where g = ∂x (un/2I(u))− n
2 u

n
2−1∂x u I(u) ∈ L2

I (Entropy)
∫

Ω

G(u(t)) dx +

∫ t

0
‖u(s)‖2

Ḣ
3
2

N (Ω)
ds ≤

∫
Ω

G(u0) dx
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Energy and entropy estimates

Idea of the proof

I General strategy: Regularize the diffusion coefficient un → fε(u), and
prove the existence of a solution uε. Then pass to the limit ε→ 0.

I Energy inequality + mass conservation give a bound on uε in

H1/2(Ω) ⊂ Lp(Ω) for all p <∞

and shows that the flux hε = fε(uε)I(uε)x is bounded in L2(0,T ,L2−(Ω)).

I Since G′′ = u−n, we have G(s) = +∞ for s < 0 whenever n ≥ 1, so the
entropy inequality implies lim uε ≥ 0.

I However, for n ≥ 2, G(0) = +∞, so the entropy inequality requires
positive initial data, which is a major limitation of the result.
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Energy and entropy estimates

Idea of the proof
We have a solution of

∂tuε − ∂xhε = 0.

We have to show that

hε = fε(uε)I(uε)x −→ unI(u)x .

Idea:
I hε → 0 wherever lim uε = 0
I I(uε)x bounded in L2 wherever lim uε ≥ δ > 0.

Difficulty: to identify lim I(uε)x in D′, we need u continuous, which we do not
have.
Remark: Our equation is critical in the sense that if α > 1/2 (e.g. for the thin
film equation), the energy inequality gives a bound in

Hα(Ω) ⊂ L∞(Ω) ∩ C0,β(Ω).

Instead, we use the entropy dissipation (H3/2
N bound)

Antoine Mellet (UMD) February 2012 30 / 35



Energy and entropy estimates

Weak formuation

With two integrations by parts, we obtained the following weak formulation:∫∫
Q

u ∂tϕdx dt −
∫∫

Q
nun−1∂xu I(u) ∂xϕdx dt −

∫∫
Q

un I(u) ∂xxϕdx dt

= −
∫

Ω

u0ϕ(0, ·) dx

for all ϕ ∈ D(Ω× [0,T )) satisfying ∂xϕ|∂Ω = 0.

This formulation makes sense for solutions in

L∞(0,T ,H
1
2 (Ω)) ∩ L2(0,T ,H

3
2

N (Ω)).

Antoine Mellet (UMD) February 2012 31 / 35



Energy and entropy estimates

Conclusion:

I We get the existence of non-negative weak solutions for all n ≥ 1, but for
n ≥ 2, we cannot have compactly supported initial data.

I When n ∈ [1,2) (Lubrication approximation with certain Navier-Slip
conditions), the result includes compactly supported initial data.
We note that the condition u ∈ L2(0,T ,H

3
2

N (Ω)) yield

u = o
(

(x − x0)
1/2
+

)
on ∂{u > 0}

(zero toughness condition)
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Energy and entropy estimates

Regularity and positivity when n > 3

We can improve the result when n > 3:

Theorem
If n > 3, then the solution u previously constructed satisfies

I u(t , ·) > 0 in Ω for a.e. t;
I u(t , ·) is C0,α for all α ∈ (0,1) for a.e. t;
I u solves ∂tu + ∂xJ = 0 with J = un∂x I(u) ∈ L1(Ω).
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Energy and entropy estimates

Further regularity (for n ∈ [2,3])?
In order to get stronger existence results when n ∈ [2,3], we need further
regularity results.

I The energy dissipation gives∫
un[I(u)x ]2 dx dt <∞.

In the case of the thin film equation, we have some beautiful integral
inequalities (due to Bernis ’96):∫

((u
n+2

2 )xxx )2 dx ≤ C
∫

un[uxxx ]2 dx for n ∈ ( 1
2 ,3).

I For the thin film equation, the so-called α-entropy yields further regularity
(Bertozzi-Pugh 96): For α ∈ (max(−1, 1

2 − n),2− n), α 6= 0, the solutions
of the thin film equation satisfy:∫

uα+1(·, t) dx +C
∫ t

0

∫ (
|∂xu

α+n+1
4 |4 +|∂xxu

α+n+1
2 |2

)
dx dt ≤

∫
uα+1

0 dx .
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Energy and entropy estimates

Conclusions

I Proved:

I Existence of non-negative solution for general initial data when n ∈ [1, 2).

I Existence of non-negative solution for positive initial data when n ≥ 2.

I To be proved:

I Existence of solution for compactly supported initial data when n ≥ 2

I L∞ bound and continuity of the solution

I Finite speed of propagation of the support

I Optimal regularity of the solution

I Existence of solution for the free boundary problem with non-zero toughness
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