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Introduction Derivation of the equation

Summary

» We consider the equation:

U — Ox(LP0x(—0x)?(u)) =0  forxeQ, t>0.

» Goal: Prove the existence of non-negative solutions (for non-negative
initial data)
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KGD model (Khristianovic, Geertsma and De Klerk)

Model developed by Khristianovic and Zheltov ('55) and Geertsma and De

Klerk ('69).

Introduction

» invariant with respect to z
» symmetric with respect to y

The fracture can then be entirely described by its opening u(x, t) in the y

direction:

Derivation of the equation

Antoine Mellet (UMD)
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Introduction Derivation of the equation

Derivation: Lubrication approximation
» Conservation of mass for the fluid inside the fracture:
Oi(pu) + Ox(puv) =0 inR

where
» p= density of the fluid (constant)
»y=1 f”ﬁz vi(t, x, y) dy (averaged horizontal velocity of the fluid)
» Lubrication approximation: Navier-Stokes equations reduce to
82 VH
MTyg(taXay) = oxp(x, t)

» Assuming a no-slip boundary condition v = 0 at y = +u/2, we deduce

_ u?
V(X7 t) = _@axp(xv t)

U3
Oeu — Oy (12 0,0)—0
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Introduction Derivation of the equation

Pressure law (Ref.: A. Pierce)

Pressure p(x,t) =

Linear elasticity:

Pressure exerted by the rock on the fluid.

» The stress tensor components are denoted by
Oxxs Oyys Ozzy, Oxy = Oyx, Oxz = Ozx and Oyz = Ogzy.

» The displacement components are denoted by uy, u, and u;.

» The strain tensor is related to the displacement components as follows:

1
exy:§
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Introduction Derivation of the equation

Equations for plane-strain

We assume that the solid is in a state of plane-strain:
u; =0, uyxand u, independent of the z coordinate
» Equilibrium conditions:

Ooxx  Ooxy

ox ay 0
doyy  Ooxy 0
dy ox

» Stress-strain relations
Exx = 21*@,[0')()( - V(Uxx + O'yy)]
&y = 2610y — V(o + )]
Exy = ;—Goxy
where v is Poisson’s ratio and G is the shear modulus.

We get 5 equations with 5 unknowns: oy, oy, oxy, Ux, Uy.
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Introduction

Fracture in an infinite solid

Derivation of the equation
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uy(x,0) = w(x)/2

» Airy stress function: There exists a bi-harmonic potential U(x, y) such

that
52U

Oxx = dy?’ Oy =

02U 02U

Equilibrium conditions are satisfied.

» Use Fourier transform with respect to x to solve the stress-strain

relations.
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Introduction Derivation of the equation

Fracture in an infinite solid, cont.
Using the boundary conditions, we find

Uk,y) = AK)(1 + ylk)e MV forallk e R, y > 0.

with
G 1

AK) = 50—y 7 (0

The pressure exerted by the rock in the y direction along y = 0 is given by

G

p(k) := —ay,(k,0) = K2U(k,0) = 50 )

|k|w(k) forall k € R.

p(x) = 2(1Ci;/)

(-A)"2w(x)  forx eR.

Ot — Oy (LP0x(—0xx) 2 (u)) = 0
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Derivation of the equation

Introduction

Fracture in a constrained soli

The solid is constrained by rigid lubricated walls on both sides:

» the horizontal displacement is zero

» the wall does not transmit a shear stress to the solid

=0

ux(a,y)=0
ny(fa y)

LSS
SIS

SANDDIDDIDNNNNNN

ARRARARRRRRRRRSNS

=w(x)/2

uy(x,0)

oxy(X,0) =0,

Remark: On the lateral boundary, we have e,, = 0 and so
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Introduction Derivation of the equation

Fracture in a contraint solid, cont.
We use Fourier sine series for uy and Fourier cosine series for u,,:

Theorem
Assume Q = (0, 7). If

w(x) =Y _ w(k)cos(kx),

keN

then the pressure p(x) is given by

p(x) Z kw(k) cos(kx).
keN

We denote
p(x) = I(w)

where / is a nonlocal elliptic operator of order 1.

Ot — Oy (LP0xI(u)) = 0
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Introduction Derivation of the equation

Other definitions of the operator /

» Spectral definition: We denote by (\«, ¢«) eigenvalues/eigenfunctions
of the Laplace operator with Neumann boundary conditions on €.

o0 oo
1
1) ckpr — D> CkAiok
k=0 k=0

(The same operator, with Dirichlet boundary condition, is studied by
Cabré-Tan ’10)

» Dirichlet-to-Neumann map: Let v be the following harmonic extension
of win Q x (0, 00):

—Av=0 in Q x (0, ),
v(x,0) =w(x) onQ, (1)
o,v=0 on 99 x (0, c0).

Then
I(w) =—-0yv(-,0).
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Introduction Derivation of the equation

Other definition of the operator /

» Singular integral definition:

I(w)(x) = / w(x) — w(y)] v(x, y)dy

where

7 1 1
v(x.y) =3 <1 “cos(r(x—y)) T1= cos(7r(X+Y)))
(if @ = (0,1)).
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Introduction Derivation of the equation

The Hydraulic Fracture Equation

Conclusion:
» The opening u(x, t) of the fracture solves a degenerate nonlocal

parabolic equation of order 3:

o — Oy (UPdxl(u)) =0 forxeQ, t>0

where [ is a nonlocal elliptic operator of order 1 (half laplacian with
Neumann boundary conditions).

» Boundary conditions:
ou=0, udl(u)=0 forx coQ, t>0

(the second condition ensures zero fluid loss)

» Initial condition:
u(x,0) = up(x) forx e Q.

15/35
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Introduction Derivation of the equation

References

» Derivation of the model
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» Numerical computations and formal asymptotic results

Spence and Sharp ('85)

Adachi and Detournay ('94)
Mitchel, Kuske and Peirce ('06,07)
Adachi and Peirce ('08)
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Introduction Derivation of the equation

The porous media equation, the thin film equation and our
equation
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Introduction Derivation of the equation

A (slightly) more general model
The lubrication approximation gave us
o — dx(uPdyp) =0

If we replace the no-slip condition for the fluid in contact with the rock by a
Navier slip condition, we get a coefficient of the form

uP +Au~ Au for small u
or

U+ AP ~ AP for small u
instead of u3.

So it makes sense to consider the general equation

| 0w — Ox(u"D /(1)) = O |

forn>1.

Antoine Mellet (UMD) February 2012
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Introduction Derivation of the equation

Porous media and thin film equations

This equation belongs to the general class of equations of the form:
Ot — Ok (U"0x1%(u)) =0
where
I*(u) = (—0x)*(u)
Then
» a < 0, n=1: Non-local porous media equation
» o =0, n> 0: Porous media equation

» o =1/2, n€[1,3]: Hydraulic fracture equation
» o =1, n> 0: Thin film equation

For o > 0, there is no maximum principle: the existence of non-negative
solutions is non-trivial, and uniqueness results are very difficult to obtain.

For a € (0, 1), the equation is non-local.
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Introduction Derivation of the equation

Both the porous media and thin film equation have nice properties:
» Existence of a non-negative solution (for non-negative initial data)

v

Optimal regularity result

v

Finite speed of propagation of the support (compact support remains
compact)

v

Existence of source-type solutions

v

Initial waiting time phenomenon

References for the thin film equation:
» Bernis-Friedman (’90)

Bernis (’86,96,96,96)

Beretta-Bertsch-Dal Passo ('95)

Bertozzi-Pugh ('94,96)

Bertozzi ('98)

Griin ('95,01,01,02,03)

vV Vv V. vV VY
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Introduction Derivation of the equation

A free boundary problem

The derivation of the equation for u(x, t) was only valid inside the fracture, so
we should really write a free boundary problem:

O — O (U"OxI(u)) =0 forx e{u>0}, t>0

On 9{u > 0}, we have
u=0, u"9I(u)=0

(zero width and no fluid loss at the tip of the fracture).
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Introduction Derivation of the equation

A free boundary problem

The derivation of the equation for u(x, t) was only valid inside the fracture, so
we should really write a free boundary problem:

O — O (U"OxI(u)) =0 forx e{u>0}, t>0

On 9{u > 0}, we have
u=0, u"9I(u)=0

(zero width and no fluid loss at the tip of the fracture).

We need an additional free boundary condition:

Spence and Sharp (’85) show that at the tip of the fracture, we should have

u(x,t) ~ K(xo—x)Y?  asx — xp € 8{u > 0}

for some coefficient K > 0 related to the rock toughness.

Similar situation arises with the thin film equation. In that case, the free
boundary condition is u(x, t) ~ a(xp — X)+ (contact angle condition).
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Introduction Derivation of the equation

Zero toughness model

Instead of considering this free boundary problem, we assume that the
equation is satisfied throughout Q.

» This is the standard approach for the porous media equation.
» This approach is classically used for the thin film equation.

» In both cases, the support propagates with finite speed (so a free
boundary is implicitly defined).

» For the thin film equation, this leads to solutions satisfying a zero contact
angle condition (complete wetting, or precursor film regime).

For our problem, we expect support of the solutions to propagate with finite
speed and we should have

u(x,t) =o ((xo - x)f) at the tip of the crack

This is the zero toughness model (K = 0) or pre-fractured rock.
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Introduction Derivation of the equation

The exponent n =3

In 1971, Huh and Scriven noted that for n = 3, the motion of the contact line

leads to infinite dissipation of energy for the thin film equation:
The velocity of the fluid is given by

vV = _Uzaxp

and the dissipation of energy is given by

D(u) = / (D)2 X = / V;

If u~ x, and v # 0 at the free boundary this is infinite.

For the Hydraulic fractures, we have u ~ xl/z, so the dissipation is finite
even when v # 0.

In fact, a similar argument shows that n = 4 is the critical exponent for our
equation.

Antoine Mellet (UMD) February 2012
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Energy and entropy estimates

Existence results

Our goal: Existence theorem for the zero toughness regime

Remark:
» No maximum principle
» Integral inequalities similar to the thin film equation
» Non-locality of the operator / complicates things considerably.
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Energy and entropy estimates

Integral inequalities (Lyapunov functionals)

Three important inequalities
» Conservation of mass

/u(t,x) dx:/uo(x)dx
Q Q
» Energy inequality

a ul(u)dx+/u”(8xl(u))2dx:0

» Entropy inequality

g/ G(u)dx+/uxl(u)xdx:0
at Jo Q

where G is a non-negative convex function satisfying G”(s) = s~".
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Energy and entropy estimates

Functional spaces

1
Recall that / : Z Ckpk +—— Z C;()\ﬁ ©k
k=0 k=0

We define
H{(Q) = {u = ZCkcpk ; 2(1 +A5)e2 < oo}
k=0

with the norm

lul2e = (142
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Energy and entropy estimates

Functional spaces

oo
1
Recall that / : Z Ckpk +—— Z Ck>\ﬁ ©k
k=0 k=0

We define

H3(Q) = {U = ZCksOk ; 2(1 +A5)e2 < oo}
k=0
with the norm

2
lul?, =

S (1 +Xf)ck

> If 0 < s < 3/2, then HS(Q) = H3(Q)

» If3/2 <5 <7/2,then H}(Q) = {u € H3(Q); u, = 00on 0Q}.
» if s =3/2, then

2
HY/2(Q) = {u e H2(Q); /Q Y g < oo}

d(x)

Antoine Mellet (UMD) February 2012
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Energy and entropy estimates

Integral inequalities (Lyapunov functionals)

With these norms, we can rewrite the integral inequalities as follows:
» Conservation of mass
/ u(t,x)dx = / Uo(x) dx
Q Q
» Energy inequality

d 2 n 2 _
Gl + [ vy dx o
» Entropy inequality

d 2 _
&/QG(U)dXHWHH% =0

N
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Energy and entropy estimates

Existence theorem

Theorem (Imbert-M. (2011))

Consider uy € Hz(Q) such that / G(up)dx < +o00. There exists a
Q

non-negative weak solution u.

Moreover, for a.e. t € (0, T),

> (Mass)/ﬂu(t) dx:/ﬂuo ax;

H2(Q)
where g = dx(u™?I(u)) — ”u§’1axu I(u) € L2

t
> (Energy) |u(t)|?, ~+2 g%(s,x) dx ds < ||uo|? ;
o Ja HZ (Q)

> (Entropy)/G dx+/ |u(s) ||2 ds</G(u0
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Energy and entropy estimates

Idea of the proof

» General strategy: Regularize the diffusion coefficient u” — f.(u), and
prove the existence of a solution u*. Then pass to the limit ¢ — 0.

» Energy inequality + mass conservation give a bound on u* in
H'/2(Q) c LP(Q) forall p < oo
and shows that the flux h* = £.(u®)/(u®)y is bounded in L2(0, T, L2~ (Q)).

» Since G’ = u~", we have G(s) = +oo for s < 0 whenever n > 1, so the
entropy inequality implies lim u® > 0.

» However, for n > 2, G(0) = 400, so the entropy inequality requires
positive initial data, which is a major limitation of the result.
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Energy and entropy estimates

|dea of the proof
We have a solution of
Ot — Oxhf = 0.

We have to show that
h® = f.(u°)I(uF)x — u"I(u)x.

Idea:

» h® — 0 wherever limu® =0

» I(uf)x bounded in L2 wherever lim u® > § > 0.
Difficulty: to identify lim /(u®), in D', we need u continuous, which we do not
have.
Remark: Our equation is critical in the sense that if « > 1/2 (e.g. for the thin
film equation), the energy inequality gives a bound in

H*(Q) € L=(Q) N C%(Q).
Instead, we use the entropy dissipation (H,?,/2 bound)
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Energy and entropy estimates

Weak formuation

With two integrations by parts, we obtained the following weak formulation:

//u8,<pdxdt // nu" 1, u I(u) Oy dx dt — //u I(u) Oxx dx dit
= /uogo(o ) dx
Q

for all o € D(Q x [0, T)) satisfying dxp|oq = 0

This formulation makes sense for solutions in

L(0, T, HE(Q)) N L2(0, T, Hy ().

Antoine Mellet (UMD) February 2012
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Energy and entropy estimates

Conclusion:

» We get the existence of non-negative weak solutions for all n > 1, but for
n > 2, we cannot have compactly supported initial data.

» When n € [1,2) (Lubrication approximation with certain Navier-Slip
conditions), the result includes compactly supported initial data.
3
We note that the condition u € L2(0, T, HZ(2)) yield
1/2
u:o((x—xo)+ ) on 9{u > 0}

(zero toughness condition)
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Energy and entropy estimates

Regularity and positivity when n > 3

We can improve the result when n > 3:

Theorem

If n > 3, then the solution u previously constructed satisfies
> u(t,-)>0inQ fora.e. t;
» u(t,-) is C% forall a € (0,1) for a.e. t;
> U solves diu + dxJ = 0 with J = u"dxI(u) € L'(Q).
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Energy and entropy estimates

Further regularity (for n € [2,3])?
In order to get stronger existence results when n € [2, 3], we need further
regularity results.

» The energy dissipation gives

/u”[/(u)x]2 dx dt < oco.

In the case of the thin film equation, we have some beautiful integral
inequalities (due to Bernis '96):

/((u%z)m)2 dx < C/ U"[u]? dx  for ne (4,3).
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Energy and entropy estimates

Further regularity (for n € [2,3])?
In order to get stronger existence results when n € [2, 3], we need further
regularity results.

» The energy dissipation gives
/u”[/(u)x]2 dx dt < oco.

In the case of the thin film equation, we have some beautiful integral
inequalities (due to Bernis '96):

/((u%z)m)2 dx < C/ U'u]? dx for n e (£,3).
» For the thin film equation, the so-called a-entropy yields further regularity

(Bertozzi-Pugh 96): For a € (max(—1, 3 — n),2 — n), a # 0, the solutions
of the thin film equation satisfy:

t
uet (-, t) dx+C 10U T [ O™ 2) dxdt < [ uSt dix.
0 0
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Energy and entropy estimates

Conclusions

» Proved:

» Existence of non-negative solution for general initial data when n € [1, 2).

» Existence of non-negative solution for positive initial data when n > 2.

» To be proved:

» Existence of solution for compactly supported initial data when n > 2

» L bound and continuity of the solution

v

Finite speed of propagation of the support

\{

Optimal regularity of the solution

v

Existence of solution for the free boundary problem with non-zero toughness
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